WEINZIERL _

KNX BAOS Binary Protocol
BAOS Binary Services Version 2.0/ 2.1 for

KNX BAOS Module 830

KNX BAOS Module 832

KNX BAOS Module 838 kBerry
KNX BAOS Module RF 840

KNX USB Interface 312
KNX USB Module 322
KNX USB Interface 332 Stick

KNX IP BAOS 771
KNX IP BAOS 772
KNX IP BAOS 773
KNX IP BAOS 774
KNX IP BAOS 777

WEINZIERL ENGINEERING GmbH
DE-84508 Burgkirchen

E-Mail: info@weinzierl.de

Web: www.weinzierl.de

WEINZIERL ENGINEERING GmbH
2017-07-20

Page 1/66

KNX ObjectServer protocol (Version 2.1)

Document history

Document status Date Editor
Release 2011-01-14 HI
Added:

- Server Iltem 18

- Error message: Busy 2011-06-22 HI
- TCP encapsulation: Extension

of description and example

Changed: Format 2011-10-17 St
Changed: Format 2012-10-05 Wz
Added KNX IP BAOS 777 2015-07-30 Wz
Add(_ad additional BAOS Services 2015-09-02 Ms
version 2.1

Added Timers section 2015-09-03 Ms
Added version 2.1 Item ID’s 2015-10-14 Ms
Updated Access and Indication 2015-12-04 Ms
columns of Server Iltems

Added Timers description 2015-12-07 Ms
Added BAOS Modules 2015-12-15 Gi
Spelling 2016-01-16 Gi
Protocol corrections 2016-02-29 Ky
Minor improvements 2016-03-03 Gi
Correct offset of

SetServerltem.Req 2016-08-31 Bu
Extended list of supported server

items of BAOS Modules 830/840 |206-08-31 Bu
Correct length of FT1.2 frame 2016-09-08 Bu
Fixed FT1.2 communication 2017-02-27 Gi
example

Added 773, 774 at Title 2017-06-14 Gi
Serverltems updated 2017-06-29 Gi
Added USB devices 2017-07-13 Wz
Serverltems updated 2017-07-20 Gi

WEINZIERL ENGINEERING GmbH
2017-07-20

Page 2/66

KNX ObjectServer protocol (Version 2.1)

Contents

1. What is an ObjectServer? 5

1. Getting started 6

2. Communication protocol 7
2.1. GetServerltem.Req 8
2.2. GetServerltem.Res 9
2.3. SetServeritem.Req 10
2.4. SetServerltem.Res 11
2.5. Serverltem.Ind 12
2.6. GetDatapointDescription.Req 13
2.7. GetDatapointDescription.Res 14
2.8. GetDescriptionString.Req 17
2.9. GetDescriptionString.Res 18
2.10. GetDatapointValue.Req 20
2.11. GetDatapointValue.Res 21
2.12. DatapointValue.Ind 24
2.13. SetDatapointValue.Req 25
2.14. SetDatapointValue.Res 27
2.15. GetParameterByte.Req 28
2.16. GetParameterByte.Res 29
2.17 SetDatapointHistoryCommand.Req 30
2.18 SetDatapointHistoryCommand.Res 31
2.19 GetDatapointHistoryState.Req 32
2.20 GetDatapointHistoryState.Res 33
2.21 GetDatapointHistory.Req 35
2.22 GetDatapointHistory.Res 36

WEINZIERL ENGINEERING GmbH Page 3/66

2017-07-20

KNX ObjectServer protocol (Version 2.1)

3. Timers 38
3.1 Overview 38
3.2 Code 38
3.3 Trigger Type Date 39
3.4 Trigger Type Interval 39
3.5 Job Type SetDatapointValue 40
3.6 Get Timer 40
3.7 Set Timer 43

4. Encapsulating of the ObjectServer protocol 47
4.1. Serial FT1.2 48
4.1. USB HID 49
4.2. KNXnet/IP 50
4.3. TCP/IP 51

5. Discovery procedure 53
5.1. KNXnet/IP discovery algorithm 54

Appendix A. Item IDs 57

Appendix B. Error codes 61

Appendix C. Datapoint value types 62

Appendix D. Datapoint types (DPT) 63

Appendix E. FT1.2 protocol 64
D.1. Communication procedure 64
D.2. Frame format 65
D.3. Communication example 66

WEINZIERL ENGINEERING GmbH Page 4/66

2017-07-20

KNX ObjectServer protocol (Version 2.1)

1. What is an ObjectServer?

The ObjectServer is a hardware component, which is connected to the
KNX bus and represents it for the client as set of the defined “objects”.
These objects are the server properties (called “items”), KNX datapoints
(known as “communication objects” or as “group objects”) and KNX
configuration parameters (Figure 1). The communication between server
and clients is based on the ObjectServer protocol that is normally
encapsulated into some other communication protocol (e.g. FT1.2, IP,

etc.).

Client

Figure 1: Communication between ObjectServer and Client

< ObjectServer protocol >

Items

Datapoints

Parameters

ObjectServer

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 5/66

KNX ObjectServer protocol (Version 2.1)

1. Getting started

For getting started with the BAOS architecture we recommend to try the
BAOS protocol using the free version of our bus monitor and analyzer
Net'n Node. The integrated BAOS view supports serial, USB and IP
connections. Net'n Node also can send and receive KNX telegrams in
parallel. So it shows the relation between BAOS services and KNX
communication.

