

KNX VOC-UP basic

Mischgassensor

Artikelnummern 70244 (Weiß), 70245 (Aluminiumfarben), 70246 (Anthrazit), 70247 (Edelstahlfarben)

1.	Beschreibung	3
	1.0.1. Lieferumfang	3
1.1.	Technische Daten	4
	1.1.1. Genauigkeit der Messung	4
	1.1.2. Messbereiche verschiedener Gase (CO2-Äquivalente)	5
2.	Installation und Inbetriebnahme	5
2.1.	Hinweise zur Installation	5
	Montageort	
2.3.	Aufbau des Sensors	7
	2.3.1. Gehäuse	7
	2.3.2. Rückansicht Sensorplatine mit Anschluss	7
	Montage des Sensors	
2.5.	Hinweise zur Montage und Inbetriebnahme	7
3.	Übertragungsprotokoll	9
3.1.	Liste aller Kommunikationsobjekte	9
4.	Einstellung der Parameter	14
4.1.	Verhalten bei Spannungsausfall/-wiederkehr	14
4.2.	Allgemeine Einstellungen	14
4.3.	VOC-Messwert	15
4.4.	VOC-Grenzwerte	15
	4.4.1. VOC-Grenzwert 1, 2, 3, 4	15
4.5.	VOC-PI-Regelung	18
4.6.	Stellgrößenvergleicher	
	4.6.1. Stellgrößenvergleicher 1 / 2	20
4.7.	Logik	
	4.7.1. UND bzw. ODER Logik 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8	21
	4.7.2. Verknüpfungseingänge der UND Logik	23
	4.7.3. Verknüpfungseingänge der ODER Logik	24

Installation, Prüfung, Inbetriebnahme und Fehlerbehebung des Geräts dürfen nur von einer Elektrofachkraft (lt. VDE 0100) durchgeführt werden.

Dieses Handbuch unterliegt Änderungen und wird an neuere Software-Versionen angepasst. Den Änderungsstand (Software-Version und Datum) finden Sie in der Fußzeile des Inhaltsverzeichnis.

Wenn Sie ein Gerät mit einer neueren Software-Version haben, schauen Sie bitte auf **www.elsner-elektronik.de** im Menübereich "Service", ob eine aktuellere Handbuch-Version verfügbar ist.

Zeichenerklärungen für dieses Handbuch

	۸	
_/	n	\
_	!	•
_	Ť	_

Sicherheitshinweis.

Sicherheitshinweis für das Arbeiten an elektrischen Anschlüssen, Bauteilen etc.

GEFAHR!

... weist auf eine unmittelbar gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht gemieden

WARNUNG!

... weist auf eine möglicherweise gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht gemieden wird.

VORSICHT!

... weist auf eine möglicherweise gefährliche Situation hin, die zu geringfügigen oder leichten Verletzungen führen kann, wenn sie nicht gemieden wird.

ACHTUNG!

... weist auf eine Situation hin, die zu Sachschäden führen kann, wenn sie nicht gemieden wird.

ETS

In den ETS-Tabellen sind die Voreinstellungen der Parameter durch eine Unterstreichung gekennzeichnet.

1. Beschreibung

Der **Mischgassensor KNX VOC-UP basic** erkennt flüchtige organische Verbindungen in der Raumluft. Über den Bus kann der Innenraumsensor einen externen Mischgas-Wert empfangen und mit den eigenen Daten zu einem Gesamtwert (Mischwert, z. B. Raumdurchschnitt) weiterverarbeiten.

Der KNX VOC-UP basic stellt vier Schaltausgänge mit einstellbaren Grenzwerten zur Verfügung. Schaltausgänge und weitere Kommunikationsobjekte können über UND-und ODER-Logik-Gatter verknüpft werden. Zusätzlich kann ein integrierter Stellgrößenvergleicher Werte, die über Kommunikationsobjekte empfangen wurden, vergleichen und ausgegeben.

Ein integrierter PI-Regler steuert die Lüftung nach Mischgas-Konzentration.

Das Gehäuse wird mit einem Rahmen der im Gebäude verwendeten Schalterreihe ergänzt und passt sich so nahtlos in die Innenausstattung ein.

Funktionen:

- Messung von Mischgas (flüchtige organische Verbindungen) in der Luft. Dabei wird aus dem Summensignal aller im Mischgas enthaltenen Komponenten per Algorithmus ein Luftgütewert in CO₂-Äquivalenten errechnet.
- Mischwerte aus eigenem Messwert und externem Werte (Anteil prozentual einstellbar)
- PI-Regler für Lüftung nach Mischgas-Konzentration: Entlüften/Belüften (einstufig) oder Entlüften (ein- oder zweistufig)
- 4 Schaltausgänge mit einstellbaren Grenzwerten (Grenzwerte werden wahlweise per Parameter oder über Kommunikationsobjekte gesetzt)
- 8 UND- und 8 ODER-Logik-Gatter mit je 4 Eingängen. Als Eingänge für die Logik-Gatter können sämtliche Schalt-Ereignisse sowie 16 Logikeingänge in Form von Kommunikationsobjekten genutzt werden. Der Ausgang jedes Gatters kann wahlweise als 1 Bit oder 2 x 8 Bit konfiguriert werden
- 2 Stellgrößenvergleicher zur Ausgabe von Minimal-, Maximal- oder Durchschnittswerten. Jeweils 5 Eingänge für über Kommunikationsobjekte empfangene Werte

Die Konfiguration erfolgt mit der KNX-Software ETS. Die **Produktdatei** steht auf der Homepage von Elsner Elektronik unter **www.elsner-elektronik.de** im Menübereich "Service" zum Download bereit.

