

KNX AQS/TH-UP Touch CH Innenraum-Kombisensor

Artikelnummern 70639 (Reinweiß), 70643 (Tiefschwarz)

1.	Beschreibung	. 5
	1.0.1. Lieferumfang	6
1.1.	Technische Daten	6
	1.1.1. Genauigkeit der Messung	7
2.	Installation und Inbetriebnahme	. 7
2.1.	Hinweise zur Installation	7
2.2.	Montageort	8
2.3.	Aufbau des Geräts	9
	2.3.1. Gehäuse	9
	Montage des Sensors	
2.5.	Hinweise zur Montage und Inbetriebnahme	10
3.	Gerät am Bus adressieren	10
4.	Anzeige und Bedienung am Gerät	10
	Modus-Anzeige und manueller Temperaturregler	
4.2.	Raumtemperatur mit den Tasten verändern	12
5.	Übertragungsprotokoll	14
5.1.	Liste aller Kommunikationsobjekte	
6.	Einstellung der Parameter	25
6.1.	Verhalten bei Spannungsausfall/-wiederkehr	
	Allgemeine Einstellungen	
	Temperatur Messwert	
6.4.	Temperatur Grenzwerte	26
	6.4.1. Grenzwert 1, 2, 3	26
	6.4.1.1. Grenzwert	26
	6.4.1.2. Schaltausgang	27
	6.4.1.3. Sperre	
6.5.	Temperatur-PI-Regelung	
	6.5.0.1. Regelung Allgemein	
	6.5.0.2. Sollwert Allgemein	
	6.5.0.3. Sollwert Komfort	
	6.5.0.4. Sollwert Standby	
	6.5.0.5. Sollwert Eco	
	6.5.0.6. Sollwerte Frost-/Hitzeschutz (Gebäudeschutz)	
	6.5.0.7. Stellgrößen Allgemein	
	6.5.1. Heizregelung Stufe 1/2	
6.6	6.5.2. Kühlregelung Stufe 1/2	
0.7.	Feuchte Grenzwerte	
	6.7.1. Grenzwert 1, 2	
	6.7.1.2. Schaltausgang	
	6.7.1.3. Sperre	
	VIZ. 1.0. UDVIIV	

6.8. Feuchte-PI-Regelung	42
6.8.0.1. Regelung allgemein	42
6.8.0.2. Regler-Sollwert	43
6.8.0.3. Entfeuchtung bzw. Befeuchtung	44
6.9. Taupunkttemperatur	44
6.9.1. Kühlmediumtemperatur Überwachung	45
6.9.1.1. Grenzwert	45
6.9.1.2. Schaltausgang	46
6.9.1.3. Sperrung	46
6.10.Absolute Feuchte	47
6.11.Behaglichkeitsfeld	47
6.12.CO ₂ Messwert	48
6.13.CO ₂ Grenzwerte	49
6.13.1. Grenzwert 1, 2, 3, 4	49
6.13.1.1.Grenzwert	49
6.13.1.2.Schaltausgang	50
6.13.1.3.Sperre	51
6.14.CO ₂ PI-Regelung	51
6.14.0.1.Regelung allgemein	52
6.14.0.2.Regler-Sollwert	52
6.14.0.3.Lüftungsregelung	53
6.15.Stellgrößenvergleicher	54
6.15.1. Stellgrößenvergleicher 1/2	54
6.16.Logik	55
6.16.0.1.UND Logik	55
6.16.0.2.ODER Logik	55
6.16.1. UND Logik 1-4 und ODER Logik 1-4	55
6.16.1.1.Sperrung	57
6.16.2. Verknüpfungseingänge der UND Logik	
6.16.3. Verknüpfungseingänge der ODER Logik	59
6.17.Display	59
6.18.Taster	62
6.18.1. Taster zur Temperaturregelung	62
6 18 2 Taster als Tasterschnittstelle	62

Installation, Prüfung, Inbetriebnahme und Fehlerbehebung des Geräts dürfen nur von einer Elektrofachkraft (lt. VDE 0100) durchgeführt werden.

Dieses Handbuch unterliegt Änderungen und wird an neuere Software-Versionen angepasst. Den Änderungsstand (Software-Version und Datum) finden Sie in der Fußzeile des Inhaltsverzeichnis.

Wenn Sie ein Gerät mit einer neueren Software-Version haben, schauen Sie bitte auf **www.elsner-elektronik.de** im Menübereich "Service", ob eine aktuellere Handbuch-Version verfügbar ist.

Zeichenerklärungen für dieses Handbuch

	Λ	
_/	Λ	١.
	:	1

Sicherheitshinweis

Sicherheitshinweis für das Arbeiten an elektrischen Anschlüssen, Bauteilen etc.

GEFAHR!

... weist auf eine unmittelbar gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht gemieden

WARNUNG!

... weist auf eine möglicherweise gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht gemieden wird.

VORSICHT!

... weist auf eine möglicherweise gefährliche Situation hin, die zu geringfügigen oder leichten Verletzungen führen kann, wenn sie nicht gemieden wird.

ACHTUNG!

... weist auf eine Situation hin, die zu Sachschäden führen kann, wenn sie nicht gemieden wird.

ETS

In den ETS-Tabellen sind die Voreinstellungen der Parameter durch eine Unterstreichung gekennzeichnet.

1. Beschreibung

Der **Sensor KNX AQS/TH-UP Touch CH** misst die CO₂-Konzentration, die Temperatur und die Luftfeuchtigkeit im Raum und berechnet den Taupunkt. Über den Bus kann der Innenraumsensor externe Werte von Temperatur, Feuchtigkeit und CO₂-Konzentration empfangen und mit den eigenen Daten zu Gesamtwerten (Mischwerte, z. B. Raumdurchschnitt) weiterverarbeiten. Der **KNX AQS/TH-UP Touch CH** hat zwei Touch-Taster, die zur Veränderung der Raumtemperatur (Solltemperatur), zur Umschaltung zwischen den Betriebsmodi oder als frei programmierbare Bustaster verwendet werden können.

Der KNX AQS/TH-UP Touch CH hat einstellbare Grenzwerte. Die Grenzwert-Ausgänge und weitere Kommunikationsobjekte können über UND- und ODER-Logik-Gatter verknüpft werden. Zusätzlich kann ein integrierter Stellgrößenvergleicher Werte, die über Kommunikationsobjekte empfangen wurden, vergleichen und ausgeben.

Integrierte PI-Regler steuern eine Lüftung (nach CO₂-Konzentration und Luftfeuchtigkeit) und eine Heizung/Kühlung (nach Temperatur). Der **KNX AQS/TH-UP Touch CH** kann eine Warnung an den Bus ausgeben, sobald das Behaglichkeitsfeld (nach DIN 1946) verlassen wird.

Das integrierte Display zeigt die eigenen Werte und über den Bus empfangene Daten (z. B. Datum, Uhrzeit). Das Gerät wird mit einem Rahmen der im Gebäude verwendeten Schalterreihe ergänzt und passt sich so nahtlos in die Innenausstattung ein.

Funktionen:

- Messung der CO₂-Konzentration der Luft, der Temperatur und Luftfeuchtigkeit (relativ und absolut), Berechnung des Taupunkts
- Mischwerte aus eigenen Messwerten und externen Werten (Anteil prozentual einstellbar)
- Anzeige 1-3 Zeilen (gemessene Werte oder über der Bus empfangene Werte) oder Anzeige für Temperaturregelung (siehe auch Modus-Anzeige und manueller Temperaturregler)
- 2 Touch-Taster. Konfiguration als Bustaster oder zur Veränderung der Solltemperatur und zur Umschaltung zwischen den Betriebsmodi (siehe auch Raumtemperatur mit den Tasten verändern)
- PI-Regler für Heizung (ein- oder zweistufig) und Kühlung (ein- oder zweistufig) nach Temperatur. Regelung nach separaten Sollwerten oder Basissolltemperatur
- PI-Regler für Lüftung nach Feuchtigkeit und CO₂-Konzentration: Entlüften/ Belüften (einstufig) oder Entlüften (ein- oder zweistufig)
- Grenzwerte einstellbar per Parameter oder über Kommunikationsobjekte: 3 × Temperatur, 2 × Feuchtigkeit, 4 × CO₂
- 4 UND- und 4 ODER-Logik-Gatter mit je 4 Eingängen. Als Eingänge für die Logik-Gatter können sämtliche Schalt-Ereignisse sowie 16 Logikeingänge in Form von Kommunikationsobjekten genutzt werden. Der Ausgang jedes Gatters kann wahlweise als 1 Bit oder 2 x 8 Bit konfiguriert werden
- 2 Stellgrößenvergleicher zur Ausgabe von Minimal-, Maximal- oder Durchschnittswerten.

Jeweils 5 Eingänge für über Kommunikationsobjekte empfangene Werte

Die Konfiguration erfolgt mit der KNX-Software ETS 5. Die **Produktdatei** steht im ETS-Online-Katalog und auf der Homepage von Elsner Elektronik unter **www.elsner-elektronik.de** im Menübereich "Service" zum Download bereit.

1.0.1. Lieferumfang

- Gehäuse mit Display
- Montageaufnahme mit Schrauben

Sie benötigen zusätzlich (nicht im Lieferumfang enthalten):

- Abdeckrahmen (für Einsatz 60 x 60 mm) und Befestigungsplatte (77 mm) für Schweizer Installations-Standard
- Einlasskasten

1.1. Technische Daten

Gehäuse	Echtglas, Kunststoff
Farben	• ähnlich RAL 9010 Reinweiß
	ähnlich RAL 9005 Tiefschwarz
Montage	Einbau in Einlasskasten
Schutzart	IP 20
Maße	Gehäuse ca. 60 x 60 (B x H, mm), Aufbautiefe ca. 8 mm
Gesamtgewicht	ca. 70 g
Umgebungstemperatur	Betrieb 0+50°C, Lagerung -10+60°C
Umgebungsluftfeuchtigkeit	max. 95% rF, Betauung vermeiden
Betriebsspannung	KNX-Busspannung
Busstrom	max. 20 mA
Datenausgabe	KNX +/- Bussteckklemme
BCU-Typ	eigener Mikrocontroller
PEI-Typ	0
Gruppenadressen	max. 254
Zuordnungen	max. 254
Kommunikationsobjekte	224
CO ₂ -Messbereich	3005000 ppm
CO ₂ Auflösung	1 ppm
Temperatur-Messbereich	0+50°C
Temperatur Auflösung	0,1°C
Feuchtigkeit-Messbereich	0% rF95% rF
Feuchtigkeit Auflösung	0,1% rF
Feuchtigkeit Drift	± 0,5% rF pro Jahr bei normaler Luft

Das Produkt ist konform mit den Bestimmungen der EU-Richtlinien.

1.1.1. Genauigkeit der Messung

Messwertabweichungen durch dauerhaft vorhandene Störquellen (siehe Kapitel *Montageort*) können in der ETS korrigiert werden, um die angegebene Genauigkeit des Sensors zu erreichen (Offset).

Für eine korrekte **CO₂ Messung** ist der Einbau des Gerätes in eine winddichte Dose erforderlich. Nach dem Anlegen der Betriebsspannung kann es bis zu 15 Minuten dauern, bis der **CO₂-Messwert** korrekt ausgegeben wird.

Bei der **Temperaturmessung** wird die Eigenerwärmung des Gerätes durch die Elektronik berücksichtigt. Sie wird von der Software kompensiert.

2. Installation und Inbetriebnahme

2.1. Hinweise zur Installation

Installation, Prüfung, Inbetriebnahme und Fehlerbehebung des Geräts dürfen nur von einer Elektrofachkraft (It. VDE 0100) durchgeführt werden.

VORSICHT!

Elektrische Spannung!

Im Innern des Geräts befinden sich ungeschützte spannungsführende Bauteile.

- Die VDE-Bestimmungen beachten.
- Alle zu montierenden Leitungen spannungslos schalten und Sicherheitsvorkehrungen gegen unbeabsichtigtes Einschalten treffen.
- Das Gerät bei Beschädigung nicht in Betrieb nehmen.
- Das Gerät bzw. die Anlage außer Betrieb nehmen und gegen unbeabsichtigten Betrieb sichern, wenn anzunehmen ist, dass ein gefahrloser Betrieb nicht mehr gewährleistet ist.

Das Gerät ist ausschließlich für den sachgemäßen Gebrauch bestimmt. Bei jeder unsachgemäßen Änderung oder Nichtbeachten der Bedienungsanleitung erlischt jeglicher Gewährleistungs- oder Garantieanspruch.

Nach dem Auspacken ist das Gerät unverzüglich auf eventuelle mechanische Beschädigungen zu untersuchen. Wenn ein Transportschaden vorliegt, ist unverzüglich der Lieferant davon in Kenntnis zu setzen.

Das Gerät darf nur als ortsfeste Installation betrieben werden, das heißt nur in montiertem Zustand und nach Abschluss aller Installations- und Inbetriebnahmearbeiten und nur im dafür vorgesehenen Umfeld.

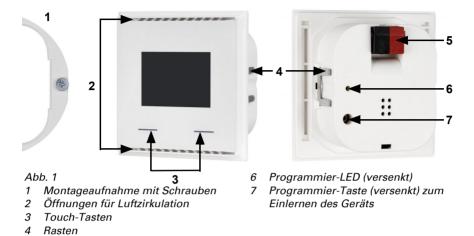
Für Änderungen der Normen und Standards nach Erscheinen der Bedienungsanleitung ist Elsner Elektronik nicht haftbar.

2.2. Montageort

Der **Sensor KNX AQS/TH-UP Touch CH** ist für die Wandmontage in einem Einlasskasten konzipiert. Das Gerät wird mit einem Rahmen des Schweizer 60 mm-Installations-Standards ergänzt.

Nur in trockenen Innenräumen installieren und betreiben. Betauung vermeiden.

Achten Sie bei der Wahl des Montageorts bitte darauf, dass die Messergebnisse möglichst wenig von äußeren Einflüssen verfälscht werden. Mögliche Störquellen sind:


- Direkte Sonnenbestrahlung
- Zugluft von Fenstern oder Türen
- Zugluft aus Rohren, die von anderen Räumen oder dem Außenbereich in die Dose führen, in der Sensor montiert ist
- Erwärmung oder Abkühlung des Baukörpers, an dem der Sensor montiert ist,
 z. B. durch Sonneneinstrahlung, Heizungs- oder Kaltwasserrohre
- Anschlussleitungen und Leerrohre, die aus einem kälteren oder wärmeren Bereich zum Sensor führen

Messwertabweichungen durch dauerhaft vorhandene Störquellen können in der ETS korrigiert werden, um die angegebene Genauigkeit des Sensors zu erreichen (Offset).

Für eine korrekte CO₂-Messung ist der Einbau des Gerätes in eine winddichte Dose erforderlich.

2.3. Aufbau des Geräts

2.3.1. Gehäuse



5 KNX-Klemme BUS +/-

2.4. Montage des Sensors

Montieren Sie zunächst den winddichten Einlasskasten mit Zuleitung. Dichten Sie auch die Zuleitungsrohre ab, um Zugluft zu vermeiden.

Drehen Sie die Schrauben ein Stück weit in die Montageaufnahme.

Abb. 2

Hängen Sie die Montageaufnahme in der Befestigungsplatte des Schaltersystems ein und ziehen Sie die Schrauben fest.

Abb. 3

Verschrauben Sie die Befestigungsplatte auf dem Einlasskasten.

Legen Sie den Rahmen des Schalterprogramms auf. Schließen Sie die Busleitung +/-am Stecker (schwarz-rot) an.

Stecken Sie das Gehäuse mit den Rasten fest auf die Montageaufnahme, so dass Gerät und Rahmen fixiert sind.

2.5. Hinweise zur Montage und Inbetriebnahme

Setzen Sie das Gerät niemals Wasser (Regen) oder Staub aus. Die Elektronik kann hierdurch beschädigt werden. Eine relative Luftfeuchtigkeit von 95% darf nicht überschritten werden. Betauung vermeiden.

Nach dem Anlegen der Busspannung befindet sich das Gerät einige Sekunden lang in der Initialisierungsphase. In dieser Zeit kann keine Information über den Bus empfangen oder gesendet werden.

3. Gerät am Bus adressieren

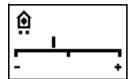
Das Gerät wird mit der Bus-Adresse 15.15.255 ausgeliefert. Eine andere Adresse kann in der ETS durch Überschreiben der Adresse 15.15.255 programmiert werden oder über den Programmier-Taster eingelernt werden.