Tellistl*
Commands Capture Interfaces
- O " O " "
Mum 4 Telegram Interface 3 Timestamp Service Src-Addr Dest-Addr Control
— — =
1325 = FO 81 00 2B 00 01 00 2B 04 CO AS 01 28 . X 2016-03-02 11:06:30.. GetServerItem.res
1326 z FO 01 00 2C 00 01 = 2016-03-02 11:06:30.. GetServerItem.req
1327 = FO 81 00 2C 00 01 00 2C 04 FF FF FF 00 . X 2016-03-02 11:06:30.. GetServerItem.res
1328 z FO 01 00 2D 00 01 . = 2016-03-02 11:06:30.. GetServerItem.req
132 z F0O &1 00 2D 00 01 00 2D 04 CO A8 01 01 -1 2016-03-02 11:06:30. GetServerItem.res
1330 z FO 01 00 2E 00 01 . X 2016-03-02 11:06:30.. GetServerItem.req
1331 z F0 81 00 2E 00 01 00 2E 01 73 -1 2016-03-02 11:06:30. GetServerItem.res
1332 = F0 01 00 2F 00 01 .. & 2016-03-02 11:06:30.. GetServerItem.req
1333 z FO &1 00 2F 00 01 00 2F 04 56 D6 C9 1C 1 2016-03-02 11:06:30.. GetServerItem.res
1334 z Fo 01 00 30 00 01 ~ X 2016-03-02 11:06:30._. GetServerItem.req
1335 z FO &1 00 30 00 01 00 30 01 00 - 1 2016-03-02 11:06:30.. GetServerItem.res
1336 z F0 01 00 31 00 01 _ X 2016-03-02 11:06:30._ GetServerItem.req
1337 z FO 21 00 31 00 01 00 31 01 01 - 1 2016-03-02 11:06:30.. GetServerItem.res
1338 z F0 01 00 0% 00 01 _ 3+ 2016-03-02 11:07:30._ GetServerItem.req
1339 = FO 81 00 0% 00 01 00 09 04 00 00 29 B8 . X 2016-03-02 11:07:30.. GetServerItem.res
1340 z FO 01 00 0% 00 01 = 2016-03-02 11:08:30.. GetServerItem.req
1341 z F0 81 00 0% 00 01 00 09 04 00 00 29 C4 -1 2016-03-02 11:08:30. GetServerltem.res
1 T
BAOS View
192.168.1.38 KNX IP Baos 777 Ms
Read
Server Items Datapoints
Id Description DatapointType Size Prioity C R W T U I RawValuefhex) Interpreted Value #Indications
74 DPT 01 - Binary 1 Bit(s) Low C - | T - 1}
75 DPT 05 - 8-Bit Unsigned Value 1 Byte(s) Low C W o- U1 1]
76 DPT 09 - 2-Octet Float Value 2 Byte(s) Low C W U |1 1]
79 DPT 01 - Binary 1 Bit(s) Low C W U I 1]
82 DPT 01 - Binary 1Bit(s) Low C w U1 0
85 DPT 01 - Binary 1 Bit(s) Low C W U I 1]
88 DPT 01 - Binary 1Bit(s) Low C W U1 0
a1 DPT 0L - Binary 1Bit(s) Low C W u o1 0
o4 DPT (1 - Binary 1Bit(s) Low C W Uujl 1]
a7 DPT 09 - 2-Octet Float Value 2 Byte(s) Low C W u 1 a
98 DPT 09 - 2-Octet Float Value 2 Byte(s) Low = W T|U |1 0
100 DPT 18 - Scene Control 1 Byte(s) Low C - T - [i]
103 DPT 232 - 3-Octet RGE Value 3 Byte(s) Low C - | T 0
104 DPT 232 - 3-Octet RGB Value 3 Byte(s) Low C W - U1 0
127 DPT 05 - 8-Bit Unsigned Value 1Byte(s) Low C - | T 1]
130 DPT 05 - 8-Bit Unsigned Value 1 Byte(s) Low C W o- U1 1] ©
133 DPT 05 - 8-Bit Unsigned Value 1Byte(s) Low C - | T 1]
134 DPT 05 - 8-Bit Unsigned Value 1 Byte(s) Low C wo- U1 1]
136 DPT 09 - 2-Octet Float Value 2 Byte(s) Low C w uill 1] 5
1 Il r

Net’n Node telegram view with BAOS data points

For the serial modules a starter kit is available which allows you to connect
the BAOS Modules with a PC via a virtual comport. To implement a client
application a demo project with source for the starter kit is available on our
web page.

WEINZIERL ENGINEERING GmbH Page 6/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

2. Communication protocol

How is mentioned above, the communication between the server and the
client is based on an ObjectServer protocol and consists of the requests
sent by client and the server responses. To inform the client about the
changes of datapoint’s value an indication is defined, which will be sent
asynchronously from the server to the client. In this version of the protocol
are defined following services:

e GetServerltem.Reg/Res

e SetServerltem.Reqg/Res

e GetDatapointDescription.Reqg/Res
e GetDescriptionString.Reg/Res

e GetDatapointValue.Reg/Res

e DatapointValue.Ind

e SetDatapointValue.Reg/Res

o GetParameterByte.Reqg/Res

WEINZIERL ENGINEERING GmbH Page 7/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

2.1. GetServerltem.Req

This request is sent by the client to get one or more server items
(properties). The data packet consists of six bytes:

Offset | Field Size Value | Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x01 Subservice code

+2 Startltem 2 ID of first item

+ NUMberOfitemns 2 Ir\éljlj(rirr?al number of items to

As response the server sends to the client the values of supported items
from the range [Startltem ... Startltem+NumberOfltems-1].

The defined item IDs are specified in appendix A.

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 8/66

KNX ObjectServer protocol (Version 2.1)

2.2. GetServerltem.Res

This response is sent by the server as reaction to the GetServerltem
request. If an error is detected during the request processing server send a

negative response that has following format:

Offset | Field Size Value [Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 0x81 Subservice code
+2 Startltem 2 Index of bad item
+4 NumberOfltems 2 0x00

+6 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server it sends a positive
response to the client that has following format:

Offset | Field Size Value | Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x81 Subservice code

+2 Startltem 2 As in request

+4 NumberOfltems 2 rl\g;r;::;e of items in this
+6 First item ID 2 ID of first item

+8 First item data length | 1 Data length of first item
+9 First item data 1-255 Data of first item

+N-3 | Lastitem ID 2 ID of last item

+N-1 [Last item data length 1 Data length of last item
+N Last item data 1-255 Data of last item

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 9/66

KNX ObjectServer protocol (Version 2.1)

2.3. SetServeritem.Req

This request is sent by the client to set the new value of the server item.

Offset | Field Size Value [Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x02 Subservice code

+2 Startltem 2 ID of first item to set
" Numberofitems 2 :;T:;r of items in this
+6 First item ID 2 ID of first item

+8 First item data length | 1 Data length of first item
+9 First item data 1-255 Data of first item

+N-3 [Lastitem ID 2 ID of last item

+N-1 [Last item data length 1 Data length of last item
+N Last item data 1-255 Data of last item

The defined item IDs are specified in appendix A.

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 10/66

KNX ObjectServer protocol (Version 2.1)

2.4. SetServerltem.Res

This response is sent by the server as reaction to the SetServerltem
request. If an error is detected during the request processing server send a
negative response that has following format:

Offset | Field Size Value [Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 0x82 Subservice code
+2 Startltem 2 Index of bad item
+4 NumberOfltems 2 0x00

+6 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server it sends a positive

response to the client that has following format:

Offset | Field Size Value | Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 0x82 Subservice code
+2 Startltem 2 As in request

+4 NumberOfltems 2 0x00

+6 ErrorCode 1 0x00

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 11/66

KNX ObjectServer protocol (Version 2.1)

2.5. Serverltem.Ind

This indication is sent asynchronously by the server if the datapoint(s)
value is changed and has following format:

Offset | Field Size Value [Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0xC2 Subservice code

+2 Startltem 2 ID of first item

+4 NumberOfitems 2 :\rl]l;?;sg;n of items in this
+6 First item ID 2 ID of first item

+8 First item data length 1 Data length of last item
+9 First item data 1-255 Data of last item

+N-3 | Lastitem ID 2 ID of last item

+N-1 | Last item data length 1 Data length of last item
+N Last item data 1-255 Data of last item

For the coding of the item data see the description of the GetServerltem
response.

WEINZIERL ENGINEERING GmbH Page 12/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

2.6. GetDatapointDescription.Req

This request is sent by the client to get the description(s) of the
datapoint(s). The data packet consists of six bytes:

Offset | Field Size Value | Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x03 Subservice code

+2 StartDatapoint 2 ID of first datapoint

+4 NumberOfDatapoints 2 i\iﬂoe;]ﬁrroalr;lljjrrr:]ber of descrip-

As response the server sends to the client the descriptions of datapoints
from the range [StartDatapoint ... StartDatapoint + NumberOfDatapoints -

1].