1.0.1. Lieferumfang

- Gehäuse mit Sensorplatine
- Trägerplatte

Sie benötigen zusätzlich (nicht im Lieferumfang enthalten):

- Gerätedose Ø 60 mm, 42 mm tief
- Rahmen (für Einsatz 55 x 55 mm), passend zum im Gebäude verwendeten Schalterprogramm

1.1. Technische Daten

Gehäuse	Kunststoff (teilweise lackiert)
Farben	Weiß glänzend (ähnlich RAL 9016 Verkehrsweiß) Aluminium matt Anthrazit matt Edelstahl Sonderfarben auf Anfrage
Montage	Unterputz (Wandeinbau in Gerätedose Ø 60 mm, 42 mm tief)
Schutzart	IP 20
Maße	Gehäuse ca. 55 x 55 (B x H, mm), Aufbautiefe ca. 15 mm, Trägerplatte ca. 71 x 71 (B x H, mm)
Gesamtgewicht	ca. 55 g
Umgebungstemperatur	Betrieb 0+50°C, Lagerung -20+50°C
Umgebungsluftfeuchtigkeit	Betauung vermeiden
Hilfsspannung	1224 V DC; max. 500 mW
Busstrom	max. 10 mA
Datenausgabe	KNX +/- Bussteckklemme
BCU-Typ	eigener Mikrocontroller
PEI-Typ	0
Gruppenadressen	max. 254
Zuordnungen	max. 254
Kommunikationsobjekte	133
Messbereich	4502000 ppm
Auflösung	1 ppm

Das Produkt ist konform mit den Bestimmungen der EU-Richtlinien.

1.1.1. Genauigkeit der Messung

Messwertabweichungen durch Störquellen (siehe Kapitel *Montageort*) müssen in der ETS korrigiert werden, um die angegebene Genauigkeit des Sensors zu erreichen (Offset). Für eine korrekte Mischgas-Messung ist der Einbau des Gerätes in eine winddichte Dose erforderlich.

Die angegebene **Genauigkeit der VOC-Messung** wird nach einem einmaligen Raumluftwechsel (ohne Busspannungsunterbrechung) erreicht, wenn der Sensor mindestens einmal während dieser Zeit mit Frischluft in Berührung kommt. Danach führt der Sensor regelmäßige Selbstkalibrierungen durch.

Um die Genauigkeit dauerhaft zu gewährleisten, sollte der Sensor mindestens einmal in 48 Stunden mit Frischluft versorgt werden. Dies ist normalerweise während einer Raumlüftung der Fall.

1.1.2. Messbereiche verschiedener Gase (CO2-Äquivalente)

Entsprechende VOC-Konzentrationen für spezifische Schadstoffe

Gas	Formel	Messbe- reich* (ppm)	Mögliche Quellen für Schad- stoffe in Innenräumen
Kohlenmonoxid	СО	0-10	Autoabgase, Heizung auf Basis von Brennstoffen, Küchengeräte, Rauch
Methan	CH ₄	0-200	Erdgas
Propan	C ₃ H ₈	0-20	Heizung auf Basis von Brennstoffen, Küchengeräte, Reinigungsmittel
Ethylalkohol	C ₂ H ₆ O	0-3	Kosmetikartikel, Reinigungsmittel, Desinfektionsmittel, Reinigungsmit- tel, Farben, Lacke/Anstriche, Atem
Acetaldehyd	C ₂ H ₄ O	0-20	Klebstoffe, Beschichtungen/Lacke/ Anstriche, Kunststoffe, Schmiermit- tel, Reifegase von Früchten
Methylethylketon	C ₄ H ₈ O	0-20	Klebstoffe, Beschichtungen/Lacke/ Anstriche, Kunststoffe, Schmiermittel
Toluol	C ₇ H ₈	0-5	Farben, Lacke, Reinigungsmittel, Rauch, Polyurethanlacke

^{*} Entsprechender Konzentrationsbereich basiert auf Labormessungen mit einem Gasmischsystem mit synthetischer Luft bei 50% r.F. und RT

2. Installation und Inbetriebnahme

2.1. Hinweise zur Installation

Installation, Prüfung, Inbetriebnahme und Fehlerbehebung des Geräts dürfen nur von einer Elektrofachkraft (lt. VDE 0100) durchgeführt werden.

VORSICHT!

Elektrische Spannung!

Im Innern des Geräts befinden sich ungeschützte spannungsführende Bauteile.

- Die VDE-Bestimmungen beachten.
- Alle zu montierenden Leitungen spannungslos schalten und Sicherheitsvorkehrungen gegen unbeabsichtigtes Einschalten treffen.

- Das Gerät bei Beschädigung nicht in Betrieb nehmen.
- Das Gerät bzw. die Anlage außer Betrieb nehmen und gegen unbeabsichtigten Betrieb sichern, wenn anzunehmen ist, dass ein gefahrloser Betrieb nicht mehr gewährleistet ist.

Das Gerät ist ausschließlich für den sachgemäßen Gebrauch bestimmt. Bei jeder unsachgemäßen Änderung oder Nichtbeachten der Bedienungsanleitung erlischt jeglicher Gewährleistungs- oder Garantieanspruch.

Nach dem Auspacken ist das Gerät unverzüglich auf eventuelle mechanische Beschädigungen zu untersuchen. Wenn ein Transportschaden vorliegt, ist unverzüglich der Lieferant davon in Kenntnis zu setzen.

Das Gerät darf nur als ortsfeste Installation betrieben werden, das heißt nur in montiertem Zustand und nach Abschluss aller Installations- und Inbetriebnahmearbeiten und nur im dafür vorgesehenen Umfeld.

Für Änderungen der Normen und Standards nach Erscheinen der Bedienungsanleitung ist Elsner Elektronik nicht haftbar.

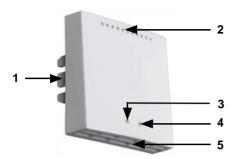
2.2. Montageort

Der **Mischgassensor KNX VOC-UP basic** wird unter Putz in einer Gerätedose (Ø 60 mm, 42 mm tief) installiert.