4. Anzeige und Bedienung am Gerät

In der ETS werden genaue Vorgaben für die Darstellung im Display und die Nutzung der Tastenfunktionen eingestellt.

Im Display kann grundsätzlich entweder eine zwei- oder dreizeilige Textanzeige (z. B. für Messwerte) oder die Temperaturregler-Anzeige dargestellt werden. Zwischen den beiden Anzeigen kann durch Drücken einer beliebigen Taste gewechselt werden, wenn dies nicht in der ETS unterbunden wurde.

4.1. Modus-Anzeige und manueller Temperaturregler


Je nach gewählter ETS-Einstellung wird in der Modus-Anzeige nur der aktuelle Sollwert angezeigt oder die Basissollwerteinstellung mit Skalenanzeige. Der manuell einstellbare Bereich wird in der ETS eingestellt.

Folgende Anzeigemöglichkeiten stehen zur Verfügung:

Abb. 4

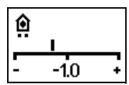

Modus-Anzeige mit aktuellem Sollwert bzw. Basissollwert

Abb. 5

Modus-Anzeige mit Skalenanzeige zur Änderung des Basissollwerts.

Die Reglerstellung in der Abbildung zeigt "Basissollwert verringert".

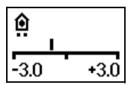


Abb. 6

Modus-Anzeige mit Skalenanzeige und Zahl.

Anzeige der eingestellten Sollwert-Änderung.

Die Reglerstellung in der Abbildung zeigt "Basissollwert verringert um $1.0^{\circ \text{"}}$.

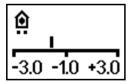


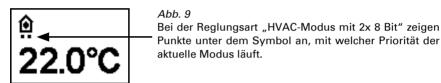
Abb. 7

Modus-Anzeige mit Skalenanzeige und Bereich.

Anzeige des möglichen Änderungsbereichs (wie in der ETS vorgegeben).

Die Reglerstellung in der Abbildung zeigt "Basissollwert verringert".

Abb. 8


Modus-Anzeige mit Skalenanzeige, Bereich und Zahl. Anzeige des möglichen Änderungsbereichs (wie in der ETS vorgegeben) und der eingestellten Sollwert-Änderung.

Die Reglerstellung in der Abbildung zeigt "Basissollwert verringert um $1.0^{\circ \text{"}}$.

Symbole

Ô	Komfortbetrieb. Solltemperatur Komfort (Anwesenheit) wird verwendet.	ƥ	Standby-Betrieb. Solltemperatur Standby (Abwesenheit tagsüber) wird verwendet.
•	Eco-Betrieb. Solltemperatur Nacht wird verwendet.	Û	Gebäudeschutz-Betrieb. Solltemperatur Gebäudeschutz wird verwendet. Das Symbol blinkt wenn der Modus aktiviert wurde, aber die Aktivierungs-Verzögerungszeit noch nicht abgelaufen ist.
} }}	Heizmodus. Es wird geheizt.	*	Kühlmodus. Es wird gekühlt.

Priorität (Punkte)

Ein Punkt: Priorität 1/Zwangsführung. Die Temperatur-Automatik kann nicht manuell beeinflusst werden. Über die Tasten am Gerät kann weder die Solltemperatur noch der Betriebs-Modus verändert werden.

Zwei Punkte: Priorität 2. Die Solltemperatur und der Betriebs-Modus können über die Tasten verändert werden.

4.2. Raumtemperatur mit den Tasten verändern

Ist die Modus-Anzeige aktiv, können die Solltemperatur im Raum und der Betriebsmodus mit den Tasten manuell geändert werden. Die Tastenfunktionen können in der ETS gesperrt werden oder wegen Betriebsmodus mit Priorität 1 unterbunden sein. Auch können die einzelnen Betriebsmodi in der ETS für die manuelle Auswahl gesperrt werden.

Solltempera-	linke Taste	Der Sollwert für die Raumtemperatur wird
tur absenken (-	kurz drücken	abgesenkt.
)		Die Schrittweite wird in der ETS definiert (0,1°C bis 5°C).
Solltempera- tur erhöhen (+)	rechte Taste kurz drücken	Der Sollwert für die Raumtemperatur wird angehoben. Die Schrittweite wird in der ETS definiert (0,1°C bis 5°C).

Modus umschalten	linke oder rechte Taste länger als 2 Sek. drü- cken	Wechselt zwischen den Betriebsarten Komfort, Standby, Eco und Gebäudeschutz (sofern in der ETS freigegeben).
Komfortmo- dus verlängern	im Eco-Modus: beide Tasten gleichzei- tig länger als 2 Sek. drü- cken	Schaltet für eine gewisse Zeit von Eco- wieder auf Komfortbetrieb (z.B. wenn die Räume abends länger genutzt werden sollen). Die Dauer wird in der ETS definiert (bis zu 10 Stunden). Die verbleibende Zeit im Komfortbetrieb wird angezeigt.

5. Übertragungsprotokoll

Einheiten:

Temperaturen in Grad Celsius Luftfeuchtigkeit in % Absolute Luftfeuchtigkeit in g/kg bzw. g/m³ CO₂-Gehalt in ppm Stellgrößen in %

5.1. Liste aller Kommunikationsobjekte

Abkürzungen Flags:

- K Kommunikation
- L Lesen
- S Schreiben
- Ü Übertragen
- A Aktualisieren

Nr.	Text	Funktion	Flags	DPT Typ	Größe
0	Softwareversion	auslesbar	L-KÜ	[217.1] DPT_Version	2 Bytes
1	Temperatur/Feuchte Sensor Störung	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
2	CO2 Sensor Störung	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
3	Externer Temperaturmesswert	Eingang	-SK-	[9.1] DPT_Value_Temp	2 Bytes
4	Interner Temperaturmesswert	Ausgang	L-KÜ	[9.1] DPT_Value_Temp	2 Bytes
5	Gesamt-Temperaturmesswert	Ausgang	L-KÜ	[9.1] DPT_Value_Temp	2 Bytes
6	Anforderung min./max. Tempera- turmesswert	Eingang	-SK-	[1.17] DPT_Trigger	1 Bit
7	Minimaler Temperaturmesswert	Ausgang	L-KÜ	[9.1] DPT_Value_Temp	2 Bytes
8	Maximaler Temperaturmesswert	Ausgang	L-KÜ	[9.1] DPT_Value_Temp	2 Bytes
9	Reset min./max. Temperatur- messwert	Eingang	-SK-	[1.17] DPT_Trigger	1 Bit
10	Temp. Grenzwert 1: Absolutwert	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
11	Temp. Grenzwert 1: (1:+ 0: -)	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
12	Temp. Grenzwert 1: Schaltverzögerung von 0 auf 1	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes

Nr.	Text	Funktion	Flags	DPT Typ	Größe
13	Temp. Grenzwert 1: Schaltverzögerung von 1 auf 0	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
14	Temp. Grenzwert 1: Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
15	Temp. Grenzwert 1: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
16	Temp. Grenzwert 2: Absolutwert	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
17	Temp. Grenzwert 2: (1:+ 0:-)	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
18	Temp. Grenzwert 2: Schaltverzögerung von 0 auf 1	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
19	Temp. Grenzwert 2: Schaltverzögerung von 1 auf 0	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
20	Temp. Grenzwert 2: Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
21	Temp. Grenzwert 2: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
22	Temp. Grenzwert 3: Absolutwert	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
23	Temp. Grenzwert 3: (1:+ 0: -)	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
24	Temp. Grenzwert 3: Schaltverzögerung von 0 auf 1	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
25	Temp. Grenzwert 3: Schaltverzögerung von 1 auf 0	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
26	Temp. Grenzwert 3: Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
27	Temp. Grenzwert 3: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
29	Temp.Regler: HVAC Modus (Priorität 1)	Eingang	-SK-	[20.102] DPT_HVACMode	1 Byte
30	Temp.Regler: HVAC Modus (Priorität 2)	Eingang / Ausgang	LSKÜ	[20.102] DPT_HVACMode	1 Byte
31	Temp.Regler: Modus Frost-/Hitze- schutz Aktivierung	Eingang / Ausgang	LSKÜ	[1.1] DPT_Switch	1 Bit
32	Temp.Regler: Sperre (aktiv bei Wert = 1)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
33	Temp.Regler: Sollwert Aktuell	Ausgang	L-KÜ	[9.1] DPT_Value_Temp	2 Bytes
34	Temp.Regler: Umschaltung (Heizen = 0 Kühlen = 1)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
35	Temp.Regler: Sollwert Komfort Heizung	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes

Nr.	Text	Funktion	Flags	DPT Typ	Größe
36	Temp.Regler: Sollwert Komfort Heizung (1:+ 0: -)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
37	Temp.Regler: Sollwert Komfort Kühlung	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
38	Temp.Regler: Sollwert Komfort Kühlung (1:+ 0: -)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
39	Temp.Regler: Basissollwertver- schiebung 16 Bit	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
40	Temp.Regler: Sollwert Standby Heizung	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
41	Temp.Regler: Sollwert Standby Heizung (1:+ 0: -)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
42	Temp.Regler: Sollwert Standby Kühlung	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
43	Temp.Regler: Sollwert Standby Kühlung (1:+ 0: -)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
44	Temp.Regler: Sollwert Eco Heizung	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
45	Temp.Regler: Sollwert Eco Heizung (1:+ 0: -)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
46	Temp.Regler: Sollwert Eco Kühlung	Eingang / Ausgang	LSKÜ	[9.1] DPT_Value_Temp	2 Bytes
47	Temp.Regler: Sollwert Eco Kühlung (1:+ 0: -)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
48	Temp.Regler: Stellgröße Heizung (1. Stufe)	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
49	Temp.Regler: Stellgröße Heizung (2. Stufe)	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
50	Temp.Regler: Stellgröße Kühlung (1. Stufe)	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
51	Temp.Regler: Stellgröße Kühlung (2. Stufe)	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
52	Temp.Regler: Status Heizung Stufe 1 (1:AN 0:AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
53	Temp.Regler: Status Heizung Stufe 2 (1:AN 0:AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
54	Temp.Regler: Status Kühlung Stufe 1 (1:AN 0:AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
55	Temp.Regler: Status Kühlung Stufe 2 (1:AN 0:AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
56	Temp.Regler: Komfort Verlänge- rungsstatus	Eingang / Ausgang	LSKÜ	[1.1] DPT_Switch	1 Bit
57	Temp.Regler: Komfort Verlänge- rungszeit	Eingang	LSKÜ	[7.5] DPT_TimePeriodSec	2 Bytes

Nr.	Text	Funktion	Flags	DPT Тур	Größe
58	Temp. Regler: Stellgröße für 4/6 Wegeventil	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
59	Externer Feuchtemesswert	Eingang	-SK-	[9.7] DPT_Value_Humidity	2 Bytes
60	Interner Feuchtemesswert	Ausgang	L-KÜ	[9.7] DPT_Value_Humidity	2 Bytes
61	Gesamt-Feuchtemesswert	Ausgang	L-KÜ	[9.7] DPT_Value_Humidity	2 Bytes
62	Anforderung min./max. Feuchte- messwert	Eingang	-SK-	[1.17] DPT_Trigger	1 Bit
63	Minimaler Feuchtemesswert	Ausgang	L-KÜ	[9.7] DPT_Value_Humidity	2 Bytes
64	Maximaler Feuchtemesswert	Ausgang	L-KÜ	[9.7] DPT_Value_Humidity	2 Bytes
65	Reset min./max. Feuchtemesswert	Eingang	-SK-	[1.17] DPT_Trigger	1 Bit
66	Feuchte Grenzwert 1: Absolutwert	Eingang / Ausgang	LSKÜ	[9.7] DPT_Value_Humidity	2 Bytes
67	Feuchte Grenzwert 1: (1:+ 0:-)	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
68	Feuchte Grenzwert 1: Schaltverzögerung von 0 auf 1	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
69	Feuchte Grenzwert 1: Schaltverzögerung von 1 auf 0	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
70	Feuchte Grenzwert 1: Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
71	Feuchte Grenzwert 1: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
72	Feuchte Grenzwert 2: Absolutwert	Eingang / Ausgang	LSKÜ	[9.7] DPT_Value_Humidity	2 Bytes
73	Feuchte Grenzwert 2: (1:+ 0:-)	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
74	Feuchte Grenzwert 2: Schaltverzögerung von 0 auf 1	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
75	Feuchte Grenzwert 2: Schaltverzögerung von 1 auf 0	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
76	Feuchte Grenzwert 2: Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
77	Feuchte Grenzwert 2: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
78	Feuchte Regler: Sperrobjekt	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
79	Feuchte Regler: Sollwert	Eingang / Ausgang	LSKÜ	[9.7] DPT_Value_Humidity	2 Bytes

Nr.	Text	Funktion	Flags	DPT Typ	Größe
80	Feuchte Regler: Sollwert (1:+ 0:-)	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
81	Feuchte Regler: Stellgröße Ent- feuchtung	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
82	Feuchte Regler: Stellgröße Ent- feuchtung 2. Stufe	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
83	Feuchte Regler: Stellgröße Befeuchtung	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
84	Feuchte Regler: Status Entfeuchtung (1=AN 0=AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
85	Feuchte Regler: Status Entfeuchtung2(1=AN 0=AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
86	Feuchte Regler: Status Befeuchtung (1=AN 0=AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
87	Taupunkttemperatur	Ausgang	L-KÜ	[9.1] DPT_Value_Temp	2 Bytes
88	Kühlmediumtemp.: Grenzwert	Ausgang	L-KÜ	[9.1] DPT_Value_Temp	2 Bytes
89	Kühlmediumtemp.: Istwert	Eingang	-SK-	[9.1] DPT_Value_Temp	2 Bytes
90	Kühlmediumtemp.: Offsetveränderung (1:+ 0:-)	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
91	Kühlmediumtemp.: Schaltverzögerung von 0 auf 1	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
92	Kühlmediumtemp.: Schaltverzögerung von 1 auf 0	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
93	Kühlmediumtemp.: Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
94	Kühlmediumtemp.: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
95	Absolute Feuchte [g/kg]	Ausgang	L-KÜ	[14.5] DPT_Value_Ampli- tude	4 Bytes
96	Absolute Feuchte [g/m³]	Ausgang	L-KÜ	[14.17] DPT_Value_Density	4 Bytes
97	Raumklima: 1 = behaglich 0 = unbehaglich	Ausgang	L-KÜ	[1.2] DPT_Bool	1 Bit
98	Externer CO2 Messwert	Eingang	-SK-	[9.8] DPT_Value_AirQua- lity	2 Bytes
99	Interner CO2 Messwert	Ausgang	L-KÜ	[9.8] DPT_Value_AirQua- lity	2 Bytes

Nr.	Text	Funktion	Flags	DPT Typ	Größe
100	Gesamt CO2 Messwert	Ausgang	L-KÜ	[9.8] DPT_Value_AirQua- lity	2 Bytes
101	Anforderung CO2 Maximalwert	Eingang	-SK-	[1.17] DPT_Trigger	1 Bit
102	Maximaler CO2 Messwert	Ausgang	L-KÜ	[9.8] DPT_Value_AirQua- lity	2 Bytes
103	Reset CO2 Maximalwert	Eingang	-SK-	[1.17] DPT_Trigger	1 Bit
104	CO2 Grenzwert 1: Absolutwert	Eingang / Ausgang	LSKÜ	[9.8] DPT_Value_AirQua- lity	2 Bytes
105	CO2 Grenzwert 1: (1:+ 0:-)	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
106	CO2 Grenzwert 1: Schaltverzögerung von 0 auf 1	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
107	CO2 Grenzwert 1: Schaltverzögerung von 1 auf 0	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
108	CO2 Grenzwert 1: Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
109	CO2 Grenzwert 1: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
110	CO2 Grenzwert 2: Absolutwert	Eingang / Ausgang	LSKÜ	[9.8] DPT_Value_AirQua- lity	2 Bytes
111	CO2 Grenzwert 2: (1:+ 0:-)	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
112	CO2 Grenzwert 2: Schaltverzögerung von 0 auf 1	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
113	CO2 Grenzwert 2: Schaltverzögerung von 1 auf 0	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
114	CO2 Grenzwert 2: Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
115	CO2 Grenzwert 2: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
116	CO2 Grenzwert 3: Absolutwert	Eingang / Ausgang	LSKÜ	[9.8] DPT_Value_AirQua- lity	2 Bytes
117	CO2 Grenzwert 3: (1:+ 0:-)	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
118	CO2 Grenzwert 3: Schaltverzögerung von 0 auf 1	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes
119	CO2 Grenzwert 3: Schaltverzögerung von 1 auf 0	Eingang	-SK-	[9.010] DPT_Value_Time	2 Bytes