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 13/66

KNX ObjectServer protocol (Version 2.1)

2.7. GetDatapointDescription.Res

This response is sent
GetDatapointDescription request. If an error is detected during the request
processing, the server sends a negative response with the following format:

by

the

server as reaction

to the

Offset | Field Size Value [Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 0x83 Subservice code
+2 StartDatapoint 2 As in request

+4 NumberOfDatapoints | 2 0x00

+6 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 14/66

KNX ObjectServer protocol (Version 2.1)

If request can be successfully processed by the server it sends a positive

response to the client with the following format:

Offset | Field Size Value | Description
+0 MainService 1 OxFO Main service code
+1 SubService 1 0x83 Subservice code
+2 StartDatapoint 2 As in request
, 2 Number of descriptions in
+4 NumberOfDatapoints u A !
this response
+6 First DP ID 2 ID of first datapoint
+8 First DP value type 1 Value type of first datapoint
: . 1 Configuration flags of first
+9 First DP config flags g. J
datapoint
+10 First DP DPT 1 [?atapomt .type (DPT) of
first datapoint
+N-4 | Last DP ID 2 ID of last datapoint
+N-2 | Last DP value type 1 Value type of last datapoint
, 1 Configuration flags of last
+N-1 | Last DP config flags Igl.J ! g
datapoint
N Last DP DPT 1 Datapqlnt type (DPT) of last
datapoint

The defined types of the datapoint value are specified in appendix C.

WEINZIERL ENGINEERING GmbH Page 15/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

The coding of the datapoint configuration flags is following:

Bit Meaning Value | Description
00 System priority
o 01 High priorit
1-0 Transmit priority o . y
10 Alarm priority
11 Low priority
2 Datapoint 0 Disabled
communication 1 Enabled
0 Disabled
3 Read from bus
n 1 Enabled
. 0 Disabled
4 Write from bus
1 Enabled
0 Disabled
5 Read on init
1 Enabled
6 Transmit to bus 0 Disabled
1 Enabled
5 Update on|O Disabled
response 1 Enabled

The defined datapoint types can be found in appendix D.

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 16/66

KNX ObjectServer protocol (Version 2.1)

2.8. GetDescriptionString.Req

This request is sent by the client to get the human-readable description

string(s) of the datapoint(s). The data packet consists of six bytes:

Offset | Field Size Value | Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x04 Subservice code

+2 StartString 2 ID of first string

+ NUmberofStrings 2 i\:l)alrzigi: number of strings

As response server sends to the client the description strings of datapoints
from the range [StartString ... StartString+NumberOfStrings-1].

Note: This service is optional and could be not implemented in some

servers.

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 17/66

KNX ObjectServer protocol (Version 2.1)

2.9. GetDescriptionString.Res

This response is sent by the server as reaction to the GetDescriptionString
request. If an error is detected during the processing of the request, the
server sends a negative response with the following format:

Offset | Field Size Value [Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 0x84 Subservice code
+2 StartString 2 As in request

+4 NumberOfStrings 2 0x00

+6 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server it sends a positive
response to the client with the following format:

Offset | Field Size Value | Description
+0 MainService 1 OxFO Main service code
+1 SubService 1 0x84 Subservice code
+2 StartString 2 As in request
) Number of strings in this
+4 NumberOfStrings 2) ngs I

response

Length of first DP

+6 StrLen of first DP 2 . .
description string

First DP description Description string of first

+8) StrLen .
string datapoint
Length of last DP
+N-2 StrLen of last DP 2 g.))
description string
Last DP description Description string of last
+N) P StrLen p g
string datapoint
WEINZIERL ENGINEERING GmbH Page 18/66

2017-07-20

KNX ObjectServer protocol (Version 2.1)

The datapoint description strings do not include a termination null. The
length of each datapoint description string is given with the corresponding
StrLen.

WEINZIERL ENGINEERING GmbH Page 19/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

2.10. GetDatapointValue.Req

This request is sent by the client to get the value(s) of the datapoint(s). The
data packet consists of seven bytes:

Offset | Field Size Value | Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x05 Subservice code

+2 StartDatapoint 2 ID of first datapoint

. 2 Maximal number of data-

+4 NumberOfDatapoints .
points to return

6 Filter 1 Criteria WhI.Ch data points
shall be retrieved

The filter criteria are coded as follows:

Value Description

0x00 Get all datapoint values

0x01 Get only valid datapoint values
0x02 Get only updated datapoint values
0x03 ... OxFF Reserved

As response the server sends to the client the values of datapoints from
the range [StartDatapoint ... StartDatapoint+NumberOfDatapoints-1].

WEINZIERL ENGINEERING GmbH Page 20/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

2.11. GetDatapointValue.Res

This response is sent by the server as reaction to the GetDatapointValue
request. If an error is detected during the processing of the request, the
server sends a negative response with the following format:

Offset | Field Size Value [Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x85 Subservice code

+2 StartDatapoint 2 Index of the bad datapoint
+4 NumberOfDatapoints | 2 0x00

+6 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server, it sends a positive
response to the client with the following format:

Offset | Field Size Value [Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x85 Subservice code

+2 StartDatapoint 2 As in request

+4 NumberOfDatapoints 2 l\lhlijsmrzz:ao:;e datapoints in
+6 First DP ID 2 ID of first datapoint

+8 First DP state 1 State byte of first datapoint
+9 First DP length 1 Length of first datapoint
+10 First DP value 1-14 Value of first datapoint
+N-4 | Last DP ID 2 ID of last datapoint

+N-2 | Last DP state 1 State byte of last datapoint
+N-1 | Last DP length 1 Id_Z?:;Zint byte - of last
+N Last DP value 1-14 Value of last datapoint

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 21/66

KNX ObjectServer protocol (Version 2.1)

The state byte is coded as follows:

Bit Meaning Value | Description
7 Reserved 0 Reserved
6 Reserved 0 Reserved
5 Reserved 0 Reserved
0 Object value is unknown
4 Valid flag
1 Object has already been received
0 Value is not updated
3 Update flag)
1 Value is updated from bus
0 Write request should be sent
2 Read request flag
1 Read request should be sent
00 Idle/OK
1-0 Transmission 01 Idle/error
status 10 Transmission in progress
11 Transmission request

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 22/66

KNX ObjectServer protocol (Version 2.1)

The KNX datapoints with the length less than one byte are coded into the

one byte value as follows:

1-bit:

2-bits:

3-bits:

4-hits:

5-bits:

6-bits:

7-bits:

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 23/66

KNX ObjectServer protocol (Version 2.1)

2.12. DatapointValue.Ind

This indication is sent asynchronously by the server if the datapoint(s)
value(s) is/has changed and has the following format:

Offset | Field Size Value [Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 OxC1 Subservice code

+2 StartDatapoint 2 ID of first datapoint

+4 NumberOfDatapoints 2 l\rl]lijsn”;rk:gircazgndatapoints in
+6 First DP ID 2 ID of first datapoint

+8 First DP state 1 State byte of first datapoint
+9 First DP length 1 Length of first datapoint
+10 First DP value 1-14 Value of first datapoint

+N-4 | Last DP ID 2 ID of last datapoint

+N-2 | Last DP state 1 State byte of last datapoint
+N-1 | Last DP length 1 I(;Z[g?)int byte - of last
+N Last DP value 1-14 Value of last datapoint

For the coding of the
GetDatapointValue request.

state byte see

the description of

the

For the coding of the datapoint value see the description of the

GetDatapointValue response.