Nur in trockenen Innenräumen installieren und betreiben. Betauung vermeiden.

Um den Mischgas-Gehalt der Raumluft zu überwachen, wählen Sie einen Montageort etwa in Kopfhöhe (stehend oder sitzend, je nach Raumnutzung).

Achten Sie bei der Wahl des Montageorts bitte darauf, dass die Messergebnisse möglichst wenig von äußeren Einflüssen verfälscht werden. Mögliche Störquellen sind:


- Zugluft von Fenstern oder Türen
- Zugluft aus Rohren, die von anderen Räumen oder dem Außenbereich in die Dose führen, in der der Sensor montiert ist

Messwertabweichungen durch solche Störquellen müssen in der ETS korrigiert werden, um die angegebene Genauigkeit des Sensors zu erreichen (Offset).

Für eine korrekte Mischgas-Messung ist der Einbau des Gerätes in eine winddichte Dose erforderlich.

2.3. Aufbau des Sensors

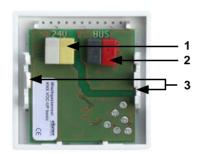

2.3.1. Gehäuse

Abb. 1

- 1 Rasten
- 2 Öffnungen für Luft-Zirkulation
- 3 Programmier-LED (versenkt)
- 4 Programmier-Taster (versenkt) zum Einlernen des Geräts
- 5 Öffnungen für Luftzirkulation (UNTEN)

2.3.2. Rückansicht Sensorplatine mit Anschluss

Abb. 2

- 1 Klemme Hilfsspannung 12...24 V DC
- 2 KNX-Klemme BUS +/-
- 3 Rasten

2.4. Montage des Sensors

Montieren Sie zunächst die winddichte Dose mit Zuleitung. Dichten Sie auch die Zuleitungsrohre ab, um Zugluft zu vermeiden.

Verschrauben Sie dann die Trägerplatte auf der Dose und legen Sie den Rahmen des Schalterprogramms auf. Schließen Sie die Hilfsspannung und die Busleitung +/- (Stecker schwarz-rot) an den dafür vorgesehenen Steckplätzen der Platine an.

Stecken Sie das Sensorgehäuse mit den Rasten fest auf den Metallrahmen, so dass Sensor und Rahmen fixiert sind.

2.5. Hinweise zur Montage und Inbetriebnahme

Setzen Sie das Gerät niemals Wasser (Regen) oder Staub aus. Die Elektronik kann hierdurch beschädigt werden. Eine relative Luftfeuchtigkeit von 95% darf nicht überschritten werden. Betauung vermeiden.

Nach dem Anlegen der Hilfsspannung befindet sich das Gerät einige Sekunden lang in der Initialisierungsphase. In dieser Zeit kann keine Information über den Bus empfangen oder gesendet werden.

3. Übertragungsprotokoll

Einheiten:

VOC-Gehalt in ppm Stellgrößen in %

3.1. Liste aller Kommunikationsobjekte

Abkürzungen Flags:

- K Kommunikation
- L Lesen
- S Schreiben
- Ü Übertragen
- A Aktualisieren

Nr.	Text	Funktion	Flags	DPT Typ	Größe
0	Softwareversion	auslesbar	L-KÜ	0	2 Bytes
2	VOC-Sensor Störung	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
96	Externer VOC-Messwert	Eingang	-SK-	0	2 Bytes
97	Interner VOC-Messwert	Ausgang	L-KÜ	0	2 Bytes
98	Gesamt VOC-Messwert	Ausgang	L-KÜ	0	2 Bytes
99	Anforderung VOC Maximalwert	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
100	Maximaler VOC-Messwert	Ausgang	L-KÜ	0	2 Bytes
101	Reset VOC Maximalwert	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
102	VOC-Grenzwert 1: Absolutwert	Eingang / Ausgang	LSKÜ	0	2 Bytes
103	VOC-Grenzwert 1: (1:+ 0:-)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
104	VOC-Grenzwert 1: Schaltverzö- gerung von 0 auf 1	Eingang	-SK-	[9.10] DPT Value_Time1	2 Bytes
105	VOC-Grenzwert 1: Schaltverzö- gerung von 1 auf 0	Eingang	-SK-	[9.10] DPT Value_Time1	2 Bytes
106	VOC-Grenzwert 1: Schaltaus- gang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
107	VOC-Grenzwert 1: Schaltaus- gang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
108	VOC-Grenzwert 2: Absolutwert	Eingang / Ausgang	LSKÜ	0	2 Bytes
109	VOC-Grenzwert 2: (1:+ 0:-)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
110	VOC-Grenzwert 2: Schaltverzö- gerung von 0 auf 1	Eingang	-SK-	[9.10] DPT Value_Time1	2 Bytes