Nr.	Text	Funktion	Flags	DPT Тур	Größe
120	CO2 Grenzwert 3: Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
121	CO2 Grenzwert 3: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
122	CO2 Grenzwert 4: Absolutwert	Eingang / Ausgang	LSKÜ	[9.8] DPT_Value_AirQua- lity	2 Bytes
123	CO2 Grenzwert 4: (1:+ 0:-)	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
124	CO2 Grenzwert 4: Schaltverzögerung von 0 auf 1	Eingang	-SK-	[7.5] DPT_TimePeriodSec	2 Bytes
125	CO2 Grenzwert 4: Schaltverzögerung von 1 auf 0	Eingang	-SK-	[7.5] DPT_TimePeriodSec	2 Bytes
126	CO2 Grenzwert 4: Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
127	CO2 Grenzwert 4: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
128	CO2 Regler: Sperrobjekt	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
129	CO2 Regler: Sollwert	Eingang / Ausgang	LSKÜ	[9.8] DPT_Value_AirQua- lity	2 Bytes
130	CO2 Regler: Sollwert (1:+ 0:-)	1 = Anhe- bung 0 = Absen- kung	-SK-	[1.2] DPT_Bool	1 Bit
131	CO2 Regler: Stellgröße Belüftung (1. Stufe)	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
132	CO2 Regler: Stellgröße Belüftung (2. Stufe)	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
133	CO2 Regler: Status Belüftung (1=AN 0=AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
134	CO2 Regler: Status Belüftung 2 (1=AN 0=AUS)	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
135	Stellgrößenvergleicher 1: Eingang 1	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
136	Stellgrößenvergleicher 1: Eingang 2	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
137	Stellgrößenvergleicher 1: Eingang 3	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
138	Stellgrößenvergleicher 1: Eingang 4	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
139	Stellgrößenvergleicher 1: Eingang 5	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte

Nr.	Text	Funktion	Flags	DPT Тур	Größe
140	Stellgrößenvergleicher 1: Ausgang	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
141	Stellgrößenvergleicher 1: Sperre	Ausgang	-SK-	[1.2] DPT_Bool	1 Bit
142	Stellgrößenvergleicher 2: Eingang 1	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
143	Stellgrößenvergleicher 2: Eingang 2	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
144	Stellgrößenvergleicher 2: Eingang 3	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
145	Stellgrößenvergleicher 2: Eingang 4	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
146	Stellgrößenvergleicher 2: Eingang 5	Eingang	-SK-	[5.1] DPT_Scaling	1 Byte
147	Stellgrößenvergleicher 2: Ausgang	Ausgang	L-KÜ	[5.1] DPT_Scaling	1 Byte
148	Stellgrößenvergleicher 2: Sperre	Ausgang	-SK-	[1.2] DPT_Bool	1 Bit
149	UND Logik 1: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
150	UND Logik 1: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
151	UND Logik 1: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
152	UND Logik 1: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
153	UND Logik 2: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
154	UND Logik 2: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
155	UND Logik 2: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
156	UND Logik 2: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
157	UND Logik 3: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
158	UND Logik 3: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
159	UND Logik 3: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
160	UND Logik 3: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
161	UND Logik 4: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit

Nr.	Text	Funktion	Flags	DPT Тур	Größe
162	UND Logik 4: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
163	UND Logik 4: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
164	UND Logik 4: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
181	ODER Logik 1: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
182	ODER Logik 1: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
183	ODER Logik 1: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
184	ODER Logik 1: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
185	ODER Logik 2: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
186	ODER Logik 2: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
187	ODER Logik 2: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
188	ODER Logik 2: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
189	ODER Logik 3: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
190	ODER Logik 3: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
191	ODER Logik 3: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
192	ODER Logik 3: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
193	ODER Logik 4: 1 Bit Schaltausgang	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
194	ODER Logik 4: 8 Bit Ausgang A	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
195	ODER Logik 4: 8 Bit Ausgang B	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
196	ODER Logik 4: Schaltausgang Sperre	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
200	Logikeingang 1	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
201	Logikeingang 2	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
202	Logikeingang 3	Eingang	-SK-	[1.2] DPT_Bool	1 Bit

Nr.	Text	Funktion	Flags	DPT Typ	Größe
203	Logikeingang 4	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
204	Logikeingang 5	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
205	Logikeingang 6	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
206	Logikeingang 7	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
207	Logikeingang 8	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
208	Logikeingang 9	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
209	Logikeingang 10	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
210	Logikeingang 11	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
211	Logikeingang 12	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
212	Logikeingang 13	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
213	Logikeingang 14	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
214	Logikeingang 15	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
215	Logikeingang 16	Eingang	-SK-	[1.2] DPT_Bool	1 Bit
220	Display Kontrast (1 = mehr 0 = weniger)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
230	Datum für Display	Eingang	-SKÜ	[11.1] DPT_Date	3 Bytes
231	Uhrzeit für Display	Eingang	-SKÜ	[10.1] DPT_TimeOfDay	3 Bytes
232	8 Bit-Objekt 1 für Display	Eingang	-SK-	[5] 5.xxx	1 Byte
233	8 Bit-Objekt 2 für Display	Eingang	-SK-	[5] 5.xxx	1 Byte
234	8 Bit-Objekt 3 für Display	Eingang	-SK-	[5] 5.xxx	1 Byte
235	16 Bit-Objekt 1 für Display	Eingang	-SK-	[9] 9.xxx	2 Bytes
236	16 Bit-Objekt 2 für Display	Eingang	-SK-	[9] 9.xxx	2 Bytes
237	Textnachricht 1 für Display	Eingang	-SK-	[16.0] DPT_String_ASCII	14 Bytes

Nr.	Text	Funktion	Flags	DPT Typ	Größe
238	Textnachricht 2 für Display	Eingang	-SK-	[16.0] DPT_String_ASCII	14 Bytes
239	Rücksprungfreigabe für Display	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
240	Taster 1 Langzeit	Ausgang	L-KÜ	[1.8] DPT_UpDown	1 Bit
241	Taster 1 Kurzzeit	Ausgang	L-KÜ	[1.10] DPT_Start	1 Bit
242	Taster 1 Schalten	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
243	Taster 1 Dimmen	Eingang / Ausgang	LSKÜ	[3.7] DPT_Control_Dim- ming	4 Bit
244	Taster 1 Wertgeber 8 Bit	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
245	Taster 1 Wertgeber 16 Bit	Ausgang	L-KÜ	[9] 9.xxx	2 Bytes
246	Taster 1 Szene	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
247	Taster 2 Langzeit	Ausgang	L-KÜ	[1.8] DPT_UpDown	1 Bit
248	Taster 2 Kurzzeit	Ausgang	L-KÜ	[1.10] DPT_Start	1 Bit
249	Taster 2 Schalten	Ausgang	L-KÜ	[1.1] DPT_Switch	1 Bit
250	Taster 2 Dimmen	Eingang / Ausgang	LSKÜ	[3.7] DPT_Control_Dim- ming	4 Bit
251	Taster 2 Wertgeber 8 Bit	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
252	Taster 2 Wertgeber 16 Bit	Ausgang	L-KÜ	[9] 9.xxx	2 Bytes
253	Taster 2 Szene	Ausgang	L-KÜ	[5] 5.xxx	1 Byte
221	Display Beleuchtung (1 = An 0 = Aus)	Eingang	-SK-	[1.1] DPT_Switch	1 Bit
222	Display Beleuchtung Helligkeit	Eingang	LSKÜ	[5.1] DPT_Scaling	1 Byte
223	Display Beleuchtung Ausschaltver- zögerung	Eingang	LSKÜ	[7.5] DPT_TimePeriodSec	2 Bytes

6. Einstellung der Parameter

6.1. Verhalten bei Spannungsausfall/-wiederkehr

Verhalten bei Busspannungsausfall:

Das Gerät sendet nichts.

Verhalten bei Busspannungswiederkehr und nach Programmierung oder Reset:

Das Gerät sendet alle Ausgänge entsprechend ihres in den Parametern eingestellten Sendeverhaltens mit den Verzögerungen, die im Parameterblock "Allgemeine Einstellungen" festgelegt werden.

6.2. Allgemeine Einstellungen

Stellen Sie grundlegende Eigenschaften der Datenübertragung ein.

Sendeverzögerung nach Power-Up und Programmierung für:			
Messwerte	<u>5 s</u> • • 2 h		
Grenzwerte und Schaltausgänge	<u>5 s</u> • • 2 h		
Regler-Objekte	<u>5 s</u> • • 2 h		
Logikausgänge	<u>5 s</u> • • 2 h		
Maximale Telegrammrate	• 1 Telegramm pro Sekunde		
	•		
	• <u>5 Telegramme pro Sekunde</u>		
	•		
	• 20 Telegramme pro Sekunde		
Störobjekt Temperatur/Feuchte verwenden	Nein • Ja		
Störobjekt CO2 verwenden	<u>Nein</u> • Ja		

6.3. Temperatur Messwert

Mithilfe des Offsets können Sie den zu sendenden Messwert justieren.

Offset in 0,1°C	-5050; <u>0</u>
-----------------	-----------------

Das Gerät kann aus dem eigenem Messwert und einem externen Wert einen **Mischwert** berechnen. Stellen Sie falls gewünscht die Mischwertberechnung ein. Wird ein externer Anteil verwendet, beziehen sich alle folgenden Einstellungen (Grenzwerte etc.) auf den Gesamtmesswert.

Externen Messwert verwenden	Nein • Ja	
Ext. Messwertanteil am Gesamtmesswert	5% • 10% • • <u>50%</u> • • 100%	
Alle folgenden Einstellungen beziehen sich auf den Gesamtmesswert		

Interner und Gesamtmesswert senden	nicht zyklisch <u>bei Änderung</u> bei Änderung und zyklisch
Ab Änderung von (wenn bei Änderung gesendet wird)	<u>0,1°C</u> • 0,2°C • 0,5°C • • 5,0°C
Sendezyklus (wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • • 2 h

Der **minimale und maximale Messwert** kann gespeichert und auf den Bus gesendet werden. Mit den Objekten "Reset Temperatur Min/Maximalwert" können die Werte auf die aktuellen Messwerte zurückgesetzt werden. Die Werte bleiben nach einem Reset nicht erhalten.

Minimal- und Maximalwert verwenden	Nein • Ja
------------------------------------	-----------

6.4. Temperatur Grenzwerte

Aktivieren Sie die benötigten Temperatur-Grenzwerte. Die Menüs für die weitere Einstellung der Grenzwerte werden daraufhin angezeigt.

Grenzwert 1/2/3 verwenden	Ja ● <u>Nein</u>
---------------------------	------------------

6.4.1. Grenzwert 1, 2, 3

Grenzwert

Stellen Sie ein, in welchen Fällen per Objekt empfangenen **Grenzwert** erhalten bleiben sollen. Der Parameter wird nur berücksichtigt, wenn die Einstellung per Objekt weiter unten aktiviert ist. Beachten Sie, dass die Einstellung "nach Spannungswiederkehr und Programmierung" nicht für die Erstinbetriebnahme verwendet werden sollte, da bis zur 1. Kommunikation stets die Werkseinstellungen verwendet werden (Einstellung über Objekte wird ignoriert).

Der Grenzwert kann per Parameter direkt im Applikationsprogramm eingestellt oder per Kommunikationsobjekt über den Bus vorgegeben werden.

Grenzwertvorgabe per Parameter:

Stellen Sie Grenzwert und Hysterese direkt ein.

Grenzwertvorgabe per	Parameter • Kommunikationsobjekte
Grenzwert in 0,1°C	-300 800; <u>200</u>

Grenzwertvorgabe per Kommunikationsobjekt:

Geben Sie vor, wie der Grenzwert vom Bus empfangen wird. Grundsätzlich kann ein neuer Wert empfangen werden oder nur ein Befehl zum Anheben oder Absenken.

Bei der Erstinbetriebnahme muss ein Grenzwert vorgegeben werden, der bis zur 1. Kommunikation eines neuen Grenzwerts gültig ist. Bei bereits in Betrieb genomme-

nem Gerät kann der zuletzt kommunizierte Grenzwert verwendet werden. Grundsätzlich wird ein Temperaturbereich vorgegeben in dem der Grenzwert verändert werden kann (Objektwertbegrenzung).

Ein gesetzter Grenzwert bleibt solange erhalten, bis ein neuer Wert oder eine Änderung übertragen wird. Der aktuelle Wert wird gespeichert, damit er bei Spannungsausfall erhalten bleibt und bei Rückkehr der Betriebsspannung wieder zur Verfügung steht.

Grenzwertvorgabe per	Parameter • Kommunikationsobjekte
Der zuletzt kommunizierte Wert soll erhalten bleiben	<u>nicht</u> nach Spannungswiederkehr nach Spannungswiederkehr und Programmierung
Start Grenzwert in 0,1°C gültig bis zur 1. Kommunikation	-300 800; <u>200</u>
Objektwertbegrenzung (min) in 0,1°C	<u>-300</u> 800
Objektwertbegrenzung (max) in 0,1°C	-300 <u>800</u>
Art der Grenzwertveränderung	Absolutwert • Anhebung / Absenkung
Schrittweite (bei Veränderung durch Anhebung / Absen- kung)	0,1 °C • • 5°C, <u>1°C</u>

Unabhängig von der Art der Grenzwertvorgabe stellen Sie die Hysterese ein.

Unatamasa in O/ das Casamasanta	0 50.00
Hysterese in % des Grenzwerts	0 50; <u>20</u>

Schaltausgang

Stellen Sie das Verhalten des Schaltausgangs bei Grenzwert-Über-/Unterschreitung ein. Die Schaltverzögerung des Ausgangs kann über Objekte oder direkt als Parameter eingestellt werden.

Ausgang ist bei (GW = Grenzwert)	• GW über = 1 GW - Hyst. unter = 0 • GW über = 0 GW - Hyst. unter = 1 • GW unter = 1 GW + Hyst. über = 0 • GW unter = 0 GW + Hyst. über = 1
Verzögerung über Objekte einstellbar (in Sekunden)	<u>Nein</u> • Ja
Schaltverzögerung von 0 auf 1 (wenn Verzögerung über Objekte einstell- bar: bis zur 1. Kommunikation)	<u>keine</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Schaltverzögerung von 1 auf 0 (wenn Verzögerung über Objekte einstell- bar: bis zur 1. Kommunikation)	<u>keine</u> • 1 s • 2 s • 5 s • 10 s • • 2 h

Schaltausgang sendet	 bei Änderung bei Änderung auf 1 bei Änderung auf 0 bei Änderung und zyklisch bei Änderung auf 1 und zyklisch bei Änderung auf 0 und zyklisch
Zyklus (nur wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • 30 s • 2 h

Sperre

Der Schaltausgang kann durch ein Objekt gesperrt werden.

Sperrung des Schaltausgangs verwenden	Nein • Ja
	<u></u>

Wenn die Sperre aktiviert ist, machen Sie hier Vorgaben für das Verhalten des Ausgangs während der Sperre.

Auswertung des Sperrobjekts	Bei Wert 1: sperren Bei Wert 0: freigeben Bei Wert 0: sperren Bei Wert 1: freigeben	
Wert des Sperrobjekts vor 1. Kommunikation	<u>0</u> • 1	
Verhalten des Schaltausgangs		
Beim Sperren	kein Telegramm senden 0 senden 1 senden	
Beim Freigeben (mit 2 Sekunden Freigabeverzögerung)	[Abhängig von Einstellung bei "Schaltausgang sendet"]	

Das Verhalten des Schaltausgangs beim Freigeben ist abhängig vom Wert des Parameters "Schaltausgang sendet" (siehe "Schaltausgang")

Schaltausgang sendet bei Änderung	kein Telegramm sendenStatus des Schaltausgangs senden
Schaltausgang sendet bei Änderung auf 1	• kein Telegramm senden• wenn Schaltausgang = 1 → sende 1
Schaltausgang sendet bei Änderung auf 0	 kein Telegramm senden wenn Schaltausgang = 0 → sende 0
Schaltausgang sendet bei Änderung und zyklisch	sende Status des Schaltausgangs
Schaltausgang sendet bei Änderung auf 1 und zyklisch	wenn Schaltausgang = 1 →sende 1
Schaltausgang sendet bei Änderung auf 0 und zyklisch	wenn Schaltausgang = 0 →sende 0

6.5. Temperatur-PI-Regelung

Aktivieren Sie die Regelung, wenn Sie sie verwenden möchten.