WEINZIERL ENGINEERING GmbH
2017-07-20

Page 24/66

KNX ObjectServer protocol (Version 2.1)

2.13. SetDatapointValue.Req

This request is sent by the client to set the new value(s) of the datapoint(s)
or to request/transmit the new value on the bus. It also can be used to clear

the transmission state of the datapoint.

Offset | Field Size Value [Description
+0 MainService 1 OxFO Main service code
+1 SubService 1 0x06 Subservice code
+2 StartDatapoint 2 ID of first datapoint to set
+4 NumberOfDatapoints | 2 Number of datapoints to set
+6 First DP ID 2 ID of first datapoint
8 First DP command 1 Commz.:md byte of first
datapoint
: 1 Length byte of first
+9 First DP length g . y
datapoint
+10 First DP value 1-14 Value of first datapoint
+N-4 | Last DP ID 2 ID of last datapoint
+N-2 | Last DP command 1 Commz.:md byte of last
datapoint
1 Length byte of last
+N-1 | Last DP length g . y
datapoint
+N Last DP value 1-14 Value of last datapoint
WEINZIERL ENGINEERING GmbH Page 25/66

2017-07-20

KNX ObjectServer protocol (Version 2.1)

The command byte is coded as follows:

Bit Meaning Value | Description
7-4 Reserved 0000 | Reserved
0000 No command
0001 | Set new value
0010 | Send value on bus
0011 | Set new value and send on bus
3-0 Datapoint 0100 | Read new va'lue via bu§ :
command 0101 | Clear datapoint transmission state
0110 | Reserved
1111 | Reserved

The datapoint value length must match with the value length, which is

selected in the ETS project database.

The value length “zero” is acceptable and means: “no value in frame”. It
can be used for instance to clear the transmission state of the datapoint or
to send the current datapoint value on the bus or similar.

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 26/66

KNX ObjectServer protocol (Version 2.1)

2.14. SetDatapointValue.Res

This response is sent by the server as reaction to the SetDatapointValue
request. If an error is detected during the processing of the request, the
server sends a negative response with the following format:

Offset | Field Size Value [Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x86 Subservice code

+2 StartDatapoint 2 Index of bad datapoint
+4 NumberOfDatapoints | 2 0x00

+6 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server, it sends a positive

response to the client with the following format:

Offset | Field Size Value | Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 0x86 Subservice code
+2 StartDatapoint 2 As in request

+4 NumberOfDatapoints | 2 0x00

+6 ErrorCode 1 0x00

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 27/66

KNX ObjectServer protocol (Version 2.1)

2.15. GetParameterByte.Req

This request is sent by the client to get the parameter byte(s). A parameter
is free-defined variable of the 8-bits length, which can be set and
programmed by the Engineering Tool Software (ETS).

The data packet of the GetParameterByte request consists of six bytes:

Offset | Field Size Value | Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x07 Subservice code

+2 StartByte 2 Index of first byte

+ NUmberOfBytes 5 Ir\éljlj(rirr?al number of bytes to

As response the server sends to the client the values of parameters from
the range [StartByte ... StartByte+NumberOfBytes-1].

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 28/66

KNX ObjectServer protocol (Version 2.1)

2.16. GetParameterByte.Res

This response is sent by the server as reaction to the GetParameterByte
request. If an error is detected during the request processing server send a

negative response that has following format:

Offset | Field Size Value [Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x87 Subservice code

+2 StartByte 2 Index of the bad parameter
+4 NumberOfBytes 2 0x00

+6 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server it sends a positive
response to the client that has following format:

Offset | Field Size Value | Description

+0 MainService 1 0xFO Main service code

+1 SubService 1 0x87 Subservice code

+2 StartByte 2 As in request
Number of bytes in this

+4 NumberOfBytes 2) n ! I
response

+6 First byte 1 First parameter byte

+N Last byte 1 Last parameter byte

WEINZIERL ENGINEERING GmbH
2017-07-20

Page 29/66

KNX ObjectServer protocol (Version 2.1)

2.17 SetDatapointHistoryCommand.Req

This request is sent by the client to either Start, Stop or Clear the history for

one or more datapoints. See the History Command table below for the list

of commands.

Offset | Field Size Value | Description
+0 MainService 1 OxFO Main service code
+1 SubService 1 0x08 Subservice code
+2 StartDatapoint 2 ID of first datapoint
+4 NumberOfDatapoints | 2 number of datapoints
1 The history command
+6 Command applied to each of the
datapoints

The Command is coded as follows:

Value | Description

0x01 | Clear. Clears the previous capture.

O0x02 | Start. Starts a new capture. Does not clear the previous history.

0x03 | StartClear. Clears the previous capture and starts a new capture

0x04 | Stop. Stops a capture. Does not clear the previous history.

0x05 | StopClear. Stops and clears the capture.

Note: Not available for BAOS Modules 83x/840.

WEINZIERL ENGINEERING GmbH
2017-07-20

Page 30/66

KNX ObjectServer protocol (Version 2.1)

2.18 SetDatapointHistoryCommand.Res

This response is sent by the server as reaction to the
SetDatapointHistoryCommand request. If an error is detected during the
processing of the request, the server sends a negative response with the
following format:

Offset | Field Size Value | Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 0x88 Subservice code

+2 StartDatapoint 2 ID of first datapoint
+4 NumberOfDatapoints | 2 number of datapoints
+6 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

If request can be successfully processed by the server, it sends a positive
response to the client that has the following format:

Offset | Field Size Value [Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 0x88 Subservice code
+2 StartDatapoint 2 As in request

+4 NumberOfDatapoints | 2 0x00

+6 ErrorCode 1 0x00

Note: Not available for BAOS Modules 83x/840.

WEINZIERL ENGINEERING GmbH Page 31/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

2.19 GetDatapointHistoryState.Req

This request is sent by the client to get the capture state of one or more

datapoints. For each datapoint the server will return its state (whether it is

currently logging history or not) and the count of available items.

Offset | Field Size Value | Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 0x09 Subservice code

+2 StartDatapoint 2 ID of first datapoint
+4 NumberOfDatapoints | 2 number of datapoints

As response server sends to the client the values of datapoints from
range [StartDatapoint ... StartDatapoint+NumberOfDatapoints-1].

Note: Not available for BAOS Modules 83x/840.

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 32/66

KNX ObjectServer protocol (Version 2.1)

2.20 GetDatapointHistoryState.Res

This response is sent

by

the

server

as reaction

to the

GetDatapointHistoryState request. If an error is detected during the

processing of the request, the server sends a negative response with the

following format:

Offset | Field Size Value | Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 0x89 Subservice code

+2 StartDatapoint 2 ID of first datapoint
+4 NumberOfDatapoints | 2 0x00 number of datapoints
+6 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 33/66

KNX ObjectServer protocol (Version 2.1)

If request can be successfully processed by the server, it sends a positive

response to the client with the following format:

Offset | Field Size Value [Description
+0 MainService 1 OxFO Main service code
+1 SubService 1 0x89 Subservice code
+2 StartDatapoint 2 As in request
+4 NumberOfDatapoints 2 l\rlllijsnii;or?;e datapoints in
+6 First DP ID 2 ID of first datapoint
+8 First DP State 1 The History state
+9 Count 4 The number of history items
+X Last DP ID 2 ID of last datapoint
+X Last DP State 1 The History state
+X Count 4 The number of history items
The State is coded as follows:
Value Description
0x00 Inactive
0x01 Available
0x02 Active
0x03 ActiveAvailable

Note: Not available for BAOS Modules 83x/840.