Nr.	Text	Funktion	Flags	DPT Typ	Größe
111	VOC-Grenzwert 2: Schaltverzö- gerung von 1 auf 0	Eingang	-SK-	[9.10] DPT Value_Time1	2 Bytes
112	VOC-Grenzwert 2: Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
113	VOC-Grenzwert 2: Schaltaus- gang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
114	VOC-Grenzwert 3: Absolutwert	Eingang / Ausgang	LSKÜ	0	2 Bytes
115	VOC-Grenzwert 3: (1:+ 0:-)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
116	VOC-Grenzwert 3: Schaltverzö- gerung von 0 auf 1	Eingang	-SK-	[9.10] DPT Value_Time1	2 Bytes
117	VOC-Grenzwert 3: Schaltverzö- gerung von 1 auf 0	Eingang	-SK-	[9.10] DPT Value_Time1	2 Bytes
118	VOC-Grenzwert 3: Schaltaus- gang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
119	VOC-Grenzwert 3: Schaltaus- gang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
120	VOC-Grenzwert 4: Absolutwert	Eingang / Ausgang	LSKÜ	0	2 Bytes
121	VOC-Grenzwert 4: (1:+ 0:-)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
122	VOC-Grenzwert 4: Schaltverzö- gerung von 0 auf 1	Eingang	-SK-	[9.10] DPT Value_Time1	2 Bytes
123	VOC-Grenzwert 4: Schaltverzö- gerung von 1 auf 0	Eingang	-SK-	[9.10] DPT Value_Time1	2 Bytes
124	VOC-Grenzwert 4: Schaltaus- gang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
125	VOC-Grenzwert 4: Schaltaus- gang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
126	VOC-Regler: Sperrobjekt	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
127	VOC-Regler: Sollwert	Eingang / Ausgang	LSKÜ	0	2 Bytes
128	VOC-Regler: Sollwert (1:+ 0:-)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
129	VOC-Regler: Stellgröße Belüftung (1. Stufe)	Ausgang	L-KÜ	[5.1] DPT_Sca- ling	1 Byte
130	VOC-Regler: Stellgröße Belüf- tung (2. Stufe)	Ausgang	L-KÜ	[5.1] DPT_Sca- ling	1 Byte
131	VOC-Regler: Status Belüftung (1=AN 0=AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
132	VOC-Regler: Status Belüftung 2 (1=AN 0=AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
133	Stellgrößenvergleicher 1: Eingang 1	Eingang	-SK-	[5.1] DPT_Sca- ling	1 Byte

Nr.	Text	Funktion	Flags	DPT Typ	Größe
134	Stellgrößenvergleicher 1: Eingang 2	Eingang	-SK-	[5.1] DPT_Sca- ling	1 Byte
135	Stellgrößenvergleicher 1: Eingang 3	Eingang	-SK-	[5.1] DPT_Sca- ling	1 Byte
136	Stellgrößenvergleicher 1: Eingang 4	Eingang	-SK-	[5.1] DPT_Sca- ling	1 Byte
137	Stellgrößenvergleicher 1: Eingang 5	Eingang	-SK-	[5.1] DPT_Sca- ling	1 Byte
138	Stellgrößenvergleicher 1: Ausgang	Ausgang	L-KÜ	[5.1] DPT_Sca- ling	1 Byte
139	Stellgrößenvergleicher 1: Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
140	Stellgrößenvergleicher 2: Eingang 1	Eingang	-SK-	[5.1] DPT_Sca- ling	1 Byte
141	Stellgrößenvergleicher 2: Eingang 2	Eingang	-SK-	[5.1] DPT_Sca- ling	1 Byte
142	Stellgrößenvergleicher 2: Eingang 3	Eingang	-SK-	[5.1] DPT_Sca- ling	1 Byte
143	Stellgrößenvergleicher 2: Eingang 4	Eingang	-SK-	[5.1] DPT_Sca- ling	1 Byte
144	Stellgrößenvergleicher 2: Eingang 5	Eingang	-SK-	[5.1] DPT_Sca- ling	1 Byte
145	Stellgrößenvergleicher 2: Ausgang	Ausgang	L-KÜ	[5.1] DPT_Sca- ling	1 Byte
146	Stellgrößenvergleicher 2: Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
147	UND Logik 1: 1 Bit Schaltaus- gang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
148	UND Logik 1: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
149	UND Logik 1: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
150	UND Logik 1: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
151	UND Logik 2: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
152	UND Logik 2: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
153	UND Logik 2: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
154	UND Logik 2: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
155	UND Logik 3: 1 Bit Schaltaus- gang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
156	UND Logik 3: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
157	UND Logik 3: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte

Nr.	Text	Funktion	Flags	DPT Typ	Größe
158	UND Logik 3: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
159	UND Logik 4: 1 Bit Schaltaus- gang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
160	UND Logik 4: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
161	UND Logik 4: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
162	UND Logik 4: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
163	UND Logik 5: 1 Bit Schaltaus- gang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
164	UND Logik 5: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
165	UND Logik 5: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
166	UND Logik 5: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
167	UND Logik 6: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
168	UND Logik 6: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
169	UND Logik 6: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
170	UND Logik 6: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
171	UND Logik 7: 1 Bit Schaltaus- gang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
172	UND Logik 7: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
173	UND Logik 7: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
174	UND Logik 7: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
175	UND Logik 8: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
176	UND Logik 8: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
177	UND Logik 8: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
178	UND Logik 8: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
179	ODER Logik 1: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
180	ODER Logik 1: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
181	ODER Logik 1: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
182	ODER Logik 1: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
183	ODER Logik 2: 1 Bit Schaltaus- gang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
184	ODER Logik 2: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
185	ODER Logik 2: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte

Nr.	Text	Funktion	Flags	DPT Typ	Größe
186	ODER Logik 2: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
187	ODER Logik 3: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
188	ODER Logik 3: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
189	ODER Logik 3: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
190	ODER Logik 3: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
191	ODER Logik 4: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
192	ODER Logik 4: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
193	ODER Logik 4: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
194	ODER Logik 4: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
195	ODER Logik 5: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
196	ODER Logik 5: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
197	ODER Logik 5: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
198	ODER Logik 5: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
199	ODER Logik 6: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
200	ODER Logik 6: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
201	ODER Logik 6: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
202	ODER Logik 6: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
203	ODER Logik 7: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
204	ODER Logik 7: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
205	ODER Logik 7: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
206	ODER Logik 7: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
207	ODER Logik 8: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
208	ODER Logik 8: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
209	ODER Logik 8: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
210	ODER Logik 8: Schaltausgang Sperre	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
211	Logikeingang 1	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
212	Logikeingang 2	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
213	Logikeingang 3	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
214	Logikeingang 4	Eingang	-SK-	[1.1] DPT_Switch	1 Bit

Nr.	Text	Funktion	Flags	DPT Typ	Größe
215	Logikeingang 5	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
216	Logikeingang 6	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
217	Logikeingang 7	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
218	Logikeingang 8	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
219	Logikeingang 9	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
220	Logikeingang 10	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
221	Logikeingang 11	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
222	Logikeingang 12	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
223	Logikeingang 13	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
224	Logikeingang 14	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
225	Logikeingang 15	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
226	Logikeingang 16	Eingang	-SK-	[1.1] DPT_Switch	1 Bit

4. Einstellung der Parameter

4.1. Verhalten bei Spannungsausfall/-wiederkehr

Verhalten bei Busspannungsausfall:

Das Gerät sendet nichts.