Regelung verwenden Nein • Ja

Regelung Allgemein

Stellen Sie ein, in welchen Fällen die per Objekt empfangenen **Sollwerte und die Verlängerungszeit** erhalten bleiben sollen. Der Parameter wird nur berücksichtigt, wenn die Einstellung per Objekt weiter unten aktiviert ist. Beachten Sie, dass die Einstellung "nach Spannungswiederkehr und Programmierung" nicht für die Erstinbetriebnahme verwendet werden sollte, da bis zur 1. Kommunikation stets die Werkseinstellungen verwendet werden (Einstellung über Objekte wird ignoriert).

Zur bedarfsgerechten Regelung der Raumtemperatur werden die Modi Komfort, Standby, Eco und Gebäudeschutz verwendet.

Komfort bei Anwesenheit,

Standby bei Abwesenheit,

Eco als Nachtmodus und

Frost-/Hitzeschutz (Gebäudeschutz) z. B. bei geöffnetem Fenster.

In den Einstellungen des Temperaturreglers werden die Solltemperaturen für die einzelnen Modi festgelegt. Über Objekte wird bestimmt, welcher Modus ausgeführt werden soll. Ein Moduswechsel kann manuell oder automatisch (z. B. durch Zeitschaltuhr, Fensterkontakt) ausgelöst werden.

Der **Modus** kann über zwei 8 Bit-Objekte umgeschaltet werden, die unterschiedliche Priorität haben. Objekte

- "... HVAC Modus (Prio 2)" für Umschaltung im Alltagsbetrieb und
- "... HVAC Modus (Prio 1)" für zentrale Umschaltung mit höherer Priorität.

Die Objekte sind wie folgt kodiert:

- 0 = Auto
- 1 = Komfort
- 2 = Standby
- 3 = Eco
- 4 = Gebäudeschutz

Alternativ können drei Objekte verwendet werden, wobei dann ein Objekt zwischen Eco- und Standby-Modus umschaltet und die beiden anderen den Komfortmodus bzw. den Frost-/Hitzeschutzmodus aktivieren. Das Komfort-Objekt blockiert dabei das Eco/ Standby-Objekt, die höchste Priorität hat das Frost-/Hitzeschutz-Objekt. Objekte

- "... Modus (1: Eco, 0: Standby)",
- "... Modus Komfort Aktivierung" und
- "... Modus Frost-/Hitzeschutz Aktivierung"

Modusumschaltung über	• zwei 8 Bit-Objekte (HVAC-Modi)
	drei 1 Bit-Objekte

Legen Sie fest, welcher **Modus nach einem Reset** (z. B. Stromausfall, Reset der Linie über den Bus) ausgeführt werden soll (Default).

Konfigurieren Sie dann die **Sperrung** der Temperaturregelung durch das Sperrobjekt.

Modus nach Reset	Komfort	٦
	• Standby	
	• Eco	
	Gebäudeschutz	

Verhalten des Sperrobjekts bei Wert	• 1 = Sperren 0 = Freigeben • 0 = Sperren 1 = Freigeben
Wert des Sperrobjekts vor 1. Kommunikation	<u>0</u> • 1

Stellen Sie ein, wann die aktuellen **Stellgrößen** der Regelung auf den Bus **gesendet** werden. Das zyklische Senden bietet mehr Sicherheit falls ein Telegramm nicht beim Empfänger ankommt. Auch eine zyklische Überwachung durch den Aktor kann damit eingerichtet werden.

Stellgrößen senden	bei Änderungbei Änderung und zyklisch
ab Änderung von (in% absolut)	110; <u>2</u>
Zyklus (wenn zyklisch gesendet wird)	5 s • • <u>5 min</u> • • 2 h

Das **Statusobjekt** gibt den aktuellen Zustand der Stellgröße aus (0% = AUS, >0% = EIN) und kann beispielsweise zur Visualisierung genutzt werden oder um die Heizungspumpe abzuschalten, sobald keine Heizung mehr läuft.

Statusobjekte senden	 bei Änderung bei Änderung auf 1 bei Änderung auf 0 bei Änderung und zyklisch bei Änderung auf 1 und zyklisch bei Änderung auf 0 und zyklisch
Zyklus (wenn zyklisch gesendet wird)	5 s • • <u>5 min</u> • • 2 h

Definieren Sie dann die **Art der Regelung**. Heizungen und/oder Kühlungen können in zwei Stufen gesteuert werden.

Art der Regelung	Einstufen Heizung Zweistufen Heizung Einstufen Kühlung Einstufen Heizung + Einstufen Kühlung
	 Zweistufen Heizung + Einstufen Kühlung Zweistufen Heizung + Zweistufen Kühlung

Sollwert Allgemein

Sollwerte können entweder für jeden Modus separat vorgegeben werden oder der Komfortsollwert wird als Basiswert verwendet.

Wird die Regelung zum Heizen *und* Kühlen verwendet, kann zusätzlich die Einstellung "separat mit Umschaltobjekt" gewählt werden. Systeme, die im Sommer als Kühlung und im Winter als Heizung verwendet werden, können so umgestellt werden. Bei Verwendung des Basiswerts wird für die anderen Modi nur die Abweichung vom Komfortsollwert angegeben (z. B. 2°C weniger für Standby-Modus).

Geänderte Sollwerte nach Moduswechsel erhalten	Nein • <u>Ja</u>
Einstellung der Sollwerte	separaten mit Umschaltobjekt separaten ohne Umschaltobjekt mit Komfortsollwert als Basis

Die **Schrittweite** für die Sollwertveränderung wird vorgegeben. Ob die Änderung nur temporär aktiv bleibt (nicht speichern) oder aber auch nach Spannungswiederkehr (und Programmierung) gespeichert bleiben, wird hier festgelegt. Dies gilt auch für eine Komfortverlängerung.

Schrittweite für Sollwertänderungen (in 0,1°C)	1 50; <u>10</u>
Speicherung von Sollwert(en)	nicht nach Spannungswiederkehr nach Spannungswiederkehr und Programmierung

Aus dem Eco-Modus, also Nachtbetrieb, kann der Regler über die Komfortverlängerung auf Komfortbetrieb geschaltet werden. So kann der Komfort-Sollwert länger beibehalten werden, wenn beispielsweise Gäste da sind. Die Dauer dieser Komfort-Verlängerungszeit wird vorgegeben. Nach Ablauf der Komfort-Verlängerungszeit schaltet die Regelung wieder in den Eco-Modus.

Komfort-Verlängerungszeit in Sekunden	136000; <u>3600</u>
(nur im Eco-Modus aktivierbar)	

Sollwert Komfort

Der Komfort-Modus wird in der Regel für Tagbetrieb bei Anwesenheit verwendet. Für den Komfort-Sollwert wird ein Startwert definiert und ein Temperaturbereich, in dem der Sollwert verändert werden kann.

Startsollwert Heizen/Kühlen (in 0,1°C)	-300800; <u>210</u>
gültig bis zur 1. Kommunikation	
(nicht bei Speicherung des Sollwerts nach	
Programmierung)	

Wenn Sollwerte separat eingestellt werden:

Min. Objektwert Heizen/Kühlen (in 0,1°C)	-300800; <u>160</u>
Max. Objektwert Heizen/Kühlen (in 0,1°C)	-300800; <u>280</u>

Wenn der Komfortsollwert als Basis verwendet wird:

Wenn der Komfortsollwert als Basis verwendet wird, wird die Anhebung/Absenkung dieses Werts angegeben.

Startsollwert Heizen (in 0,1°C) gültig bis zur 1. Kommunikation	-300800; <u>210</u>
Minimaler Basissollwert (in 0,1°C)	-300800; <u>160</u>
Maximaler Basissollwert (in 0,1°C)	-300800; <u>280</u>
Absenkung um bis zu (in 0,1°C)	0100; <u>50</u>
Anhebung um bis zu (in 0,1°C)	0100; <u>50</u>

Wenn der Komfortsollwert als Basis verwendet wird, wird bei der Regelungsart "Heizen *und* Kühlen" eine Totzone vorgegeben, damit keine direkte Umschaltung von Heizen zu Kühlen erfolgt.

Totzone zwischen Heizen und Kühlen in	1100; <u>50</u>
0,1°C	_
(wenn geheizt UND gekühlt wird)	

Sollwert Standby

Der Standby-Modus wird in der Regel für Tagbetrieb bei Abwesenheit verwendet.

Wenn Sollwerte separat eingestellt werden:

Es wird ein Startsollwert definiert und ein Temperaturbereich, in dem der Sollwert verändert werden kann.

Startsollwert Heizen (in 0,1°C) gültig bis zur 1. Kommunikation	-300800; <u>180</u>
Startsollwert Kühlen (in 0,1°C) gültig bis zur 1. Kommunikation	-300800; <u>240</u>
Min. Objektwert Heizen/Kühlen (in 0,1°C)	-300800; <u>160</u>
Max. Objektwert Heizen/Kühlen (in 0,1°C)	-300800; <u>280</u>

Wenn der Komfortsollwert als Basis verwendet wird:

Wenn der Komfortsollwert als Basis verwendet wird, wird die Anhebung/Absenkung dieses Werts angegeben.

Absenkung Heizsollwert (in 0,1°C) (bei Heizung)	0200; <u>30</u>
Anhebung Kühlsollwert (in 0,1°C) (bei Kühlung)	0200; <u>30</u>

Sollwert Eco

Der Eco-Modus wird in der Regel für den Nachtbetrieb verwendet.

Wenn Sollwerte separat eingestellt werden:

Es wird ein Startsollwert definiert und ein Temperaturbereich, in dem der Sollwert verändert werden kann.

Startsollwert Heizen (in 0,1°C) gültig bis zur 1. Kommunikation	-300800; <u>160</u>
Startsollwert Kühlen (in 0,1°C) gültig bis zur 1. Kommunikation	-300800; <u>280</u>
Min. Objektwert Heizen/Kühlen (in 0,1°C)	-300800; <u>160</u>
Max. Objektwert Heizen/Kühlen (in 0,1°C)	-300800; <u>280</u>

Wenn der Komfortsollwert als Basis verwendet wird:

Wenn der Komfortsollwert als Basis verwendet wird, wird die Anhebung/Absenkung dieses Werts angegeben.

Absenkung Heizsollwert (in 0,1°C) (bei Heizung)	0200; <u>50</u>
Anhebung Kühlsollwert (in 0,1°C) (bei Kühlung)	0200; <u>60</u>

Sollwerte Frost-/Hitzeschutz (Gebäudeschutz)

Der Modus Gebäudeschutz wird z. B. verwendet, so lange Fenster zum Lüften geöffnet sind. Es werden Sollwerte für den Frostschutz (Heizung) und Hitzeschutz (Kühlung) vorgegeben, die von außen nicht verändert werden können (kein Zugriff über Bedienteile usw.). Der Modus Gebäudeschutz kann verzögert aktiviert werden, wodurch das Gebäude noch verlassen werden kann, bevor die Regelung in den Frost-/Hitzeschutzmodus schaltet.

Sollwert Frostschutz (in 0,1°C)	-300800; <u>70</u>
Aktivierungsverzögerung	keine • 5 s • • <u>5 min</u> • • 2 h
Sollwert Hitzeschutz (in 0,1°C)	-300800; <u>350</u>
Aktivierungsverzögerung	keine • 5 s • • <u>5 min</u> • • 2 h

Stellgrößen Allgemein

Diese Einstellung erscheint nur bei den Regelungsarten "Heizen und Kühlen". Hier kann festgelegt werden, ob für die Heizung und für die Kühlung eine gemeinsame Stellgröße verwendet werden soll. Wenn die 2. Stufe eine gemeinsame Stellgröße hat, dann wird auch die Regelungsart der 2. Stufe hier festgelegt.

Für Heizen und Kühlen werden	getrennte Stellgrößen verwendet gemeinsame Stellgrößen verwendet bei Stufe 1 gemeinsame Stellgrößen verwendet bei Stufe 2 gemeinsame Stellgrößen verwendet bei Stufe 1+2
Stellgröße für 4/6 Wegeventil verwenden (nur bei gemeinsamer Stellgröße bei Stufe 1)	<u>Nein</u> • Ja
Regelungsart (nur bei Stufe 2)	• 2-Punkt-Regelung • PI-Regelung

Stellgröße der 2. Stufe ist ein	• 1 Bit-Objekt
(nur bei Stufe 2 mit 2-Punkt-Regelung)	• 8 Bit-Objekt

Bei Verwendung der Stellgröße für ein 4/6 Wegeventil gilt:

0%...100% Heizen = 66%...100% Stellgröße

AUS = 50% Stellgröße

0%...100% Kühlen = 33%...0% Stellgröße

6.5.1. Heizregelung Stufe 1/2

lst eine Heizregelung konfiguriert, erscheinen ein bzw. zwei Einstellungsabschnitte für die Heizungs-Stufen.

In der 1. Stufe wird die Heizung durch eine Pl-Regelung gesteuert, bei der wahlweise Reglerparameter eingegeben oder vorgegebene Anwendungen gewählt werden können.

In der 2. Stufe (also nur bei Zweistufen-Heizung) wird die Heizung durch eine PI- oder eine 2-Punkt-Regelung gesteuert.

In der Stufe 2 muss außerdem die Sollwertdifferenz zwischen beiden Stufen vorgegeben werden, d. h. ab welcher Sollwertunterschreitung die 2. Stufe zugeschaltet wird.

Sollwertdifferenz zwischen 1. und 2. Stufe (in 0,1°C) (bei Stufe 2)	0100; <u>40</u>
Regelungsart (bei Stufe 2, keine gemeinsamen Stellgrö- ßen)	2-Punkt-Regelung PI-Regelung
Stellgröße ist ein (bei Stufe 2 mit 2-Punkt-Regelung, keine gemeinsamen Stellgrößen)	• 1 Bit-Objekt • 8 Bit-Objekt

PI-Regelung mit Reglerparametern:

Diese Einstellung erlaubt es, die Parameter für die PI-Regelung individuell einzugeben.

Regelungsart	PI-Regelung
Einstellen des Reglers durch	Reglerparameter
	vorgegebene Anwendungen

Geben Sie vor, bei welcher Abweichung vom Sollwert die maximale Stellgröße erreicht wird, d. h. ab wann die maximale Heizleistung verwendet wird.

Die Nachstellzeit gibt an, wie schnell die Regelung auf Sollwertabweichungen reagiert. Bei einer kleinen Nachstellzeit reagiert die Regelung mit einem schnellen Anstieg der Stellgröße. Bei einer großen Nachstellzeit reagiert die Regelung sanfter und benötigt länger bis die für die Sollwertabweichung erforderliche Stellgröße erreicht ist.

Hier sollte eine an das Heizsystem angepasste Zeit eingestellt werden (Herstellerangaben beachten).

Maximale Stellgröße wird erreicht bei Soll-/lst-Differenz von (in °C)	1 <u>5</u>
Nachstellzeit (in Min.)	1255; 30

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Stellen Sie hier einen Wert größer 0 (= AUS) ein, um eine Grundwärme zu erhalten, z. B. bei Fußbodenheizungen.

Beim Freigeben folgt die Stellgröße wieder der Regelung.

Bei Sperren soll Stellgröße	nicht gesendet werden einen bestimmten Wert senden
Wert (in %) (wenn ein Wert gesendet wird)	<u>0</u> 100

Bei gemeinsamer Stellgröße von Heizung und Kühlung wird immer 0 als fester Wert gesendet.

PI-Regelung mit vorgegebener Anwendung:

Diese Einstellung stellt feste Parameter für häufig Anwendungen bereit.