WEINZIERL ENGINEERING GmbH
2017-07-20

Page 34/66

KNX ObjectServer protocol (Version 2.1)

2.21 GetDatapointHistory.Req

This request is sent by the client to get the history for one or more
datapoints. Note: There will be a limit to the size of the response, similar to
the Version 1.0 and 2.0 protocols, which may dictate how this service is
used. For example, you propably won’t be able to get the history for 1000
objects for the past [time] in one request. History for a datapoint will
include: the datapoint id, the timestamp and the value. Data will be sorted
by timestamp descending, which means history items for multiple
datapoints will be interleaved. It will be possible to limit the results by
specifying a start and end timestamp. We will accept a zero value for both
start and end timestamp. If the start or end timestamp has a value of zero
we will ignore it in the query. For example, if you only specify the start

timestamp, the end timestamp will be assumed to be now.

Offset | Field Size Value | Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 Ox0A Subservice code

+2 StartDatapoint 2 ID of first datapoint
+4 NumberOfDatapoints | 2 number of datapoints
+6 StartTimestamp 2 Start Timestamp

+8 EndTimestamp 2 End Timestamp

As response server sends to the client the values of datapoints from
range [StartDatapoint ... StartDatapoint+NumberOfDatapoints-1].

Note: Not available for BAOS Modules 83x/840.

WEINZIERL ENGINEERING GmbH Page 35/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

2.22 GetDatapointHistory.Res

This response is sent by the server as reaction to the GetDatapointHistory
request. If an error is detected during the processing of the request, the

server sends a negative response with the following format:

Offset | Field Size Value | Description

+0 MainService 1 OxFO Main service code
+1 SubService 1 Ox8A Subservice code

+2 StartDatapoint 2 ID of first datapoint
+4 NumberOfDatapoints | 2 0x00 number of datapoints
+6 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

WEINZIERL ENGINEERING GmbH Page 36/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

If request can be successfully processed by the server, it sends a positive

response to the client with the following format:

Offset | Field Size Value | Description

+0 MainService 1 OxFO | Main service code
+1 SubService 1 Ox8A | Subservice code
+2 StartDatapoint 2 As in request

+4 NumberOfDatapoints 2 l\rlllijsnii;or?;e datapoints in
+6 First DP ID 2 ID of first datapoint
+8 First DP Timestamp 4 Timestamp

+12 First DP Length 1 Datapoint Length
+13 First DP Value variable Datapoint Value
+X Last DP ID 2 ID of last datapoint
+X Last DP Timestamp 4 Timestamp

+X Last DP Length 1 Datapoint Length
+X Last DP Value variable Datapoint Value

Note: Not available for BAOS Modules 83x/840.

WEINZIERL ENGINEERING GmbH Page 37/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

3. Timers

3.1 Overview

The binary services to get and set triggers are somewhat more complex to
encode and decode than the standard baos services as they contain
variable length information blocks depending on both the trigger and job
types. Currently we support two trigger types, Date and Interval and one
job type, SetDatapointValue.

A date trigger is essentially a one-shot trigger, which will fire once at the
specified date. An interval trigger on the other hand will continue to fire
according to the interval parameters, for example, once every hour.

To delete a timer we use the SetTrigger service with the trigger type to 0
(i.e. DeleteTimer). This effectively ends the timer block and no further timer
information should be set for that timer.

Note: The SetTimer service can contain both set and delete blocks within
the single service.

Note: Timers are not available for BAOS Modules 83x/840.

3.2 Code

Trigger Types
Type Value
DeleteTimer 0
TriggerDate 1
Triggerinterval 2

Job Types

Type Value

JobSetDatapointValue |1

WEINZIERL ENGINEERING GmbH Page 38/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

3.3 Trigger Type Date

A date trigger is a one-shot event that will schedule the job to be run when
the date and time is reached. The date trigger takes a single parameter,

date/time, which indicates the date/time to run the job at.

Date - Trigger Parameter

Offset Field Size Value | Description

+X date/time 4 Seconds since epoch

3.4 Trigger Type Interval
This trigger schedules jobs to be run periodically, on selected intervals.

You can also specify the starting and ending dates for the schedule

through the Start date/time and End date/time parameters, respectively.

If the start date is in the past, the trigger will not fire many times
retroactively but instead calculates the next run time from the current time,

based on the past start time.

Interval - Trigger Parameter

Offset Field Size Value | Description

+X Start date/time 4 Seconds since epoch

+X End date/time 4 Seconds since epoch

+X Weeks 2 Number of weeks

+X Days 1 Number of days

+X Hours 1 Number of hours

WEINZIERL ENGINEERING GmbH Page 39/66

2017-07-20

KNX ObjectServer protocol (Version 2.1)

Interval - Trigger Parameter (continued)

Offset Field Size Value | Description
+X Minutes 1 Number of Minutes
+X Seconds 1 Number of Seconds

3.5 Job Type SetDatapointValue

Job Parameter SetDatapointValue

Offset Field Size Value | Description
+X Datapoint Id 2 The datapoint id to set
+X DP command 1 Command byte of DP
+X DP length 1 Length byte of DP
+X DP value 1-14 DP value
3.6 Get Timer
Get Timer Request
Offset Field Size | Value | Description
+0 MainService 1 OxFO Main service code
+1 SubService 1 0x0B Subservice code
+2 StartTimer 2 As in request
+4 NumberOfTimers | 2 Number of Timers in this
response
WEINZIERL ENGINEERING GmbH Page 40/66

2017-07-20

KNX ObjectServer protocol (Version 2.1)

Get Timer negative Response

Offset Field Size |Value | Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0Ox8B Subservice code

+2 StartTimer 2 As in request

+4 NumberOfTimers | 2 0x00 Number of Timers in this
response

+6 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

Get Timer positive Response

Offset Field Size | Value | Description

+0 MainService 1 OxFO Main Service code

+1 SubService 1 0Ox8B Subservice code

+2 StartTimer 2 As in request

+4 NumberOfTimers 2 Number of Timers in this
response

+6 Timer Id 2 The unique timer id

+X Trigger 1 The trigger (one of date, interval,
could later be datapoint ind)

+X Trigger Params Length | 1 The length of the trigger
parameters

+X Trigger Params The specific trigger parameters

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 41/66

KNX ObjectServer protocol (Version 2.1)

Get Timer positive Response (continued)

Offset | Field Size | Value | Description

+X Job 1 The job (currently only
SetDatapointValue)

+X Job Params Length 1 The length of the job parameters

+X Job Params The specific job parameters

+X Timer Description String | 2 The timer description string

Length length

+X Timer Description String The timer description string

+X Timer Id 2 The unique timer id

+X Trigger 1 The trigger (one of date, interval,
could later be datapoint ind)

+X Trigger Params Length | 1 The length of the trigger
parameters

+X Trigger Params The specific trigger parameters

+X Job 1 The job (currently only
SetDatapointValue)

+X Job Params Length 1 The length of the job parameters

+X Job Params The specific job parameters

+X Timer Description String | 2 The timer description string

Length length
+X Timer Description String The timer description string
WEINZIERL ENGINEERING GmbH Page 42/66

2017-07-20

KNX ObjectServer protocol (Version 2.1)