Verhalten bei Busspannungswiederkehr und nach Programmierung oder Reset:

Das Gerät sendet alle Ausgänge entsprechend ihres in den Parametern eingestellten Sendeverhaltens mit den Verzögerungen, die im Parameterblock "Allgemeine Einstellungen" festgelegt werden.

4.2. Allgemeine Einstellungen

Stellen Sie grundlegende Eigenschaften der Datenübertragung ein und wählen Sie aus, ob Störobjekte gesendet werden sollen.

Sendeverzögerung nach Power-Up und Programmierung für:			
Messwerte	<u>5 s</u> • • 2 h		
Grenzwerte und Schaltausgänge	<u>5 s</u> • • 2 h		
Regler-Objekte	5 s • <u>10 s</u> • • 2 h		
Logikausgänge	5 s • <u>10 s</u> • • 2 h		
Maximale Telegrammrate	• 1 Telegramm pro Sekunde		
	•		
	• 5 Telegramme pro Sekunde		
	•		
	• 20 Telegramme pro Sekunde		
	*20 Telegramme pro Sekunde		
Störobjekt VOC verwenden	<u>Nein</u> • Ja		

4.3. VOC-Messwert

Mithilfe des Offsets können Sie den zu sendenden Messwert justieren.

Offset in ppm	-100100; 0

Das Gerät kann aus dem eigenem Messwert und einem externen Wert einen **Mischwert** berechnen. Stellen Sie falls gewünscht die Mischwertberechnung ein.

Externen Messwert verwenden	<u>Nein</u> • Ja
Ext. Messwertanteil am Gesamtmesswert	5% • 10% • • <u>50%</u> • • 100%
Internen und Gesamtmesswert senden	 nicht zyklisch bei Änderung bei Änderung und zyklisch
Ab Änderung von (wenn bei Änderung gesendet wird)	2% • <u>5%</u> • 10% • 25% • 50% (relativ zum letzten Messwert)
Sendezyklus (wenn zyklisch gesendet wird)	<u>5 s</u> • • 2 h

Wird ein externer Anteil verwendet, beziehen sich alle folgenden Einstellungen (Grenzwerte etc.) auf den Gesamtmesswert!

Der **maximale Messwert** kann gespeichert und auf den Bus gesendet werden. Mit dem Objekt "Reset VOC Maximalwert" kann der Wert auf den aktuellen Messwert zurückgesetzt werden.

Maximalwert verwenden	<u>Nein</u> • Ja	
-----------------------	------------------	--

Die Werte bleiben nach einem Reset nicht erhalten.

4.4. VOC-Grenzwerte

Aktivieren Sie hier die Grenzwerte, die Sie verwenden möchten. Der **Mischgassensor KNX VOC-UP basic** stellt vier Grenzwerte für Kohlendioxid bereit.

Grenzwert 1/2/3/4 verwenden	Ja • <u>Nein</u>
-----------------------------	------------------

Tabelle VOC-Werte:

1000 ppm entsprechen 0,1% VOC-Gehalt.

300 500 ppm	Frischluft
1500 3000 ppm	"Verbrauchte" Luft
5000 ppm	Maximale Arbeitsplatzkonzentration

4.4.1. VOC-Grenzwert 1, 2, 3, 4

Grenzwert

Der Grenzwert kann per Parameter direkt im Applikationsprogramm eingestellt oder per Kommunikationsobjekt über den Bus vorgegeben werden.

Grenzwertvorgabe per Parameter:

Stellen Sie Grenzwert und Hysterese direkt ein.

Grenzwertvorgabe per	Parameter • Kommunikationsobjekte
Grenzwert in ppm	05000; <u>1200</u>
Hysterese des Grenzwertes in %	0 50; <u>20</u>

Grenzwertvorgabe per Kommunikationsobjekt:

Geben Sie vor, wie der Grenzwert vom Bus empfangen wird. Grundsätzlich kann ein neuer Wert empfangen werden oder nur ein Befehl zum Anheben oder Absenken.

Bei der Erstinbetriebnahme muss ein Grenzwert vorgegeben werden, der bis zur 1. Kommunikation eines neuen Grenzwerts gültig ist. Bei bereits in Betrieb genommenem Gerät kann der zuletzt kommunizierte Grenzwert verwendet werden. Grundsätzlich wird ein Temperaturbereich vorgegeben in dem der Grenzwert verändert werden kann (Objektwertbegrenzung).

Ein gesetzer Grenzwert bleibt solange erhalten, bis ein neuer Wert oder eine Änderung übertragen wird. Der aktuelle Wert wird im EEPROM gespeichert, damit er bei Spannungsausfall erhalten bleibt und bei Rückkehr der Betriebsspannung wieder zur Verfügung steht.