Regelungsart	PI-Regelung
Einstellen des Reglers durch	Reglerparameter vorgegebene Anwendungen
Anwendung	WarmwasserheizungFußbodenheizungGebläsekonvektorElektroheizung
Maximale Stellgröße wird erreicht bei Soll-/lst-Differenz von (in °C)	Warmwasserheizung: 5 Fußbodenheizung: 5 Gebläsekonvektor: 4 Elektroheizung: 4
Nachstellzeit (in Min.)	Warmwasserheizung: 150 Fußbodenheizung: 240 Gebläsekonvektor: 90 Elektroheizung: 100

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Stellen Sie hiereinen Wert größer 0 (= AUS) ein, um eine Grundwärme zu erhalten, z. B. bei Fußbodenheizungen.

Beim Freigeben folgt die Stellgröße wieder der Regelung.

	nicht gesendet werden einen bestimmten Wert senden
Wert (in %) (wenn ein Wert gesendet wird)	<u>0</u> 100

Bei gemeinsamer Stellgröße von Heizung und Kühlung wird immer 0 als fester Wert gesendet.

2-Punkt-Regelung (nur Stufe 2):

Die 2-Punkt-Regelung wird für Systeme verwendet, die nur EIN und AUS geschaltet werden.

Regelungsart	• 2-Punkt-Regelung
(wird bei gemeinsamen Stellgrößen weiter	
oben festgelegt)	

Geben Sie die Hysterese vor, die verhindert, dass bei Temperaturen im Grenzbereich häufig an- und ausgeschaltet wird.

Hysterese (in 0,1°C)	0100; <u>20</u>

Wenn getrennte Stellgrößen verwendet werden, dann wählen Sie, ob die Stellgröße der 2. Stufe ein 1 Bit-Objekt (Ein/Aus) oder ein 8 Bit-Objekt (Ein mit Prozent-Wert/Aus) ist.

Stellgröße ist ein	• 1 Bit-Objekt • 8 Bit-Objekt
Wert (in %) (bei 8 Bit-Objekt)	0 <u>100</u>

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Stellen Sie hier einen Wert größer 0 (= AUS) ein, um eine Grundwärme zu erhalten, z. B. bei Fußbodenheizungen. Beim Freigeben folgt die Stellgröße wieder der Regelung.

Bei Sperren soll Stellgröße	nicht gesendet werden einen bestimmten Wert senden
Wert (in %) nur wenn ein Wert gesendet wird	<u>0</u> 100

6.5.2. Kühlregelung Stufe 1/2

lst eine Kühlregelung konfiguriert, erscheinen ein bzw. zwei Einstellungsabschnitte für die Kühlungs-Stufen.

In der 1. Stufe wird die Kühlung durch eine PI-Regelung gesteuert, bei der wahlweise Reglerparameter eingegeben oder vorgegebene Anwendungen gewählt werden können.

In der 2. Stufe (also nur bei Zweistufen-Kühlung) wird die Kühlung durch eine PI- oder eine 2-Punkt-Regelung gesteuert.

In der Stufe 2 muss außerdem die Sollwertdifferenz zwischen beiden Stufen vorgegeben werden, d. h. ab welcher Sollwertüberschreitung die 2. Stufe zugeschaltet wird.

Sollwertdifferenz zwischen 1. und 2. Stufe (in 0,1°C) (bei Stufe 2)	0100; <u>40</u>
Regelungsart (bei Stufe 2, keine gemeinsamen Stellgrö- ßen)	2-Punkt-Regelung PI-Regelung
Stellgröße ist ein (bei Stufe 2 mit 2-Punkt-Regelung, keine gemeinsamen Stellgrößen)	• 1 Bit-Objekt • 8 Bit-Objekt

PI-Regelung mit Reglerparametern:

Diese Einstellung erlaubt es, die Parameter für die Pl-Regelung individuell einzugeben.

Regelungsart	PI-Regelung
Einstellen des Reglers durch	Reglerparameter
	vorgegebene Anwendungen

Geben Sie vor, bei welcher Abweichung vom Sollwert die maximale Stellgröße erreicht wird, d. h. wann die maximale Kühlleistung verwendet wird.

Die Nachstellzeit gibt an, wie schnell die Regelung auf Sollwertabweichungen reagiert. Bei einer kleinen Nachstellzeit reagiert die Regelung mit einem schnellen Anstieg der Stellgröße. Bei einer großen Nachstellzeit reagiert die Regelung sanfter und benötigt länger bis die für die Sollwertabweichung erforderliche Stellgröße erreicht ist. Hier sollte eine an das Kühlsystem angepasste Zeit eingestellt werden (Herstellerangaben beachten).

Maximale Stellgröße wird erreicht bei Soll-/Ist-Differenz von (in °C)	1 <u>5</u>
Nachstellzeit (in Min.)	1255; <u>30</u>

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Beim Freigeben folgt die Stellgröße wieder der Regelung.

Bei Sperren soll Stellgröße	<u>nicht gesendet werden</u> einen bestimmten Wert senden
Wert (in %) (wenn ein Wert gesendet wird)	<u>0</u> 100

Bei gemeinsamer Stellgröße von Heizung und Kühlung wird immer 0 als fester Wert gesendet.

PI-Regelung mit vorgegebener Anwendung:

Diese Einstellung stellt feste Parameter für eine Kühldecke bereit.

Regelungsart	PI-Regelung
Einstellen des Reglers durch	Reglerparameter vorgegebene Anwendungen
Anwendung	Kühldecke
Maximale Stellgröße wird erreicht bei Soll-/lst-Differenz von (in °C)	Kühldecke: 5
Nachstellzeit (in Min.)	Kühldecke: 30

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Beim Freigeben folgt die Stellgröße wieder der Regelung.

Bei Sperren soll Stellgröße	nicht gesendet werden einen bestimmten Wert senden
Wert (in %) (wenn ein Wert gesendet wird)	<u>0</u> 100

2-Punkt-Regelung (nur Stufe 2):

Die 2-Punkt-Regelung wird für System verwendet, die nur EIN und AUS geschaltet werden.

Regelungsart	• 2-Punkt-Regelung
wird bei gemeinsamen Stellgrößen weiter	
oben festgelegt	

Geben Sie die Hysterese vor, die verhindert, dass bei Temperaturen im Grenzbereich häufig an- und ausgeschaltet wird.

Hysterese (in 0,1°C)	0100; 20

Wenn getrennte Stellgrößen verwendet werden, dann wählen Sie, ob die Stellgröße der 2. Stufe ein 1 Bit-Objekt (Ein/Aus) oder ein 8 Bit-Objekt (Ein mit Prozent-Wert/Aus) ist.

Stellgröße ist ein	• 1 Bit-Objekt • 8 Bit-Objekt
Wert (in %) (bei 8 Bit-Objekt)	0 <u>100</u>

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Beim Freigeben folgt die Stellgröße wieder der Regelung.

Bei Sperren soll Stellgröße	nicht gesendet werden einen bestimmten Wert senden
Wert (in %) (wenn ein Wert gesendet wird)	<u>0</u> 100

Bei gemeinsamer Stellgröße von Heizung und Kühlung wird immer 0 als fester Wert gesendet.

6.6. Feuchte Messwert

Wählen Sie (siehe 6.2.Allgemeine Einstellungen), ob ein **Störobjekt** gesendet werden soll, wenn der Sensor defekt ist.

Störobjekt verwenden	<u>Nein</u> • Ja	
----------------------	------------------	--

Mithilfe des Offsets können Sie den zu sendenden Messwert justieren.

Offset in % rF	-1010; 0
	' _

Das Gerät kann aus dem eigenem Messwert und einem externen Wert einen **Mischwert** berechnen. Stellen Sie falls gewünscht die Mischwertberechnung ein. Wird ein externer Anteil verwendet, beziehen sich alle folgenden Einstellungen (Grenzwerte etc.) auf den Gesamtmesswert.

Externen Messwert verwenden	<u>Nein</u> • Ja
Ext. Messwertanteil am Gesamtmesswert	5% • 10% • • <u>50%</u> • • 100%
Alle folgenden Einstellungen beziehen sich auf den Gesamtmesswert	

Interner und Gesamtmesswert senden	<u>nicht</u> zyklisch bei Änderung bei Änderung und zyklisch
Ab Änderung von (wenn bei Änderung gesendet wird)	0,1% rF • 0,2% rF • 0,5% rF • <u>1,0% rF</u> • • 25,0% rF
Sendezyklus (wenn zyklisch gesendet wird)	5 s • <u>10 s</u> • • 2 h

Der **minimale und maximale Messwert** kann gespeichert und auf den Bus gesendet werden. Mit den Objekten "Reset Feuchte Min/Maximalwert" können die Werte auf die aktuellen Messwerte zurückgesetzt werden. Die Werte bleiben nach einem Reset nicht erhalten.

Minimal- und Maximalwert verwenden Nein	• Ja
---	------

6.7. Feuchte Grenzwerte

Aktivieren Sie die benötigten Luftfeuchtigkeits-Grenzwerte. Die Menüs für die weitere Einstellung der Grenzwerte werden daraufhin angezeigt.

Grenzwert 1/2 verwenden	Ja • <u>Nein</u>

6.7.1. Grenzwert 1, 2

Grenzwert

Stellen Sie ein, in welchen Fällen per Objekt empfangenen **Grenzwerte und Verzögerungszeiten** erhalten bleiben sollen. Der Parameter wird nur berücksichtigt, wenn die Einstellung per Objekt weiter unten aktiviert ist. Beachten Sie, dass die Einstellung "nach Spannungswiederkehr und Programmierung" nicht für die Erstinbetriebnahme verwendet werden sollte, da bis zur 1. Kommunikation stets die Werkseinstellungen verwendet werden (Einstellung über Objekte wird ignoriert).

Der Grenzwert kann per Parameter direkt im Applikationsprogramm eingestellt oder per Kommunikationsobjekt über den Bus vorgegeben werden.

Grenzwertvorgabe per Parameter:

Stellen Sie Grenzwert und Hysterese direkt ein.

Grenzwertvorgabe per	Parameter • Kommunikationsobjekte
Grenzwert in % rF	0 100; <u>70</u>
(gültig bis zur 1. Komunikation)	_

Grenzwertvorgabe per Kommunikationsobjekt:

Geben Sie vor, wie der Grenzwert vom Bus empfangen wird. Grundsätzlich kann ein neuer Wert empfangen werden oder nur ein Befehl zum Anheben oder Absenken.

Bei der Erstinbetriebnahme muss ein Grenzwert vorgegeben werden, der bis zur 1. Kommunikation eines neuen Grenzwerts gültig ist. Bei bereits in Betrieb genommenem Gerät kann der zuletzt kommunizierte Grenzwert verwendet werden. Grundsätzlich wird ein Feuchtebereich vorgegeben in dem der Grenzwert verändert werden kann (Objektwertbegrenzung).

Ein gesetzter Grenzwert bleibt solange erhalten, bis ein neuer Wert oder eine Änderung übertragen wird. Der aktuelle Wert wird gespeichert, damit er bei Spannungsausfall erhalten bleibt und bei Rückkehr der Betriebsspannung wieder zur Verfügung steht.

Grenzwertvorgabe per	Parameter • Kommunikationsobjekte
Der zuletzt kommunizierte Wert soll erhalten bleiben	 nicht nach Spannungswiederkehr nach Spannungswiederkehr und Programmierung
Startgrenzwert in % rF gültig bis zur 1. Kommunikation	0 100; <u>70</u>
Objektwertbegrenzung (min) in % rF	<u>0</u> 100
Objektwertbegrenzung (max) in % rF	0 <u>100</u>
Art der Grenzwertveränderung	Absolutwert • Anhebung / Absenkung
Schrittweite (bei Veränderung durch Anhebung / Absen- kung)	1,00% • <u>2,00%</u> • 5,00% • 10,00%

Unabhängig von der Art der Grenzwertvorgabe stellen Sie die Hysterese ein.

Hysterese des Grenzwertes in %	0 50; <u>20</u>
(relativ zum Grenzwert)	_

Schaltausgang

Stellen Sie das Verhalten des Schaltausgangs bei Grenzwert-Über-/Unterschreitung ein. Die Schaltverzögerung des Ausgangs kann über Objekte oder direkt als Parameter eingestellt werden.

Ausgang ist bei (GW = Grenzwert)	• GW über = 1 GW - Hyst. unter = 0 • GW über = 0 GW - Hyst. unter = 1 • GW unter = 1 GW + Hyst. über = 0 • GW unter = 0 GW + Hyst. über = 1
Verzögerung über Objekte einstellbar (in Sekunden)	<u>Nein</u> • Ja
Schaltverzögerung von 0 auf 1 (wenn Verzögerung über Objekte einstell- bar: bis zur 1. Kommunikation)	<u>keine</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Schaltverzögerung von 1 auf 0 (wenn Verzögerung über Objekte einstell- bar: bis zur 1. Kommunikation)	<u>keine</u> • 1 s • 2 s • 5 s • 10 s • • 2 h

Schaltausgang sendet	 bei Änderung bei Änderung auf 1 bei Änderung auf 0 bei Änderung und zyklisch bei Änderung auf 1 und zyklisch bei Änderung auf 0 und zyklisch
Sendezyklus (nur wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • 30 s • 2 h

Sperre

Der Schaltausgang kann durch ein Objekt gesperrt werden.

Sperrung des Schaltausgangs verwenden	<u>Nein</u> • Ja

Wenn die Sperre aktiviert ist, machen Sie hier Vorgaben für das Verhalten des Ausgangs während der Sperre.

Auswertung des Sperrobjekts	Bei Wert 1: sperren Bei Wert 0: freigeben Bei Wert 0: sperren Bei Wert 1: freigeben
Sperrobjektwert vor 1. Kommunikation	<u>0</u> • 1
Verhalten des Schaltausgangs	
Beim Sperren	kein Telegramm senden 0 senden 1 senden
Beim Freigeben (mit 2 Sekunden Freigabeverzögerung)	[Abhängig von Einstellung bei "Schaltausgang sendet"]

Das Verhalten des Schaltausgangs beim Freigeben ist abhängig vom Wert des Parameters "Schaltausgang sendet" (siehe "Schaltausgang")

Schaltausgang sendet bei Änderung	kein Telegramm sendenStatus des Schaltausgangs senden
Schaltausgang sendet bei Änderung auf 1	 kein Telegramm senden wenn Schaltausgang = 1 → sende 1
Schaltausgang sendet bei Änderung auf 0	 kein Telegramm senden wenn Schaltausgang = 0 → sende 0
Schaltausgang sendet bei Änderung und zyklisch	sende Status des Schaltausgangs
Schaltausgang sendet bei Änderung auf 1 und zyklisch	wenn Schaltausgang = 1 →sende 1
Schaltausgang sendet bei Änderung auf 0 und zyklisch	wenn Schaltausgang = 0 →sende 0

6.8. Feuchte-PI-Regelung

Wenn Sie die Feuchtigkeits-Regelung aktivieren, können Sie im Folgenden Einstellungen zu Regelungsart, Sollwerten, Befeuchten und Entfeuchten vornehmen.

Feuchte-Regelung verwenden	<u>Nein</u> • Ja
----------------------------	------------------

Regelung allgemein

Mit dem Sensor KNX AQS/TH-UP Touch CH kann eine ein- oder zweistufige Entfeuchtung oder eine kombinierte Be-/Entfeuchtung geregelt werden.

3. 3	Einstufenentfeuchten Zweistufenentfeuchten
	Befeuchten und Entfeuchten

Konfigurieren Sie die Sperrung der Feuchteregelung durch das Sperrobjekt.

Verhalten des Sperrobjekts bei Wert	• 1 = Regelung sperren 0 = Regelung frei- geben • 0 = Regelung sperren 1 = Regelung frei- geben
Wert des Sperrobjekts vor 1. Kommunikation	<u>0</u> • 1

Stellen Sie ein, wann die aktuellen Stellgrößen der Regelung auf den Bus gesendet werden. Das zyklische Senden bietet mehr Sicherheit falls ein Telegramm nicht beim Empfänger ankommt. Auch eine zyklische Überwachung durch einen Aktor kann damit eingerichtet werden.

Stellgrößen senden	bei Änderungbei Änderung und zyklisch
Ab Änderung von (in % absolut)	1 20, <u>2</u>
Sendezyklus (nur wenn zyklisch gesendet wird)	5 s • • <u>5 min</u> • • 2 h

Das Statusobjekt gibt den aktuellen Zustand des Ausgangs Stellgröße aus (0 = AUS, >0 = EIN) und kann beispielsweise zur Visualisierung genutzt werden.