3.7 Set Timer
Set Timer Request

Offset | Field Size | Value | Description

+0 MainService 1 OxFO Main Service code

+1 SubService 1 0x0C Subservice code

+2 StartTimer 2 As in request

+4 NumberOfTimers 2 Number of Timers in this
response

+6 Timer Id 2 The unique timer id

+X Trigger 1 The trigger (one of date, interval,
could later be datapoint ind)

+X Trigger Params Length | 1 The length of the trigger
parameters

+X Trigger Params The specific trigger parameters

+X Job 1 The job (currently only
SetDatapointValue)

+X Job Params Length 1 The length of the job parameters

+X Job Params The specific job parameters

+X Timer Description String | 2 The timer description string

Length length

+X Timer Description String The timer description string

+X Timer Id 2 The unique timer id

WEINZIERL ENGINEERING GmbH Page 43/66

2017-07-20

KNX ObjectServer protocol (Version 2.1)

Set Timer Request (continued)

Offset | Field Size | Value | Description

+X Trigger 1 The trigger (one of date, interval,
could later be datapoint ind)

+X Trigger Params Length | 1 The length of the trigger
parameters

+X Trigger Params The specific trigger parameters

+X Job 1 The job (currently only
SetDatapointValue)

+X Job Params Length 1 The length of the job parameters

+X Job Params The specific job parameters

+X Timer Description String | 2 The timer description string

Length length
+X Timer Description String The timer description string

Set Timer negative Response

Offset Field Size | Value | Description

+0 MainService 1 OxFO Main service code

+1 SubService 1 0x8C Subservice code

+2 StartTimer 2 As in request

+4 NumberOfTimers | 2 0x00 Number of Timers in this
response

+6 ErrorCode 1 Error code

The defined error codes are specified in appendix B.

WEINZIERL ENGINEERING GmbH Page 44/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

Set Timer positive Response

Offset | Field Size | Value | Description

+0 MainService 1 OxFO Main Service code

+1 SubService 1 0x8C Subservice code

+2 StartTimer 2 As in request

+4 NumberOfTimers 2 Number of Timers in this
response

+6 Timer Id 2 The unique timer id

+X Trigger 1 The trigger (one of date, interval,
could later be datapoint ind)

+X Trigger Params Length | 1 The length of the trigger
parameters

+X Trigger Params The specific trigger parameters

+X Job 1 The job (currently only
SetDatapointValue)

+X Job Params Length 1 The length of the job parameters

+X Job Params The specific job parameters

+X Timer Description String | 2 The timer description string

Length length

+X Timer Description String The timer description string

+X Timer Id 2 The unique timer id

WEINZIERL ENGINEERING GmbH Page 45/66

2017-07-20

KNX ObjectServer protocol (Version 2.1)

Set Timer positive Response (continued)

Offset | Field Size | Value | Description

+X Trigger 1 The trigger (one of date, interval,
could later be datapoint ind)

+X Trigger Params Length | 1 The length of the trigger
parameters

+X Trigger Params The specific trigger parameters

+X Job 1 The job (currently only
SetDatapointValue)

+X Job Params Length 1 The length of the job parameters

+X Job Params The specific job parameters

+X Timer Description String | 2 The timer description string

Length length
+X Timer Description String The timer description string

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 46/66

KNX ObjectServer protocol (Version 2.1)

4. Encapsulating of the ObjectServer protocol

The ObjectServer protocol has been defined to achieve the whole
functionality also on the smallest embedded platforms and on the data
channels with the limited bandwidth. As a result of this fact the protocol is
kept very slim and has no connection management, like the connection
establishment, user authorization, etc. Therefore it is advisable und mostly
advantageous to encapsulate the ObjectServer protocol into some existing
transport protocol to get a powerful solution for the easy access to the KNX
datapoints and directly to the KNX bus.

Depending on the interface type the BAOS protocol is encapsulated:

e Serial: FT1.2 frames
e USB: HID reports
e |P: UDP or TCP frames

WEINZIERL ENGINEERING GmbH Page 47/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

4.1. Serial FT1.2

The encapsulating of the ObjectServer protocol into the FT1.2 (known also
as PEI type 10) protocol is simple and consists in the integration of the
ObjectServer protocol frames into the FT1.2 frames as is shown in Figure
2.

S L L S CR | OxFO C E

\ J L N J
Y Y Y

FT1.2 header ObjectServer message FT1.2 tail

Figure 2: Integration of the ObjectServer message into the FT1.2 frame

The short description of the FT1.2 protocol can be found in appendix D.

WEINZIERL ENGINEERING GmbH Page 48/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

4.1. USB HID

The USB implementation of the BAOS protocol is in-line with the USB
specification of KNX. Therefore HID reports are used as transfer channel.
Each report has a size of 64 bytes and starts with the report ID = 1. Longer

BAOS messages are split in several reports.

For details of the USB usage in KNX please refer to the KNX specification.
To integrate the USB BAOS solution in your application please contact
Weinzierl concerning the BAOS SDK.

WEINZIERL ENGINEERING GmbH Page 49/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

4.2. KNXnet/IP

The clients that communicate over the KNXnet/IP protocol with the
ObjectServer should use the “Core” services of the KNXnet/IP protocol to
discovery the servers, to get the list of the supported services and to
manage the connection. If the ObjectServer protocol is supported by the
KNXnet/IP server, a service family with the ID=0xFO is present in the
device information block (DIB) “supported service families”. The same ID
(OxF0) should be used by the client to set the “connection type” field of the
connect request.

The ObjectServer communication procedure is like for the tunneling
connection of the KNXnet/IP protocols (see the chapter 3.8.4 of the KNX
specification for the details). The communication partners send the
requests (ServiceType=0xF080) to each other, which will be acknowledged
(ServiceType=0xF081) by the opposite side. Each request includes the
ObjectServer message (Figure 3).

e) Version
Header size (0x20)
KNXnet/IP 2 ObjectServer request
header (0xF080)
L Frame size
~
Connection Structure length Channel ID
header
Sequence counter Reserved
N~
6 MainService)
ObjectServer | (0xF0) SubService
message
~

Figure 3: Integration of the ObjectServer message into the KNXnet/IP

frame

WEINZIERL ENGINEERING GmbH Page 50/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

4.3. TCP/IP

The TCP/IP provides the whole required functionality from connection
management and maintenance to the data integrity. The encapsulating of
the ObjectServer protocol into the TCP/IP is simple. Only a header shall be
added (see Figure 4) to the ObjectServer protocol. This header consists of
a KNXnet/IP header including the frame length and a connection header.

The frame length is calculated like this:

Header size (6 bytes) + structure length (4 bytes) + length of object server
message

Before the client is able to send the requests to the ObjectServer it must
establish a TCP/IP connection to the IP address and the TCP port of
ObjectServer.

The default value for the ObjectServer port is 12004 (decimal).

To prevent a timeout of the TCP/IP connection, at least every 60 seconds a
communication shall be performed (e.g. requesting a server item).

Only a single object server request shall be transmitted via TCP.