Grenzwertvorgabe per	Parameter • Kommunikationsobjekte
Der zuletzt kommunizierte Wert soll erhalten bleiben	<u>nicht</u> nach Spannungswiederkehr nach Spannungswiederkehr und Programmierung
Start Grenzwert in ppm gültig bis zur 1. Kommunikation	05000; <u>1200</u>
Objektwertbegrenzung (min) in ppm	<u>0</u> 5000
Objektwertbegrenzung (max) in ppm	0 <u>5000</u>
Art der Grenzwertveränderung	Absolutwert • Anhebung / Absenkung
Schrittweite in ppm (bei Veränderung durch Anhebung / Absen- kung)	1 • 2 • 5 • 10 • <u>20</u> • 50 • 100 • 200
Hysterese des Grenzwertes in %	0 50; <u>20</u>

Schaltausgang

Stellen Sie das Verhalten des Schaltausgangs bei Grenzwert-Über-/Unterschreitung ein. Die Schaltverzögerung des Ausgangs kann über Objekte oder direkt als Parameter eingestellt werden.

Ausgang ist bei (GW = Grenzwert)	• GW über = 1 GW - Hyst. unter = 0 • GW über = 0 GW - Hyst. unter = 1 • GW unter = 1 GW + Hyst. über = 0 • GW unter = 0 GW + Hyst. über = 1
Verzögerung über Objekte einstellbar (in Sekunden)	<u>Nein</u> • Ja

Schaltverzögerung von 0 auf 1 (wenn Verzögerung nicht über Objekte ein- gestellt wird)	<u>keine</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Schaltverzögerung von 1 auf 0 (wenn Verzögerung nicht über Objekte ein- gestellt wird)	<u>keine</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Schaltausgang sendet	 bei Änderung bei Änderung auf 1 bei Änderung auf 0 bei Änderung und zyklisch bei Änderung auf 1 und zyklisch bei Änderung auf 0 und zyklisch
Sendezyklus (nur wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • 30 s • 2 h

Sperrung

Der Schaltausgang kann durch ein Objekt gesperrt werden. Machen Sie hier Vorgaben für das Verhalten des Ausgangs während der Sperre.

Sperrung des Schaltausgangs verwenden	Nein • Ja
Auswertung des Sperrobjekts	Bei Wert 1: sperren Bei Wert 0: freigeben Bei Wert 0: sperren Bei Wert 1: freigeben
Sperrobjektwert vor 1. Kommunikation	<u>0</u> • 1
Verhalten des Schaltausgangs	
Beim Sperren	kein Telegramm senden 0 senden 1 senden
Beim Freigeben (mit 2 Sekunden Freigabeverzögerung)	[Abhängig von Einstellung bei "Schaltausgang sendet"]

Das Verhalten des Schaltausgangs beim Freigeben ist abhängig vom Wert des Parameters "Schaltausgang sendet" (siehe "Schaltausgang")

Schaltausgang sendet bei Änderung	kein Telegramm senden Status des Schaltausgangs senden
Schaltausgang sendet bei Änderung auf 1	 • kein Telegramm senden • wenn Schaltausgang = 1 → sende 1
Schaltausgang sendet bei Änderung auf 0	 kein Telegramm senden wenn Schaltausgang = 0 → sende 0
Schaltausgang sendet bei Änderung und zyklisch	sende Status des Schaltausgangs
Schaltausgang sendet bei Änderung auf 1 und zyklisch	wenn Schaltausgang = 1 →sende 1
Schaltausgang sendet bei Änderung auf 0 und zyklisch	wenn Schaltausgang = 0 →sende 0

4.5. VOC-PI-Regelung

Wenn Sie die Regelung aktivieren, können Sie im Folgenden Einstellungen zu Regelungsart, Sollwerten und Lüftung vornehmen.

Regelung verwenden	Ja • Nein

Regelung allgemein

Mit dem **Mischgassensor KNX VOC-UP basic** kann eine ein- oder zweistufige Lüftung geregelt werden.

Art der Regelung	• Einstufen Lüftung
	Zweistufen Lüftung

Konfigurieren Sie die Sperrung der Lüftungsregelung durch das Sperrobjekt.

Verhalten des Sperrobjekts bei Wert	• 1 = Sperren 0 = Freigeben • 0 = Sperren 1 = Freigeben
Wert des Sperrobjekts vor 1. Kommunikation	0 • <u>1</u>

Stellen Sie ein, wann die aktuellen Stellgrößen der Regelung auf den Bus gesendet werden. Das zyklische Senden bietet mehr Sicherheit falls ein Telegramm nicht beim Empfänger ankommt. Auch eine zyklische Überwachung durch einen Aktor kann damit eingerichtet werden.

Stellgrößen senden	• bei Änderung • bei Änderung und zyklisch
Sensdezyklus	5 s • • <u>5 min</u> • • 2 h
(nur wenn zyklisch gesendet wird)	

Das Statusobjekt gibt den aktuellen Zustand des Ausgangs Stellgröße aus (0 = AUS, >0 = EIN) und kann beispielsweise zur Visualisierung genutzt werden.

Statusobjekt/e sendet/senden	 bei Änderung bei Änderung auf 1 bei Änderung auf 0 bei Änderung und zyklisch bei Änderung auf 1 und zyklisch bei Änderung auf 0 und zyklisch
Sensdezyklus (nur wenn zyklisch gesendet wird)	5 s • • <u>5 min</u> • • 2 h

Regler-Sollwert

Der Sollwert kann per Parameter direkt im Applikationsprogramm eingestellt werden oder per Kommunikationsobjekt über den Bus vorgegeben werden.

Sollwertvorgabe per Parameter:

Stellen Sie den Sollwert direkt ein.

Sollwertvorgabe per	Parameter • Kommunikationsobjekte
Sollwert in ppm	4005000; <u>800</u>

Sollwertvorgabe per Kommunikationsobjekt:

Geben Sie vor, wie der Sollwert vom Bus empfangen wird. Grundsätzlich kann ein neuer Wert empfangen werden oder nur ein Befehl zum Anheben oder Absenken.