Statusobjekt/e sendet/senden	 bei Änderung bei Änderung auf 1 bei Änderung auf 0 bei Änderung und zyklisch bei Änderung auf 1 und zyklisch bei Änderung auf 0 und zyklisch
Sendezyklus (nur wenn zyklisch gesendet wird)	5 s • • <u>5 min</u> • • 2 h

Regler-Sollwert

Stellen Sie ein, in welchen Fällen der per Objekt empfangene **Sollwert** erhalten bleiben soll. Beachten Sie, dass die Einstellung "nach Spannungswiederkehr und Programmierung" nicht für die Erstinbetriebnahme verwendet werden sollte, da bis zur 1. Kommunikation stets die Werkseinstellungen verwendet werden (Einstellung über Objekte wird ignoriert).

Bei der Erstinbetriebnahme muss ein **Sollwert** vorgegeben werden, der bis zur 1. Kommunikation eines neuen Sollwerts gültig ist. Bei bereits in Betrieb genommenem Gerät kann der zuletzt kommunizierte Sollwert verwendet werden. Grundsätzlich wird ein Luftfeuchtebereich vorgegeben in dem der Sollwert verändert werden kann (**Objektwertbegrenzung**).

Geben Sie vor, wie der Sollwert vom Bus empfangen wird. Es kann ein neuer Wert empfangen werden oder nur ein Befehl zum Anheben oder Absenken.

Ein gesetzter Sollwert bleibt solange erhalten, bis ein neuer Wert oder eine Änderung übertragen wird. Der aktuelle Wert wird gespeichert, damit er bei Spannungsausfall erhalten bleibt und bei Rückkehr der Betriebsspannung wieder zur Verfügung steht.

Sollwertvorgabe per Parameter:

Stellen Sie Sollwert und Hysterese direkt ein.

Kommunikationsobjekte

Sollwertvorgabe per Kommunikationsobjekt:

Sollwertvorgabe per	Parameter • Kommunikationsobjekt
Der zuletzt kommunizierte Wert soll erhalten bleiben	<u>nicht</u> nach Spannungswiederkehr nach Spannungswiederkehr und Programmierung
Start Sollwert in % gültig bis zur 1. Kommunikation (nicht bei Speicherung des Sollwerts nach Programmierung)	0 100; <u>50</u>
Objektwertbegrenzung (min) in %	0100; <u>40</u>
Objektwertbegrenzung (max) in %	0100; <u>60</u>
Art der Sollwertveränderung	Absolutwert • Anhebung / Absenkung
Schrittweite (bei Veränderung durch Anhebung / Absen- kung)	1,00% • 2,00% • <u>5,00%</u> • 10,00%

Bei der Regelungsart "Befeuchten und Entfeuchten" wird eine Totzone vorgegeben, damit eine direkte Umschaltung von Befeuchten zu Entfeuchten vermieden werden kann.

Totzone zwischen Be- und Entfeuchten in %	050; <u>15</u>
(nur wenn be- UND entfeuchtet wird)	

Die Befeuchtung beginnt wenn die relative Luftfeuchtigkeit kleiner oder gleich ist wie Sollwert - Totzonenwert.

Entfeuchtung bzw. Befeuchtung

Je nach Regelungsart erscheinen Einstellungsabschnitte für Befeuchten und Entfeuchten (1./2. Stufe).

Beim Zweistufenentfeuchten muss die Sollwertdifferenz zwischen beiden Stufen vorgegeben werden, d. h. ab welcher Sollwertunterschreitung die 2. Stufe zugeschaltet wird.

Sollwertdifferenz zwischen 1. und 2. Stufe in %	050; <u>15</u>
(nur bei Stufe 2)	

Geben Sie vor, bei welcher Abweichung vom Sollwert die maximale Stellgröße erreicht wird, d. h. ab wann die maximale Leistung verwendet wird.

Die Nachstellzeit gibt an, wie schnell die Regelung auf Sollwertabweichungen reagiert. Bei einer kleinen Nachstellzeit reagiert die Regelung mit einem schnellen Anstieg der Stellgröße. Bei einer großen Nachstellzeit reagiert die Regelung sanfter und benötigt länger bis die für die Sollwertabweichung erforderliche Stellgröße erreicht ist.

Hier sollte eine an das Be-/Entfeuchtungssystem angepasste Zeit eingestellt werden (Herstellerangaben beachten).

Maximale Stellgröße wird erreicht bei Soll-/lst-Differenz von %	150; <u>5</u>
Nachstellzeit in Minuten	1255; <u>3</u>

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Beim Freigeben folgt die Stellgröße wieder der Regelung.

,	nicht gesendet werden einen bestimmten Wert senden
Wert in % (wenn ein Wert gesendet wird)	<u>0</u> 100

6.9. Taupunkttemperatur

Der **Sensor KNX AQS/TH-UP Touch CH** errechnet die Taupunkttemperatur und gibt den Wert auf den Bus aus.

Taupunkttemperatur verwenden	<u>Nein</u> • Ja
Taupunkttemperatur sendet	 nicht zyklisch bei Änderung bei Änderung und zyklisch

Ab Änderung von (wenn bei Änderung gesendet wird)	<u>0,1°C</u> • 0,2°C • 0,5°C • 1,0°C • 2,0°C • 5,0°C
Sendezyklus (wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • 30 s • 1 min • • 2 h

Aktivieren Sie die Überwachung der Kühlmediumtemperatur, falls benötigt. Das Menüs für die weitere Einstellung der Überwachung wird daraufhin angezeigt.

Überwachung der Kühlmediumtemperatur	Nein • Ja
verwenden	

6.9.1. Kühlmediumtemperatur Überwachung

Für die Temperatur des Kühlmediums kann ein Grenzwert eingestellt werden, der sich an der aktuellen Taupunkttemperatur orientiert (Offset/Abweichung). Der Schaltausgang der Kühlmediumtemperatur-Überwachung kann vor Kondenswasserbildung im System warnen bzw. geeignete Gegenmaßnahmen aktivieren.

Grenzwert

Grenzwert = Taupunkttemperatur + Offset

Stellen Sie ein, in welchen Fällen der per Objekt empfangene **Offset** erhalten bleiben soll. Beachten Sie, dass die Einstellung "nach Spannungswiederkehr und Programmierung" nicht für die Erstinbetriebnahme verwendet werden sollte, da bis zur 1. Kommunikation stets die Werkseinstellungen verwendet werden (Einstellung über Objekte wird ignoriert).

Der zuletzt eingestellte Offset soll erhalten bleiben	nicht nach Spannungswiederkehr
	nach Spannungswiederkehr und
	Programmierung

Bei der Erstinbetriebnahme muss ein **Offset** vorgegeben werden, der bis zur 1. Kommunikation eines neuen Offsets gültig ist. Bei bereits in Betrieb genommenem Gerät kann der zuletzt kommunizierte Offset verwendet werden.

Ein gesetzter Offset bleibt solange erhalten, bis ein neuer Wert oder eine Änderung übertragen wird. Der aktuelle Wert wird gespeichert, damit er bei Spannungsausfall erhalten bleibt und bei Rückkehr der Betriebsspannung wieder zur Verfügung steht.

Offset in °C (gültig bis zur 1. Kommunikation)	020; <u>3</u>
Schrittweite für Offsetveränderung per Kommunikationsobjekt	0,1°C • 0,2°C • 0,3°C • 0,4°C • 0,5°C • <u>1°C</u> • 2°C • 3°C • 4°C • 5°C
Hysterese des Grenzwertes in %	0 50; <u>20</u>
Grenzwert sendet	nichtzyklischbei Änderungbei Änderung und zyklisch

Ab Änderung von (wenn bei Änderung gesendet wird)	<u>0,1°C</u> • 0,2°C • 0,5°C • 1,0°C • 2,0°C • 5,0°C
Sendezyklus (wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • 30 s • 1 min • • 2 h

Schaltausgang

Die Schaltverzögerung des Ausgangs kann über Objekte oder direkt als Parameter eingestellt werden.

Ausgang ist bei (GW = Grenzwert)	• GW über = 1 GW - Hyst. unter = 0 • GW über = 0 GW - Hyst. unter = 1 • GW unter = 1 GW + Hyst. über = 0 • GW unter = 0 GW + Hyst. über = 1
Verzögerung über Objekte einstellbar (in Sekunden)	<u>Nein</u> • Ja
Schaltverzögerung von 0 auf 1 bei Einstellung über Objekt: gültig bis zur 1. Kommunikation	<u>keine</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Schaltverzögerung von 1 auf 0 bei Einstellung über Objekt: gültig bis zur 1. Kommunikation	<u>keine</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Schaltausgang sendet	 bei Änderung bei Änderung auf 1 bei Änderung auf 0 bei Änderung und zyklisch bei Änderung auf 1 und zyklisch bei Änderung auf 0 und zyklisch
Sendezyklus (nur wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • 30 s • 2 h

Sperrung

Der Schaltausgang kann durch ein Objekt gesperrt werden. Machen Sie hier Vorgaben für das Verhalten des Ausgangs während der Sperre.

Sperrung des Schaltausgangs verwenden	<u>Nein</u> • Ja
Auswertung des Sperrobjekts	Bei Wert 1: sperren Bei Wert 0: freigeben Bei Wert 0: sperren Bei Wert 1: freigeben
Sperrobjektwert vor 1. Kommunikation	<u>0</u> • 1
Verhalten des Schaltausgangs	
Beim Sperren	kein Telegramm senden 0 senden 1 senden
Beim Freigeben (mit 2 Sekunden Freigabeverzögerung)	[Abhängig von Einstellung bei "Schaltausgang sendet"]

Das Verhalten des Schaltausgangs beim Freigeben ist abhängig vom Wert des Parameters "Schaltausgang sendet" (siehe "Schaltausgang")

Schaltausgang sendet bei Änderung	kein Telegramm sendenStatus des Schaltausgangs senden
Schaltausgang sendet bei Änderung auf 1	 • kein Telegramm senden • wenn Schaltausgang = 1 → sende 1
Schaltausgang sendet bei Änderung auf 0	 kein Telegramm senden wenn Schaltausgang = 0 → sende 0
Schaltausgang sendet bei Änderung und zyklisch	sende Status des Schaltausgangs
Schaltausgang sendet bei Änderung auf 1 und zyklisch	wenn Schaltausgang = 1 → sende 1
Schaltausgang sendet bei Änderung auf 0 und zyklisch	wenn Schaltausgang = 0 → sende 0

6.10. Absolute Feuchte

Der absolute Feuchtewert der Luft wird vom **KNX AQS/TH-UP Touch CH** erfasst und kann auf den Bus ausgegeben werden.

Absolute Feuchte verwenden	Nein • Ja
Sendeverhalten	 nicht zyklisch bei Änderung bei Änderung und zyklisch
Ab Änderung von (wenn bei Änderung gesendet wird)	0,1 g • 0,2 g • 0,5 g • <u>1,0 g</u> • 2,0 g • 5,0 g
Sendezyklus (wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • 30 s • 2 h

6.11. Behaglichkeitsfeld

Der **Sensor KNX AQS/TH-UP Touch CH** kann ein Telegramm auf den Bus senden, wenn das Behaglichkeitsfeld verlassen wird. Damit kann beispielsweise die Einhaltung der DIN 1946 überwacht werden (Standardwerte) oder auch ein eigenes Behaglichkeitsfeld definiert werden.

Behaglichkeitsfeld verwenden	Nein • Ja
------------------------------	-----------

Sendeverhalten	 bei Änderung bei Änderung auf 1 bei Änderung auf 0 bei Änderung und zyklisch bei Änderung auf 1 und zyklisch bei Änderung auf 0 und zyklisch
Sendezyklus (wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • 30 s • 2 h

Definieren Sie das Behaglichkeitsfeld, indem Sie Minimal- und Maximalwerte für Temperatur und Feuchte angeben. Die angegebenen Standardwert entsprechen der DIN 1946

Maximale Temperatur in °C (Standard 26°C)	25 40; <u>26</u>
Minimale Temperatur in °C (Standard 20°C)	10 21; <u>20</u>
Maximale relative Feuchte in % (Standard 65%)	52 90; <u>65</u>
Minimale relative Feuchte in % (Standard 30%)	10 43; <u>30</u>
Maximale absolute Feuchte in 0,1g/kg (Standard 115 g/kg)	50 200; <u>115</u>

Hysterese der Temperatur: 1°C Hysterese der relative Feuchte: 2% rF Hysterese der absoluten Feuchte: 2 g/kg

6.12. CO₂ Messwert

Wählen Sie (siehe *Allgemeine Einstellungen*, Seite 25), ob ein **Störobjekt** gesendet werden soll, wenn der Sensor defekt ist.

Störobjekt verwenden	<u>Nein</u> • Ja

Mithilfe des Offsets können Sie den zu sendenden Messwert justieren.

Offset in ppm	-100100; <u>0</u>
---------------	-------------------

Das Gerät kann aus dem eigenem Messwert und einem externen Wert einen **Mischwert** berechnen. Stellen Sie falls gewünscht die Mischwertberechnung ein. Wird ein externer Anteil verwendet, beziehen sich alle folgenden Einstellungen (Grenzwerte etc.) auf den Gesamtmesswert.

Externen Messwert verwenden	<u>Nein</u> • Ja
Ext. Messwertanteil am Gesamtmesswert	5% • 10% • • <u>50%</u> • • 100%
Alle folgenden Einstellungen beziehen sich auf den Gesamtmesswert	

Interner und Gesamtmesswert senden	<u>nicht</u> zyklisch bei Änderung bei Änderung und zyklisch
Ab Änderung von (relativ zum letzten Messwert) (wenn bei Änderung gesendet wird)	2% • <u>5%</u> • • 50%
Sendezyklus (wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • • 2 h

Der **maximale Messwert** kann gespeichert und auf den Bus gesendet werden. Mit den Objekten "Reset CO2 Maximalwert" kann der Wert auf den aktuellen Messwert zurückgesetzt werden. Der Werte bleibt nach einem Reset nicht erhalten.

Maximalwert verwenden	<u>Nein</u> • Ja
-----------------------	------------------

6.13. CO₂ Grenzwerte

Aktivieren Sie die benötigten CO₂-Grenzwerte. Die Menüs für die weitere Einstellung der Grenzwerte werden daraufhin angezeigt.

Grenzwert 1/2/3/4 verwenden	Ja • Nein
300 ppm 1000 ppm: frische Luft 1000 ppm 2000 ppm: verbrauchte Luft	
1000 ppm = 0,1%	

6.13.1. Grenzwert 1, 2, 3, 4

Grenzwert

Stellen Sie ein, in welchen Fällen per Objekt empfangenen **Grenzwerte und Verzögerungszeiten** erhalten bleiben sollen. Der Parameter wird nur berücksichtigt, wenn die Einstellung per Objekt weiter unten aktiviert ist. Beachten Sie, dass die Einstellung "nach Spannungswiederkehr und Programmierung" nicht für die Erstinbetriebnahme verwendet werden sollte, da bis zur 1. Kommunikation stets die Werkseinstellungen verwendet werden (Einstellung über Objekte wird ignoriert).

Der Grenzwert kann per Parameter direkt im Applikationsprogramm eingestellt oder per Kommunikationsobjekt über den Bus vorgegeben werden.

Grenzwertvorgabe per Parameter:

Stellen Sie Grenzwert und Hysterese direkt ein.

Grenzwertvorgabe per	Parameter • Kommunikationsobjekte
Grenzwert in ppm	0 5000; <u>1200</u>

Grenzwertvorgabe per Kommunikationsobjekt:

Geben Sie vor, wie der Grenzwert vom Bus empfangen wird. Grundsätzlich kann ein neuer Wert empfangen werden oder nur ein Befehl zum Anheben oder Absenken.

Bei der Erstinbetriebnahme muss ein Grenzwert vorgegeben werden, der bis zur 1. Kommunikation eines neuen Grenzwerts gültig ist. Bei bereits in Betrieb genommenem Gerät kann der zuletzt kommunizierte Grenzwert verwendet werden. Grundsätzlich wird ein Bereich vorgegeben in dem der Grenzwert verändert werden kann (Objektwertbegrenzung).

Ein gesetzter Grenzwert bleibt solange erhalten, bis ein neuer Wert oder eine Änderung übertragen wird. Der aktuelle Wert wird gespeichert, damit er bei Spannungsausfall erhalten bleibt und bei Rückkehr der Betriebsspannung wieder zur Verfügung steht.