4 Header size Version
(0X06) (0x20)
KNXnet/IP P ObjectServer request
header (0xF080)
. Frame size
. Structure length Reserved
Connection J (0x04) (0x00)
header Reserved Reserved
L (0x00) (0x00)
a4 MainService)
ObjectServer (0XF0) SubService
message
~

Figure 4: Integration of the ObjectServer message into TCP/IP

WEINZIERL ENGINEERING GmbH Page 51/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

Example (GetServerltem):

This example shows how to get the first server item (hardware type) of the
device using the TCP/IP encapsulation:

Request:

Header

KNXnet/IP Header

Connection Header

Object Server Message

06

20 | FO | 80 | 00

10

04 | 00 | 00 | 0O

FO

01 | 00 | 01 | OO

01

Figure 5: Example (GetServerltem.Req)

Response:

Header

KNXnet/IP Header

Connection Header

Object Server Message

06 | 20 | FO [80 | OO [19 | 04 | OO | OO | OO [FO | 81 [00 | 01 [OO | O1 | OO | O1 [O6 | OO [OO | C5 | O7 | OO | 02
Figure 6: Example (GetServerltem.Resp)
WEINZIERL ENGINEERING GmbH Page 52/66

2017-07-20

KNX ObjectServer protocol (Version 2.1)

5. Discovery procedure

This chapter describes the possibilities to find the installed ObjectServers
in the local network. This allows the clients to find and to select
automatically a definite ObjectServer for the communication, alternatively
to the manual input from the user. Currently only one discovery procedure
iIs supported, which is based on the KNXnet/IP discovery algorithm. The
next chapter describes it briefly. For the full description of the KNXnet/IP
discovery algorithm please refer to the KNX handbook Volume 3.8.

WEINZIERL ENGINEERING GmbH Page 53/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

5.1. KNXnet/IP discovery algorithm

The KNXnet/IP discovery procedure works in the way showed on the
Figure 7. The client, which is looking for the installed ObjectServers, sends
a search request via the multicast on the predefined multicast address
224.0.23.12 and port 3671 (decimal). The ObjectServers sends back a
search response with the device information block (DIB), which contains

among other things the information about the support of the ObjectServer
protocol.

[s)

\+#

%
ObjectServer #1

Client #1 Search.Req <:

ObijectServer #N

Figure 7. KNXnet/IP discovery

The search request has the length of 14 bytes and its format is presented
on Figure 8. Most fields are fixed, the client should fill only the fields “IP
address” and “IP port”. These fields are used by the ObjectServer as
destination IP address and port for the search response. For fields, which
are longer than one byte, the big-endian format is applied.

WEINZIERL ENGINEERING GmbH Page 54/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

+0

+2

+4

+6

+8

+12

+0 +1
Header size Version
0x06 0x10
Search request
0x0201
Packet length
0x000E
Structure length Protocol code
0x08 0x01
IP address
0x?????277?
IP port
0x????

Figure 8: Structure of the Search.Req packet

The search response from the ObjectServer has in the version 1.0 of the
protocol the length of 84 bytes and its format is presented on Figure 9. The
support of the ObjectServer protocol by the device is indicated through the
existence of the manufacturer DIB at the offset +76 bytes in the packet.
This manufacturer DIB has the length of 8 bytes.

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 55/66

KNX ObjectServer protocol (Version 2.1)

+0

+2

+4

+6

+14

+ 68

+76

+78

+80

+82

+0 +1
Header size Version
0x06 0x10
Search response
0x0202
Packet length
0x0054
HPALI length
0x08

Host Protocol Address Information
(HPAI)

DEV DIB length
0x36

Device information block
(DEV DIB)

SVC DIB length
0x08

Supported services DIB
(SVC DIB)

Manufacturer DIB len | Manufacturer DIB type
0x08 OxFE

Manufacturer ID
0x00C5

Record type Record length
0x01 0x04

ObjectServer protocol ObjectServer version
OxFO 0x20

Figure 9: Structure of the Search.Res packet

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 56/66

KNX ObjectServer protocol (Version 2.1)

Appendix A. Item IDs

Following items are present in all device types and protocol versions:

.. | Ac-
Size in
ID | Item ces | Ind.
bytes
S
1 | Hardware type 6 R N
Can be used to identify the hardware type. Coding is
manufacturer specific.
It is mapped to property PID_HARDWARE_TYPE in
device object.
2 | Hardware version 1 R N
Version of the ObjectServer hardware
Coding Ex.: 0x10 = Version 1.0
3 | Firmware version 1 R N
Version of the ObjectServer firmware
Coding Ex.: 0x10 = Version 1.0
4 | KNX manufacturer code DEV 2 R N
KNX manufacturer code of the device, not modified by
ETS.
It is mapped to property PID_MANUFACTURER_ID in
device object.
5 | KNX manufacturer code APP 2 R N
KNX manufacturer code loaded by ETS.
It is mapped to bytes 0 and 1 of property
PID_APPLICATION VER in application object.
6 | Application ID (ETS) 2 R N
ID of application loaded by ETS.
It is mapped to bytes 2 and 3 of property
PID_APPLICATION VER in application object.
7 | Application version (ETS) 1 R N
Version of application loaded by ETS.
It is mapped to byte 4 of property
PID APPLICATION VER in application object.
8 | Serial number 6 R N
Serial number of device.
It is mapped to property PID_SERIAL_NUMBER in
device object.
9 | Time since reset [ms] 4 R N
10 [Bus connection state 1 R Y
Values: “0” — disconnected
“1” — connected
11 | Maximal buffer size 2 R N
WEINZIERL ENGINEERING GmbH Page 57/66

2017-07-20

KNX ObjectServer protocol (Version 2.1)

12 | Length of description string 2 R N
13 | Baudrate (only if serial port is present) 1 RW N
Values: “0” — unknown
“1” - 19200
“2” — 115200
14 | Current buffer size 2 RW N
15 | Programming mode 1 RW Y
Values (bit 0): “0” — not active
“1” — active
16 | Protocol Version (Binary) 1 R N
Version of the ObjectServer binary protocol
Coding Ex.: 0x20 = Version 2.0
17 | Indication Sending 1 RW N
Values (bit 0): “0” — not active
“1” — active
Following items are optional and can be fully or partly implemented in some
device types:
ID | Item Size in | Ace |y
bytes |ess
Protocol Version (WebService) 1 R N
18 | Version of the ObjectServer protocol via web services
Coding Ex.: 0x20 = Version 2.0
19 | Protocol Version (RestService) 1 R N
Version of the ObjectServer protocol via rest services
Coding Ex.: 0x21 = Version 2.1
20 | Individual Address 2 RW N
The individual KNX address of the device
21 | Mac Address 6 R N
22 | Tunnelling Enabled 1 RW Y
KNXnet/IP tunneling active or not
Values: “0” — disabled
“1” — enabled
23 | Baos Binary Enabled 1 RwW Y
Access via BAOS Binary connection available or not
Values: “0” — disabled
“1” — enabled
24 | Baos Web Enabled 1 RW Y
Web Services active or not
Values: “0” — disabled
“1” — enabled
25 | Baos Rest Enabled 1 RW Y
REST services active or not
WEINZIERL ENGINEERING GmbH Page 58/66

2017-07-20

KNX ObjectServer protocol (Version 2.1)