Bei der Erstinbetriebnahme muss ein Sollwert vorgegeben werden, der bis zur 1. Kommunikation eines neuen Sollwerts gültig ist. Bei bereits in Betrieb genommenem Gerät kann der zuletzt kommunizierte Sollwert verwendet werden. Grundsätzlich wird ein Luftfeuchtebereich vorgegeben in dem der Sollwert verändert werden kann (Objektwertbegrenzung).

Ein gesetzer Sollwert bleibt solange erhalten, bis ein neuer Wert oder eine Änderung übertragen wird. Der aktuelle Wert wird im EEPROM gespeichert, damit er bei Spannungsausfall erhalten bleibt und bei Rückkehr der Betriebsspannung wieder zur Verfügung steht.

Grenzwertvorgabe per	Parameter • Kommunikationsobjekte
Der zuletzt kommunizierte Wert soll erhalten bleiben	<u>nicht</u> nach Spannungswiederkehr nach Spannungswiederkehr und Programmierung
Start-Sollwert in ppm gültig bis zur 1. Kommunikation (nicht bei Speicherung des Sollwerts nach Programmierung)	400 5000; <u>800</u>
Objektwertbegrenzung (min) in ppm	4005000; <u>400</u>
Objektwertbegrenzung (max) in ppm	4005000; <u>1500</u>
Art der Grenzwertveränderung	Absolutwert • Anhebung / Absenkung
Schrittweite in ppm (bei Veränderung durch Anhebung / Absen- kung)	1 • 2 • 5 • • <u>20</u> • • 100 • 200

Lüftungsregelung

Je nach Regelungsart erscheinen ein bzw. zwei Einstellungsabschnitte für die Lüftungs-Stufen.

Beim Zweistufenlüften muss die Sollwertdifferenz zwischen beiden Stufen vorgegeben werden, d. h. ab welcher Sollwertüberschreitung die 2. Stufe zugeschaltet wird.

Sollwertdifferenz zwischen 1. und 2. Stufe	1004000; <u>400</u>
in ppm	
(nur bei Stufe 2)	

Geben Sie vor, bei welcher Abweichung vom Sollwert die maximale Stellgröße erreicht wird, d. h. ab wann die maximale Leistung verwendet wird.

Die Nachstellzeit gibt an, wie schnell die Regelung auf Sollwertabweichungen reagiert. Bei einer kleinen Nachstellzeit reagiert die Regelung mit einem schnellen Anstieg der Stellgröße. Bei einer großen Nachstellzeit reagiert die Regelung sanfter und benötigt länger bis die für die Sollwertabweichung erforderliche Stellgröße erreicht ist.

Hier sollte eine an das Lüftungssystem angepasste Zeit eingestellt werden (Herstellerangaben beachten).

Maximale Stellgröße wird erreicht bei Soll-/Ist-Differenz von (in ppm)	1004000; <u>100</u>
Nachstellzeit in Minuten	1255; <u>30</u> / <u>10</u>

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Beim Freigeben folgt die Stellgröße wieder der Regelung.

	nicht gesendet werden einen bestimmten Wert senden
Wert in % (wenn ein bestimmter Wert gesendet wird)	<u>0</u> 100

4.6. Stellgrößenvergleicher

Durch die beiden integrierten Stellgrößenvergleicher können Maximal-, Minimal- und Mittelwerte ausgegeben werden.

Vergleicher 1 / 2 verwenden	Nein • Ja
-----------------------------	-----------

4.6.1. Stellgrößenvergleicher 1 / 2

Legen Sie fest, was der Stellgrößenvergleicher ausgeben soll und aktivieren Sie die zu verwendenden Eingangsobjekte. Zudem können Sendeverhalten und Sperre eingestellt werden.

Ausgang liefert	Maximalwert Minimalwert Mittelwert
Eingang 1 / 2 / 3 / 4 / 5 verwenden	Nein • Ja
Ausgang sendet	bei Änderung des Ausgangs bei Änderung des Ausgangs und zyklisch bei Empfang eines Eingangsobjektes bei Empfang eines Eingangsobjektes und zyklisch
Sendezyklus (nur wenn zyklisch gesendet wird)	5 s • 10 s • 30 s • • <u>5 min</u> • • 2 h
Ab Änderung von (nur wenn bei Änderung des Ausgangs gesendet wird)	<u>1%</u> • 2% • 5% • 10% • 20% • 25%

Auswertung des Sperrobjekts	bei Wert 1: sperren bei Wert 0: freigeben bei Wert 0: sperren bei Wert 1: freigeben
Wert des Sperrobjekts vor 1. Kommunikation	0 • 1
Verhalten des Schaltausgangs	
Beim Sperren	<u>kein Telegramm senden</u> Wert senden
Gesendeter Wert in %	0 100
beim Freigeben sendet Ausgang (mit 2 Sekunden Freigabeverzögerung)	den aktuellen Wert den aktuellen Wert nach Empfang eines Objekts

4.7. Logik

Aktivieren Sie die Logikeingänge und weisen Sie Objektwerte bis zur 1. Kommunikation zu. Aktivieren Sie dann die benötigten Logikausgänge.

Logikeingänge verwenden	Nein • Ja
Objektwert vor 1. Kommunikation für	
Logikeingang 1 16	<u>0</u> • 1

UND Logik

ODER Logik

Logik 1/2/3/4/5/6/7/8	nicht aktiv • aktiv
-----------------------	---------------------

4.7.1. UND bzw. ODER Logik 1/2/3/4/5/6/7/8

UND- und die ODER-Logikgatter bieten die gleichen Einstellungsmöglichkeiten. Weisen sie den Eingängen ein Schalt-Ereignis zu und stellen Sie das Sendeverhalten ein.