Grenzwertvorgabe per	Parameter • Kommunikationsobjekte
Der zuletzt kommunizierte Wert soll erhalten bleiben	<u>nicht</u> nach Spannungswiederkehr nach Spannungswiederkehr und Programmierung
Start Grenzwert in ppm gültig bis zur 1. Kommunikation	0 5000; 1 <u>200</u>
Objektwertbegrenzung (min) in ppm	<u>0</u> 5000
Objektwertbegrenzung (max) in ppm	05000; <u>2000</u>
Art der Grenzwertveränderung	Absolutwert • Anhebung / Absenkung
Schrittweite in ppm (bei Veränderung durch Anhebung / Absen- kung)	1 • 2 • 5 • 10 • <u>20</u> • • 200

Unabhängig von der Art der Grenzwertvorgabe stellen Sie die Hysterese ein.

Hysterese in % des Grenzwerts	0 50; <u>20</u>	
-------------------------------	-----------------	--

Schaltausgang

Stellen Sie das Verhalten des Schaltausgangs bei Grenzwert-Über-/Unterschreitung ein. Die Schaltverzögerung des Ausgangs kann über Objekte oder direkt als Parameter eingestellt werden.

Ausgang ist bei (GW = Grenzwert)	• GW über = 1 GW - Hyst. unter = 0 • GW über = 0 GW - Hyst. unter = 1 • GW unter = 1 GW + Hyst. über = 0 • GW unter = 0 GW + Hyst. über = 1
Verzögerung über Objekte einstellbar (in Sekunden)	<u>Nein</u> • Ja
Schaltverzögerung von 0 auf 1 (wenn Verzögerung über Objekte einstell- bar: bis zur 1. Kommunikation)	<u>keine</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Schaltverzögerung von 1 auf 0 (wenn Verzögerung über Objekte einstell- bar: bis zur 1. Kommunikation)	<u>keine</u> • 1 s • 2 s • 5 s • 10 s • • 2 h

Schaltausgang sendet	 bei Änderung bei Änderung auf 1 bei Änderung auf 0 bei Änderung und zyklisch bei Änderung auf 1 und zyklisch bei Änderung auf 0 und zyklisch
Zyklus (nur wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • 30 s • 2 h

Sperre

Der Schaltausgang kann durch ein Objekt gesperrt werden.

Sperrung des Schaltausgangs verwenden	<u>Nein</u> • Ja

Wenn die Sperre aktiviert ist, machen Sie hier Vorgaben für das Verhalten des Ausgangs während der Sperre.

Auswertung des Sperrobjekts	Bei Wert 1: sperren Bei Wert 0: freigeben Bei Wert 0: sperren Bei Wert 1: freigeben
Sperrobjektwert vor 1. Kommunikation	<u>0</u> • 1
Verhalten des Schaltausgangs	
Beim Sperren	kein Telegramm senden 0 senden 1 senden
Beim Freigeben (mit 2 Sekunden Freigabeverzögerung)	[Abhängig von Einstellung bei "Schaltausgang sendet"]

Das Verhalten des Schaltausgangs beim Freigeben ist abhängig vom Wert des Parameters "Schaltausgang sendet" (siehe "Schaltausgang")

Schaltausgang sendet bei Änderung	kein Telegramm senden Status des Schaltausgangs senden
Schaltausgang sendet bei Änderung auf 1	 kein Telegramm senden wenn Schaltausgang = 1 → sende 1
Schaltausgang sendet bei Änderung auf 0	 kein Telegramm senden wenn Schaltausgang = 0 → sende 0
Schaltausgang sendet bei Änderung und zyklisch	sende Status des Schaltausgangs
Schaltausgang sendet bei Änderung auf 1 und zyklisch	wenn Schaltausgang = 1 →sende 1
Schaltausgang sendet bei Änderung auf 0 und zyklisch	wenn Schaltausgang = 0 →sende 0

6.14. CO₂ PI-Regelung

Wenn Sie die Luftqualitäts-Regelung aktivieren, können Sie im Folgenden Einstellungen zu Regelungsart, Sollwerten und Lüftung vornehmen.

Regelung verwenden	Ja • Nein	
--------------------	-----------	--

Regelung allgemein

Mit dem Sensor KNX AQS/TH-UP Touch CH kann eine ein- oder zweistufige Lüftung geregelt werden.

Art der Regelung	Einstufen Lüftung Zweistufen Lüftung
	2Wolotafori Eartaing

Konfigurieren Sie die Sperrung der Lüftungsregelung durch das Sperrobjekt.

Verhalten des Sperrobjekts bei Wert	• 1 = Regelung sperren 0 = Regelung frei- geben • 0 = Regelung sperren 1 = Regelung frei- geben
Wert des Sperrobjekts vor 1. Kommunikation	<u>0</u> • 1

Stellen Sie ein, wann die aktuellen Stellgrößen der Regelung auf den Bus gesendet werden. Das zyklische Senden bietet mehr Sicherheit falls ein Telegramm nicht beim Empfänger ankommt. Auch eine zyklische Überwachung durch einen Aktor kann damit eingerichtet werden.

Stellgrößen senden	bei Änderungbei Änderung und zyklisch
ab Änderung von (in ppm)	120; <u>2</u>
Sendezyklus (wenn zyklisch gesendet wird)	5 s • • <u>5 min</u> • • 2 h

Das Statusobjekt gibt den aktuellen Zustand des Ausgangs Stellgröße aus (0 = AUS, >0 = EIN) und kann beispielsweise zur Visualisierung genutzt werden.

Statusobjekt/e sendet/senden	 bei Änderung bei Änderung auf 1 bei Änderung auf 0 bei Änderung und zyklisch bei Änderung auf 1 und zyklisch bei Änderung auf 0 und zyklisch
Zyklus (wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • • 2 h

Regler-Sollwert

Der Sollwert kann per Parameter direkt im Applikationsprogramm eingestellt werden oder per Kommunikationsobjekt über den Bus vorgegeben werden.

Sollwertvorgabe per Parameter:

Stellen Sie den Sollwert direkt ein.

Sollwertvorgabe per	Parameter • Kommunikationsobjekte
Sollwert in ppm	3005000; <u>800</u>

Sollwertvorgabe per Kommunikationsobjekt:

Geben Sie vor, wie der Sollwert vom Bus empfangen wird. Grundsätzlich kann ein neuer Wert empfangen werden oder nur ein Befehl zum Anheben oder Absenken.

Bei der Erstinbetriebnahme muss ein Sollwert vorgegeben werden, der bis zur 1. Kommunikation eines neuen Sollwerts gültig ist. Bei bereits in Betrieb genommenem Gerät kann der zuletzt kommunizierte Sollwert verwendet werden. Grundsätzlich wird ein Luftfeuchtebereich vorgegeben in dem der Sollwert verändert werden kann (Objektwertbegrenzung).

Ein gesetzter Sollwert bleibt solange erhalten, bis ein neuer Wert oder eine Änderung übertragen wird. Der aktuelle Wert wird gespeichert, damit er bei Spannungsausfall erhalten bleibt und bei Rückkehr der Betriebsspannung wieder zur Verfügung steht.

Sollwertvorgabe per	Parameter • Kommunikationsobjekte
Der zuletzt kommunizierte Wert soll erhalten bleiben	<u>nicht</u> nach Spannungswiederkehr nach Spannungswiederkehr und Programmierung
Start-Sollwert in ppm gültig bis zur 1. Kommunikation (nicht bei Speicherung des Sollwerts nach Programmierung)	300 5000; <u>800</u>
Objektwertbegrenzung (min) in ppm	3005000; <u>400</u>
Objektwertbegrenzung (max) in ppm	3005000; <u>1500</u>
Art der Sollwertveränderung	Absolutwert • Anhebung / Absenkung
Schrittweite in ppm (bei Veränderung durch Anhebung / Absen- kung)	1 • 2 • 5 • • <u>20</u> • • 100 • 200

Lüftungsregelung

Je nach Regelungsart erscheinen ein bzw. zwei Einstellungsabschnitte für die Lüftungs-Stufen.

Beim Zweistufenlüften muss die Sollwertdifferenz zwischen beiden Stufen vorgegeben werden, d. h. ab welcher Sollwertüberschreitung die 2. Stufe zugeschaltet wird.

Sollwertdifferenz zwischen 1. und 2. Stufe	1004000; <u>400</u>
in ppm	
(nur bei Stufe 2)	

Geben Sie vor, bei welcher Abweichung vom Sollwert die maximale Stellgröße erreicht wird, d. h. ab wann die maximale Leistung verwendet wird.

Die Nachstellzeit gibt an, wie schnell die Regelung auf Sollwertabweichungen reagiert. Bei einer kleinen Nachstellzeit reagiert die Regelung mit einem schnellen Anstieg der Stellgröße. Bei einer großen Nachstellzeit reagiert die Regelung sanfter und benötigt länger bis die für die Sollwertabweichung erforderliche Stellgröße erreicht ist. Hier sollte eine an das Lüftungssystem angepasste Zeit eingestellt werden (Herstellerangaben beachten).

Maximale Stellgröße wird erreicht bei Soll-/lst-Differenz von (in ppm)	<u>100</u> 2000
Nachstellzeit in Minuten Stufe 1	1255; <u>30</u>
Nachstellzeit in Minuten Stufe 2	1255; <u>10</u>

Geben Sie nun noch vor, was bei gesperrter Regelung gesendet wird. Beim Freigeben folgt die Stellgröße wieder der Regelung.

Bei Sperren soll Stellgröße	• <u>nichts senden</u> • <u>einen Wert senden</u>
Wert in % (wenn ein Wert gesendet wird)	<u>0</u> 100

6.15. Stellgrößenvergleicher

Durch die integrierten Stellgrößenvergleicher können Maximal-, Minimal- und Mittelwerte ausgegeben werden.

Vergleicher 1/2 verwenden	Nein • Ja
---------------------------	-----------

6.15.1. Stellgrößenvergleicher 1/2

Legen Sie fest, was der Stellgrößenvergleicher ausgeben soll und aktivieren Sie die zu verwendenden Eingangsobjekte. Zudem können Sendeverhalten und Sperre eingestellt werden.

Ausgang liefert	Maximalwert Minimalwert Mittelwert
Eingang 1 / 2 / 3 / 4 / 5 verwenden	Nein • Ja
Ausgang sendet	bei Änderung des Ausgangs bei Änderung des Ausgangs und zyklisch bei Empfang eines Eingangsobjektes bei Empfang eines Eingangsobjektes und zyklisch
Ab Änderung von (wenn bei Änderung gesendet wird)	<u>1%</u> • 2% • 5% • 10% • 20% • 25%
Sendezyklus (wenn zyklisch gesendet wird)	5 s • 10 s • 30 s • • <u>5 min</u> • • 2 h
Auswertung des Sperrobjekts	• bei Wert 1: sperren bei Wert 0: freigeben • bei Wert 0: sperren bei Wert 1: freigeben
Wert des Sperrobjekts vor 1. Kommunikation	<u>0</u> • 1

Verhalten des Schaltausgangs	
Beim Sperren	<u>kein Telegramm senden</u> Wert senden
Gesendeter Wert in %	0 100
beim Freigeben sendet Ausgang (mit 2 Sekunden Freigabeverzögerung)	den aktuellen Wert den aktuellen Wert nach Empfang eines Objekts

6.16. Logik

Das Gerät stellt 16 Logikeingänge, vier UND- und vier ODER-Logikgatter zur Verfügung.

Aktivieren Sie die Logikeingänge und weisen Sie Objektwerte bis zur 1. Kommunikation zu.

Logikeingänge verwenden	Ja • <u>Nein</u>
Objektwert vor 1. Kommunikation für	
- Logikeingang 1	<u>0</u> • 1
- Logikeingang	<u>0</u> • 1
- Logikeingang 16	<u>0</u> • 1

Aktivieren Sie die benötigten Logikausgänge.

UND Logik

UND Logik 1	nicht aktiv • aktiv
UND Logik	nicht aktiv • aktiv
UND Logik 4	nicht aktiv • aktiv

ODER Logik

ODER Logik 1	nicht aktiv • aktiv
ODER Logik	nicht aktiv • aktiv
ODER Logik 4	nicht aktiv • aktiv

6.16.1. UND Logik 1-4 und ODER Logik 1-4

Für die UND- und die ODER-Logik stehen die gleichen Einstellungsmöglichkeiten zur Verfügung.

Jeder Logikausgang kann ein 1 Bit- oder zwei 8 Bit-Objekte senden. Legen Sie jeweils fest was der Ausgang sendet bei Logik = 1 und = 0.

1. / 2. / 3. / 4. Eingang	nicht verwenden Logikeingang 116 Logikeingang 116 invertiert sämtliche Schaltereignisse, die das Gerät zur Verfügung stellt (siehe Kapitel Verknüpfungseingänge der UND bzw. ODER Logik)
Ausgangsart	• <u>ein 1 Bit-Objekt</u> • zwei 8 Bit-Objekte

Wenn die **Ausgangsart ein 1 Bit-Objekt** ist, stellen Sie die Ausgangswerte für verschiedenen Zustände ein.

Ausgangswert wenn Logik = 1	<u>1</u> •0
Ausgangswert wenn Logik = 0	1 • <u>0</u>

Wenn die **Ausgangsart zwei 8 Bit-Objekte** sind, stellen Sie Objektart und die Ausgangswerte für verschiedenen Zustände ein.

Objektart	• Wert (0255) • Prozent (0100%) • Winkel (0360°) • Szenenaufruf (0127)
Ausgangswert Objekt A wenn Logik = 1	<u>0</u> 255 / 100% / 360° / 127
Ausgangswert Objekt B wenn Logik = 1	<u>0</u> 255 / 100% / 360° / 127
Ausgangswert Objekt A wenn Logik = 0	<u>0</u> 255 / 100% / 360° / 127
Ausgangswert Objekt B wenn Logik = 0	<u>0</u> 255 / 100% / 360° / 127

Stellen Sie das Sendeverhalten des Ausgangs ein.

Sendeverhalten	 bei Änderung der Logik bei Änderung der Logik auf 1 bei Änderung der Logik auf 0 bei Änderung der Logik und zyklisch bei Änderung der Logik auf 1 und zyklisch bei Änderung der Logik auf 0 und zyklisch bei Änderung der Logik +Objektempfang bei Änderung der Logik +Objektempfang und zyklisch
Sendezyklus (wenn zyklisch gesendet wird)	<u>5 s</u> • 10 s • • 2 h

Sperrung

Aktivieren Sie bei Bedarf die Sperre des Logikausgangs und stellen Sie ein, was eine 1 bzw. 0 am Sperreingang bedeutet und was beim Sperren geschieht.