Values: “0” — disabled
“1” — enabled

26 | Http File Enabled 1 RW Y
Webserver active or not
Values: “0” — disabled
“1” — enabled
27 | Search Request Enabled 1 RW Y
Device responds to search requests(yes / no)
Values: “0” — disabled
“1” — enabled
28 | Is Structured 1 R N
Indicates if the current loaded database is structured
Values: “0” — False
“1” — True
29 | Max Management Clients 1 R N
Max amount of available Management connections
30 | Connected Management Clients 1 R N
31 | Max Tunneling Clients 1 R N
32 | Connected Tunneling Clients 1 R N
33 | Max Baos UDP Clients 1 R N
34 | Connected Baos UDP Clients 1 R N
35 | Max Baos TCP Clients 1 R N
36 | Connected Baos TCP Clients 1 R N
37 | Device Friendly Name 30 RW N
String of an optionally given name for this device.
38 | Max Datapoints 2 R N
Number of available data points
39 | Configured Datapoints 2 R N
Current number of configured data points
40 | Max Parameter Bytes 2 R N
Number of available parameter bytes
41 | Download Counter 2 R N
ETS download counter
42 | IP Assignment 1 RW Y
DHCP or Manual
43 | IP Address 4 RwW Y
44 | Subnet Mask 4 RwW Y
45 | Default Gateway 4 RwW Y
WEINZIERL ENGINEERING GmbH Page 59/66

2017-07-20

KNX ObjectServer protocol (Version 2.1)

46 | Time Since Reset Unit 1 RwW Y
X=ms, s=seconds, m=minutes, h= hours
47 | System Time . RW Y
variable
48 | System Timezone Offset 1 RW Y
49 | Menu Enabled 1 RW Y

Values can be edited on the device menu
Values: “0” — disabled
“1” — enabled

50 | Enable Suspend 1 RW N
Device can enter the suspend state if enabled.
This feature is used for USB only.
Values: “0” — disabled

“1” — enabled (default after reset)

Attention: For values, which are longer than one byte, the big-endian

format is applied.

WEINZIERL ENGINEERING GmbH Page 60/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

Appendix B. Error codes

Error code

Description

No error

Internal error

No element found

Buffer is too small

Item is not writeable

Service is not supported

Bad service parameter

Bad ID

Bad command / value

o|lw| N|OoO|lOA|] W[N] L] O

Bad length

[
o

Message inconsistent

|
|

Object server is busy

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 61/66

KNX ObjectServer protocol (Version 2.1)

Appendix C. Datapoint value types

Type code | Value size

0 1 bit

1 2 bits

2 3 bits

3 4 bits

4 5 bits

5 6 bits

6 7 bits

7 1 byte

8 2 bytes

9 3 bytes

10 4 bytes

11 6 bytes

12 8 bytes

13 10 bytes

14 14 bytes
WEINZIERL ENGINEERING GmbH Page 62/66

2017-07-20

KNX ObjectServer protocol (Version 2.1)

Appendix D. Datapoint types (DPT)

Type code | Value size
0 Datapoint disabled
1 DPT 1 (1 Bit, Boolean)
2 DPT 2 (2 Bit, Control)
3 DPT 3 (4 Bit, Dimming, Blinds)
4 DPT 4 (8 Bit, Character Set)
5 DPT 5 (8 Bit, Unsigned Value)
6 DPT 6 (8 Bit, Signed Value)
7 DPT 7 (2 Byte, Unsigned Value)
8 DPT 8 (2 Byte, Signed Value)
9 DPT 9 (2 Byte, Float Value)
10 DPT 10 (3 Byte, Time)
11 DPT 11 (3 Byte, Date)
12 DPT 12 (4 Byte, Unsigned Value)
13 DPT 13 (4 Byte, Signed Value)
14 DPT 14 (4 Byte, Float Value)
15 DPT 15 (4 Byte, Access)
16 DPT 16 (14 Byte, String)
17 DPT 17 (1 Byte, Scene Number)
18 DPT 18 (1 Byte, Scene Control)
19..254 | Reserved
255 Unknown DPT

WEINZIERL ENGINEERING GmbH

2017-07-20

Page 63/66

KNX ObjectServer protocol (Version 2.1)

Appendix E. FT1.2 protocol

The FT1.2 transmission protocol is based on the international standard IEC
870-5-1 and IEC 870-5-2 (DIN 19244). As the hardware interface for the
transmission is the Universal Asynchronous Receiver Transmitter (UART)
used. The frame format for the FT1.2 protocol is fixed to the 8 data bits, 1
stop bit and even parity bit. The default communication speed is 19200
Baud.

D.1. Communication procedure

The typical communication procedure between the host and the
ObjectServer is shown on Figure 10.

Host ObjectServer

Reset request
Acknowledgement

Data
Acknowledgement

Data

Acknowledgement

Data

Acknowledgement

Figure 10: Typical communication procedure

In chapter D.3 is presented an example of the communication between the
host and the ObjectServer.

WEINZIERL ENGINEERING GmbH Page 64/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

D.2. Frame format

Three frame types are defined by the FT1.2 protocol .

The first one is the positiv acknowledgement frame and consists only one
byte of the value OXE5.

The second frame type is 4 bytes length and is used for the reset request
and reset indication messages (Figure 11).

Reset.Req:|0x10|0x40|0x40|0x16| Reset.Ind:|0x10|0xC0O|0xC0O|0x16

Figure 11: Structure of the Reset.Req and Reset.Ind frames

The third frame type is variable length and used for the data messages.
The frame structure is presented on Figure 12.

0x68| L L |Ox68| CR data C |Oxl16

Figure 12: Structure of the data message

The both fields L contain the length of the data in this frame +1 for the
control byte.

The field CR specifies the control byte of the frame. Its value is 0x73 for all
odd frames after reset request sent by the host and 0x53 for the even
frames. In the opposite direction (from ObjectServer to host) the control
byte is OxF3 for the odd frames and 0xD3 for the even frames.

The field C contains the checksum of the frame and is the arithmetic sum
disregarding overflows (modulo 256) over all data and control byte.

WEINZIERL ENGINEERING GmbH Page 65/66
2017-07-20

KNX ObjectServer protocol (Version 2.1)

D.3. Communication example

Host -> ObjectServer: Reset Request

{0x10 0x40 0x40 0x16}

ObjectServer -> Client: Acknowledgement

{OXE5}

Host -> ObjectServer: GetServerltem.Req (Firmware version)

{Ox68 0x07 0x07 0x68 0x73 OxFO 0x01 0x00 0x03 0x00 0x01 0x68 Ox16}
ObjectServer -> Client: Acknowledgement

{OXE5}

ObjectServer -> Client: GetServerltem.Res (Firmare version)

{0x68 0XOB 0XOB 0x68 OXF3 OXFO 0x81 0x00 0x03 0x00 0x01 0x00 0x03
0x01 0x10 0x7C 0x16}

Host -> ObjectServer: Acknowledgement

{OXE5}

Host -> ObjectServer: GetServerltem.Req (Serial number)

{0x68 0x06 0x06 0x68 0x53 0xFO 0x01 0x00 0x08 0x00 0x01 0x4D 0x16}
ObjectServer -> Client: Acknowledgement

{OXE5}

ObjectServer -> Client: GetServerltem.Res (Serial number)

{Ox68 OxOF OxOF 0x68 0xD3 OxFO 0x81 0x00 0x08 0x00 0x01 0x00 0x08
0x06 0x00 0xC5 0x08 0x02 0x00 0x00 0x2A 0x16}

Host -> ObjectServer: Acknowledgement
{OxES5}

WEINZIERL ENGINEERING GmbH Page 66/66
2017-07-20