1. / 2. / 3. / 4. Eingang	 nicht verwenden sämtliche Schaltereignisse, die der Sensor zur Verfügung stellt (siehe Verknüpfungseingänge der UND Logik, Seite 23)
Logikausgang sendet	ein 1 Bit-Objekt • zwei 8 Bit-Objekte

Wenn der Logikausgang ein 1 Bit-Objekt sendet:

Logikausgang sendet	ein 1 Bit-Objekt
wenn Logik = 1 → Objekt Wert	<u>1</u> •0
wenn Logik = 0 → Objekt Wert	<u>0</u> • 1

Wenn der Logikausgang zwei 8 Bit-Objekte sendet:

Logikausgang sendet	zwei 8 Bit-Objekte
Art der Objekte	 Wert (0 255) Prozent (0% 100%) Winkel (0° 360°) Szenenaufruf (0 127)
wenn Logik = 1 → Objekt A Wert	Einstellung abhängig von "Art der Objekte"
wenn Logik = 0 → Objekt A Wert	Einstellung abhängig von "Art der Objekte"
wenn Logik = 1 → Objekt B Wert	Einstellung abhängig von "Art der Objekte"
wenn Logik = 0 → Objekt B Wert	Einstellung abhängig von "Art der Objekte"
Sendeverhalten	• bei Änderung der Logik

Sendeverhalten	 bei Änderung der Logik bei Änderung der Logik auf 1 bei Änderung der Logik auf 0 bei Änderung der Logik und zyklisch bei Änderung der Logik auf 1 und zyklisch bei Änderung der Logik auf 0 und zyklisch bei Änderung der Logik + Objektempfang bei Änderung der Logik + Objektempfang
	und zyklisch
Sendezyklus (nur wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • 30 s • 1 min • • 2 h

Sperrung

Auch die Logikausgänge können durch Objekte gesperrt werden.

Auswertung des Sperrobjekts	• bei Wert 1: sperren bei Wert 0: freigeben bei Wert 0: sperren bei Wert 1: freigeben
Sperrobjektwert vor 1. Kommunikation	<u>0</u> • 1
Verhalten des Schaltausgangs	
Beim Sperren	 kein Telegramm senden Wert für Logik = 0 senden Wert für Logik = 1 senden

Das Verhalten beim Freigeben des Schaltausgangs ist abhängig vom Sendeverhalten

Wert des Parameters "Sendeverhalten":	Einstellungsmöglichkeiten "Verhalten des Schaltausgangs beim Frei- geben":
bei Änderung der Logik	kein Telegramm sendenWert für aktuellen Logikstatus senden
bei Änderung der Logik auf 1	 kein Telegramm senden Wenn Logik = 1 → sende Wert für 1
bei Änderung der Logik auf 0	 kein Telegramm senden Wenn Logik = 0 → sende Wert für 0
bei Änderung der Logik und zyklisch	Wert für aktuellen Logikstatus senden (keine Auswahl)
bei Änderung der Logik auf 1 und zyklisch	Wenn Logik = 1 → sende Wert für 1 (keine Auswahl)

bei Änderung der Logik auf 0 und zyklisch	Wenn Logik = 0 → sende Wert für 0 (keine Auswahl)
bei Änderung der Logik und Objektemp- fang	kein Telegramm sendenStatus des Schaltausgangs senden
bei Änderung der Logik und Objektemp- fang und zyklisch	Wert für aktuellen Logikstatus senden (keine Auswahl)

4.7.2. Verknüpfungseingänge der UND Logik

nicht verwenden

Logikeingang 1

Logikeingang 1 invertiert

Logikeingang 2

Logikeingang 2 invertiert

Logikeingang 3

Logikeingang 3 invertiert

Logikeingang 4

Logikeingang 4 invertiert

Logikeingang 5

Logikeingang 5 invertiert

Logikeingang 6

Logikeingang 6 invertiert

Logikeingang 7

Logikeingang 7 invertiert

Logikeingang 8

Logikeingang 8 invertiert

Logikeingang 9

Logikeingang 9 invertiert

Logikeingang 10

Logikeingang 10 invertiert

Logikeingang 11

Logikeingang 11 invertiert

Logikeingang 12

Logikeingang 12 invertiert

Logikeingang 13

Logikeingang 13 invertiert

Logikeingang 14

Logikeingang 14 invertiert

Logikeingang 15

Logikeingang 15 invertiert

Logikeingang 16

Logikeingang 16 invertiert

VOC-Sensor Störung = EIN

VOC-Sensor Störung = AUS

Schaltausgang VOC 1

Schaltausgang VOC 1 invertiert

Schaltausgang VOC 2

Schaltausgang VOC 2 invertiert

Schaltausgang VOC 3

Schaltausgang VOC 3 invertiert

Schaltausgang VOC 4

Schaltausgang VOC 4 invertiert

VOC-Regler Status Belüftung 1

VOC-Regler Status Belüftung 1 invertiert

VOC-Regler Status Belüftung 2

VOC-Regler Status Belüftung 2 invertiert

4.7.3. Verknüpfungseingänge der ODER Logik

Die Verknüpfungseingänge der ODER Logik entsprechen denen der UND Logik. Zusätzlich stehen der ODER Logik die folgenden Eingänge zur Verfügung:

UND Logik 1

UND Logik Ausgang 1 invertiert

UND Logik Ausgang 2

UND Logik Ausgang 2 invertiert

UND Logik Ausgang 3

UND Logik Ausgang 3 invertiert

UND Logik Ausgang 4

UND Logik Ausgang 4 invertiert

UND Logik Ausgang 5

UND Logik Ausgang 5 invertiert

UND Logik Ausgang 6

UND Logik Ausgang 6 invertiert

UND Logik Ausgang 7

UND Logik Ausgang 7 invertiert

UND Logik Ausgang 8

UND Logik Ausgang 8 invertiert

Sohlengrund 16 75395 Östelsheim

Tel. +49(0)7033/30945-0 Deutschland Fax +49(0)7033/30945-20

info@elsner-elektronik.de www.elsner-elektronik.de

Technischer Service: +49 (0) 70 33 / 30 945-250