Auswertung des Sperrobjekts	Bei Wert 1: sperren Bei Wert 0: freigeben Bei Wert 0: sperren Bei Wert 1: freigeben	
Sperrobjektwert vor 1. Kommunikation	<u>0</u> • 1	
Verhalten des Schaltausgangs		
beim Sperren	 kein Telegramm senden Wert für Logik = 0 senden Wert für Logik = 1 senden 	
beim Freigeben (mit 2 Sekunden Freigabeverzögerung)	• kein Telegramm senden • wenn Logik = 1> sende Wert für 1	

6.16.2. Verknüpfungseingänge der UND Logik

nicht verwenden

Logikeingang 1

Logikeingang 1 invertiert

Logikeingang 2

Logikeingang 2 invertiert

Logikeingang 3

Logikeingang 3 invertiert

Logikeingang 4

Logikeingang 4 invertiert

Logikeingang 5

Logikeingang 5 invertiert

Logikeingang 6

Logikeingang 6 invertiert

Logikeingang 7

Logikeingang 7 invertiert

Logikeingang 8

Logikeingang 8 invertiert

Logikeingang 9

Logikeingang 9 invertiert

Logikeingang 10

Logikeingang 10 invertiert

Logikeingang 11

Logikeingang 11 invertiert

Logikeingang 12

Logikeingang 12 invertiert

Logikeingang 13

Logikeingang 13 invertiert

Logikeingang 14

Logikeingang 14 invertiert

Logikeingang 15

Logikeingang 15 invertiert

Logikeingang 16

Logikeingang 16 invertiert

Temperatur-/Feuchtesensor Störung =EIN

Temperatur-/Feuchtesensor Störung = AUS

CO2 Sensor Störung EIN

CO2 Sensor Störung AUS

Schaltausgang 1 Temperatur

Schaltausgang 1 Temperatur invertiert

Schaltausgang 2 Temperatur

Schaltausgang 2 Temperatur invertiert

Schaltausgang 3 Temperatur

Schaltausgang 3 Temperatur invertiert

Temperaturregler Komfort aktiv

Temperaturregler Komfort inaktiv

Temperaturregler Eco aktiv

Temperaturregler Eco inaktiv

Temperaturregler Standby aktiv

Temperaturregler Standby inaktiv

Temperaturregler Frost/Hitze aktiv

Temperaturregler Frost/Hitze inaktiv Temperaturregler Status Heizung 1

Temperaturregler Status Heizung 1 invertiert

Temperaturregler Status Heizung 2

Temperaturregler Status Heizung 2 invertiert

Temperaturregler Status Kühlung 1

Temperaturregler Status Kühlung 1 invertiert

Temperaturregler Status Kühlung 2

Temperaturregler Status Kühlung 2 invertiert

Schaltausgang 1 Feuchte

Schaltausgang 1 Feuchte invertiert

Schaltausgang 2 Feuchte

Schaltausgang 2 Feuchte invertiert

Feuchte Regler Status Entfeuchtung 1

Feuchte Regler Status Entfeuchtung 1 invertiert

Feuchte Regler Status Entfeuchtung 2

Feuchte Regler Status Entfeuchtung 2 invertiert

Feuchteregler Status Befeuchtung

Feuchteregler Status Befeuchtung invertiert

Schaltausgang Kühlmediumtemperatur

Schaltausgang Kühlmediumtemperatur invertiert

Raumklima Status

Raumklima Status invertiert

Schaltausgang 1 CO2

Schaltausgang 1 CO2 invertiert

Schaltausgang 2 CO2

Schaltausgang 2 CO2 invertiert

Schaltausgang 3 CO2

Schaltausgang 3 CO2 invertiert

Schaltausgang 4 CO2

Schaltausgang 4 CO2 invertiert

CO2 Regler Status Belüftung 1

CO2 Regler Status Belüftung 1 invertiert

CO2 Regler Status Belüftung 2

CO2 Regler Status Belüftung 2 invertiert

6.16.3. Verknüpfungseingänge der ODER Logik

Die Verknüpfungseingänge der ODER Logik entsprechen denen der UND Logik. Zusätzlich stehen der ODER Logik die folgenden Eingänge zur Verfügung:

Schaltausgang UND Logik 1

Schaltausgang UND Logik 1 invertiert

Schaltausgang UND Logik 2

Schaltausgang UND Logik 2 invertiert

Schaltausgang UND Logik 3

Schaltausgang UND Logik 3 invertiert

Schaltausgang UND Logik 4

Schaltausgang UND Logik 4 invertiert

6.17. Display

Passen Sie hier die Einstellungen für das Display an.

Displaybeleuchtung verwenden	Nein • Ja
Helligkeit in % bis zur 1. Kommunikation	0 255; <u>100</u>
Beleuchtung	<u>immer an</u> • nur An bei Bedienung
Ausschaltverzögerung nach Bedienung bis zur 1. Kommunikation (in Sekunden)	1 600; <u>10</u>
Speicherung von Helligkeit und Ausschaltverzögerung	<u>nicht</u> nach Spannungswiederkehr nach Spannungswiederkehr und Programmierung

Stellen Sie Kontrast und die Anzahl der Zeilen ein, sowie die Art der Temperatursollwert-Anzeige.

Objekt "Display Kontrast" verwenden	<u>Nein</u> • Ja
Anzeigemodus	zwei Zeilen (mit optionaler Temp.reg- leranzeige) drei Zeilen (mit optionaler Temp.regleran- zeige) Temperaturregler permanent
Temperaturregleranzeige bei Tastendruck verwenden	<u>Nein</u> • Ja
nur möglich, wenn die Taster zur Temperaturregelung verwendet werden	

Art der Temperatursollwert-Anzeige	Sollwert aktuell Basissollwert Basissollwert als Bargraph Basissollwert als Bargraph mit Zahl Basissollwert als Bargraph mit Bereich Basissollwert als Bargraph mit Bereich und Zahl
Anzeigedauer in Sekunden für Temperaturregleranzeige	2240; <u>5</u>

Wählen Sie, ob Sie die Rücksprungfreigabe verwenden möchten.

Objekt "Rücksprungfreigabe" verwenden	Nein • Ja
Objektauswertung	• 1 = Rücksprung erlauben 0 = Rücksprung nicht erlauben • 0 = Rücksprung erlauben 1 = Rücksprung nicht erlauben
Objektwert vor erster Kommunikation	0 • <u>1</u>

Wählen Sie, ob Eingangsobjekte verwendet werden sollen.

Eingangsobjekte verwenden	<u>Nein</u> • Ja
---------------------------	------------------

Stellen Sie ein, was als Displayanzeige erscheinen soll.

Inhalt Zeile 1 (kleine Schrift)	nichts anzeigen Temperatur intern andere Auswahlmöglichkeiten
Inhalt Zeile 2 (große Schrift)	nichts anzeigen CO2 Messwert intern andere Auswahlmöglichkeiten
Inhalt Zeile 3 (kleine Schrift)	nichts anzeigen relative Feuchte intern andere Auswahlmöglichkeiten

In der folgenden Tabelle finden Sie eine Auflistung mit den anderen Auswahlmöglichkeiten.

Liste mit anderen Auswahlmöglichkeiten:

Temperatur extern Temperatur gesamt Temperaturregler-Sollwert aktuell Taupunkttemperatur relative Feuchte extern relative Feuchte gesamt absolute Feuchte g/kg absolute Feuchte g/m³ CO ₂ Messwert extern CO ₂ Messwert gesamt	
Datum (Nicht bei Zeile 2!) Uhrzeit	
Wert des 8 Bit-Objektes 1 Wert des 8 Bit-Objektes 2 Wert des 8 Bit-Objektes 3	Einheit des 8 Bit-Wertes: • ohne [0 255] • Prozent [0% 100%] • Grad [0° 360°]
Wert des 16 Bit-Objektes 1 Wert des 16 Bit-Objektes 2 (Nicht bei Zeile 2!)	Einheit des 16 Bit-Wertes: ohne C (Grad Celsius) lux m/s (Meter pro Sekunde) Pa (Pascal) bar mbar (Millibar) % rF (% relative Feuchte) ppm (parts per Million) s (Sekunde) ms (Millisekunde) v (Vott) MV (Millivolt) A (Ampere) mA (Milliampere) W (Watt) mW (Milliwatt) W/m² (Watt pro Quadratmeter) w/h (Watt pro Stunde) ltr (Liter) ltr/h (Liter pro Stunde) m (Meter) mm (Millimeter)
Textnachricht 1 Textnachricht 2 (Nicht bei Zeile 2!)	Anzeigedauer der Nachricht: • bis neue Nachricht vorhanden • max. 1 Minute • • max. 60 Minuten

6.18. Taster

Passen Sie hier die Tastereinstellungen an.

6.18.1. Taster zur Temperaturregelung

Taster verwenden	als Tasterschnittstelle zur Temperaturregelung
Tastenfunktionen	Linke Taste (kurz)> Solltemperatur minus Rechte Taste (kurz)> Solltemperatur plus
	Linke Taste (länger 2 Sekunden)> Modusumschaltung
	Rechte Taste (länger 2 Sekunden)>
	Modusumschaltung
	Werden beide Tasten im Eco-Modus länger als 2 Sekunden gedrückt, wird der Komfort- Modus für die Dauer der eingestellten Zeit aktiviert.
Folgende Modi können per Taster ausgewählt werden:	
Komfort	Nein • <u>Ja</u>
Standby	Nein • <u>Ja</u>
Eco	Nein • <u>Ja</u>
Gebäudeschutz	Nein • Ja

6.18.2. Taster als Tasterschnittstelle

Wählen Sie, ob Sie den Taster als Tasterschnittstelle verwenden möchten und stellen Sie die Funktion ein.

Tasterschnittstelle 1/2 verwenden	<u>Nein</u> • Ja
Funktionen	• Schalter
	Umschalter
	Jalousie
	Rollladen
	Markise
	Fenster
	Dimmer
	8-Bit-Wertgeber
	• 16-Bit-Wertgeber
	Szenenaufruf

Stellen Sie ein, was beim Drücken der Taste passieren soll.

Befehl beim Drücken der Taste	0 senden 1 senden kein Telegramm senden
Befehl beim Loslassen der Taste	0 senden 1 senden kein Telegramm senden
Wert senden	 bei Änderung bei Änderung auf 1 bei Änderung auf 0 bei Änderung und zyklisch bei Änderung auf 1 und zyklisch bei Änderung auf 0 und zyklisch
Sendezyklus (wenn zyklisch gesendet wird)	5 s • • <u>1 min •</u> • 2 h

Tasterschnittstelle als Umschalter

Befehl beim Drücken der Taste	Umschalten kein Telegramm senden
Befehl beim Loslassen der Taste	Umschalten kein Telegramm senden

Tasterschnittstelle als Jalousie

Befehl	• Auf • Ab
Steuermodus	Standard Standard invertiert Komfortmodus
	Komfortmodus Totmannschaltung

Standard:

Verhalten bei Tasterbetätigung (Auf): kurz = Stopp/Schritt lang = Auf	
Verhalten bei Tasterbetätigung (Ab): kurz = Stopp/Schritt lang = Ab	
Zeit zwischen kurz und lang (0,1 s) 0 50; <u>10</u>	

Standard invertiert:

Verhalten bei Tasterbetätigung (Auf): lang = Stopp/Schritt kurz = Auf Verhalten bei Tasterbetätigung (Ab): kurz = Stopp/Schritt lang = Ab	
Zeit zwischen kurz und lang (0,1 s)	0 50; <u>10</u>
Wiederholung des Schrittbefehls bei langem Tastendruck (Bei Befehl Auf)	keine • alle 0,1 s • • <u>alle 0,5 s •</u> • alle 2 s

Komfortmodus:

Taster wird gedrückt und	
vor Ablauf Zeit 1 losgelassen	Stopp/Schritt
länger als Zeit 1 gehalten	Auf/Ab
zwischen Zeit 1 und 1 + 2 losgelassen	Stopp
nach Zeit 1 + 2 losgelassen	kein Stopp mehr
Zeit 1 (in 0,1 s)	0 50; <u>4</u>
Zeit 2 (in 0,1 s)	0 50; 20

Totmannschaltung:

Taster drücken	Ab-Befehl
Taster Ioslassen	Stopp-Befehl

Tasterschnittstelle als Rollladen

Befehl	• <u>Auf</u> • <u>Ab</u> • Auf/Ab
Steuermodus	Standard Standard invertiert Komfortmodus Totmannschaltung

Standard:

Verhalten bei Tasterbetätigung (Auf): kurz = Stopp lang = Auf		
Verhalten bei Tasterbetätigung (Ab): kurz = Stopp lang = Ab		
Verhalten bei Tasterbetätigung (Auf/Ab): kurz = Stopp lang = Auf/Ab		
Zeit zwisch	en kurz und lang (0,1 s)	0 50; <u>10</u>

Standard invertiert:

Verhalten bei Tasterbetätigung (Auf): lang = Stopp kurz = Auf	
Verhalten bei Tasterbetätigung (Ab): kurz = Stopp lang = Ab	
Verhalten bei Tasterbetätigung (Auf/Ab): kurz = Stopp lang = Auf/Ab	
Zeit zwischen kurz und lang (0,1 s)	0 50; <u>10</u>
Wiederholung des Schrittbefehls bei langem Tastendruck (nur bei Auf)	keine • alle 0,1 s • • <u>alle 0,5 s</u> • • alle 2 s

Komfortmodus:

Taster wird gedrückt	
vor Ablauf Zeit 1 losgelassen länger als Zeit 1 gehalten zwischen Zeit 1 und 1 + 2 losgelassen nach Zeit 1 + 2 losgelassen	Stopp Auf Ab Auf/Ab Stopp kein Stopp mehr
Zeit 1 (in 0,1 s)	0 50; <u>4</u>
Zeit 2 (in 0,1 s)	0 50; <u>20</u>

Totmannschaltung:

Taster drücken	Auf- Ab- Auf/Ab-Befehl
Taster loslassen	Stopp-Befehl

Tasterschnittstelle als Markise

Befehl	• Ein • Aus • Ein/Aus
Steuermodus	Standard Standard invertiert Komfortmodus Totmannschaltung

Standard:

Verhalten bei Tasterbetätigung (Ein): kurz = Stopp lang = Ein	
Verhalten bei Tasterbetätigung (Aus): kurz = Stopp lang = Aus	
Verhalten bei Tasterbetätigung (Ein/Aus): kurz = Stopp lang = Ein/Aus	
Zeit zwischen kurz und lang (0,1 s)	0 50; 10

Standard invertiert:

Verhalten bei Tasterbetätigung (Ein): lang = Stopp kurz = Ein Verhalten bei Tasterbetätigung (Aus): lang = Stopp kurz = Aus Verhalten bei Tasterbetätigung (Ein/Aus): lang = Stopp kurz = Ein/Aus	
Zeit zwischen kurz und lang (0,1 s)	0 50; <u>10</u>
Wiederholung des Schrittbefehls bei langem Tastendruck (nur bei Auf)	keine • alle 0,1 s • • <u>alle 0,5 s</u> • • alle 2 s

Komfortmodus:

Taster wird gedrückt und	
vor Ablauf Zeit 1 losgelassen	Stopp
länger als Zeit 1 gehalten	Ein Aus Ein/Aus
zwischen Zeit 1 und 1 + 2 losgelassen	Stopp
nach Zeit 1 + 2 losgelassen	kein Stopp mehr
Zeit 1 (in 0,1 s)	0 50; <u>4</u>
Zeit 2 (in 0,1 s)	0 50; <u>20</u>

Totmannschaltung:

Taster drücken	Ein- Aus- Ein/Aus-Befehl
Taster Ioslassen	Stopp-Befehl

Tasterschnittstelle als Fenster

Befehl	• <u>Zu</u> • Auf • Auf/Zu
Steuermodus	Standard Standard invertiert Komfortmodus Totmannschaltung

Standard:

	Verhalten bei Tasterbetätigung (Zu): kurz = S Verhalten bei Tasterbetätigung (Auf): kurz = S Verhalten bei Tasterbetätigung (Auf/Zu): kurz	Stopp lang = Auf
ı	Zeit zwischen kurz und lang (0,1 s)	0 50; <u>10</u>

Standard invertiert:

Verhalten bei Tasterbetätigung (Zu): lang = Stopp kurz = Zu	
Verhalten bei Tasterbetätigung (Auf): lang = Stopp kurz = Auf	
Verhalten bei Tasterbetätigung (Auf/Zu): lang = Stopp kurz = Auf/Zu	
Zeit zwischen kurz und lang (0,1 s)	0 50; <u>10</u>
Wiederholung des Schrittbefehls bei langem Tastendruck (nur bei Auf)	keine • alle 0,1 s • • <u>alle 0,5 s</u> • • alle 2 s

Komfortmodus:

Taster wird gedrückt und	
vor Ablauf Zeit 1 losgelassen länger als Zeit 1 gehalten zwischen Zeit 1 und 1 + 2 losgelassen nach Zeit 1 + 2 losgelassen	Stopp Zu Auf Auf/Zu Stopp kein Stopp mehr
Zeit 1 (in 0,1 s)	0 50; <u>4</u>
Zeit 2 (in 0,1 s)	0 50; <u>20</u>

Totmannschaltung:

Taster drücken	Zu- Auf- Auf/Zu-Befehl
Taster loslassen	Stopp-Befehl

Tasterschnittstelle als Dimmer

Befehl	heller dunkler heller/dunkler
Zeit zwischen Schalten und Dimmen (in 0,1 s)	0 50; 5
Wiederholung des Dimmbefehls	<u>Nein</u> • Ja
Wiederholung des Dimmbefehls bei langem Tastendruck	alle 0,1 s • • <u>alle 0,5 s •</u> • alle 2 s
Dimmen um	100% • • <u>6%</u> • • 1,5%

Tasterschnittstelle als 8-Bit-Wertgeber

_	
Wertebereich	• <u>0 255</u> • <u>0% 100%</u> • <u>0° 360°</u>
Wert	• <u>0</u> 255 • <u>0</u> 100 • <u>0°</u> 360°

Tasterschnittstelle als 16-Bit-Wertgeber

Tasterschnittstelle als Szenenaufruf

Ì	Szene Nr.	0 127	

