ABB i-bus ${ }^{\circledR}$ KNX

Switch Actuator Modules for the Room Controller SA/M
ES/M

Intelligent Installation
Systems

This manual describes the function of the Switch Actuator Modules SA/M 2.6.1 and SA/M 2.16.1 and the Electronical Switch Actuator Modules ES/M 2.230.1 and ES/M 2.24.1 for operation in the Room Controller Basis Device with the application program Raum-Controller modular, 8f/1.7.
Subject to changes and errors excepted.

Exclusion of liability:

Despite checking that the contents of this document match the hardware and software, deviations cannot be completely excluded. We therefore cannot accept any liability for this. Any necessary corrections will be inserted in new versions of the manual.
Please inform us of any suggested improvements.

Contents

Page

1 General 3
2 Device technology 4
2.1 SA/M 2.6.1 Switch Actuator Module, 2-fold, 6 AX 4
2.1.1 Technical data 4
2.1.2 Lamp loads at 230 V AC 5
2.1.3 Circuit diagram 6
2.1.4 Description of the outputs 6
2.1.5 Assembly and installation 6
2.2 SA/M 2.6.1 Switch Actuator Module, 2-fold, 16 A, floating 7
2.2.1 Technical data 7
2.2.2 Lamp loads at 230 V AC 8
2.2.3 Circuit diagram 9
2.2.4 Description of the outputs 9
2.2.5 Assembly and installation 9
2.3 ES/M 2.230.1 Electronic Switch Actuator Module, 2-fold, 230 V 10
2.3.1 Technical data 10
2.3.2 Circuit diagram 11
2.3.3 Description of the outputs 11
2.3.4 Assembly and installation 11
2.4 ES/M 2.24.1 Electr. Switch Actuator Module, 2-fold, 24 V 12
2.4.1 Technical data 12
2.4.2 Circuit diagram 13
2.4.3 Description of the outputs 13
2.4.4 Assembly and installation 13
3 Commissioning 14
3.1 Overview 14
3.2 General functions 15
3.2.1 "General" parameter window 15
3.3 Operating mode "Switch actuator" 16
3.3.1 "General" parameter window. 16
3.3.2 Parameter window "Function" 17
3.3.3 Parameter window "Time" 18
3.3.4 Parameter window "Preset" 21
3.3.5 Parameter window "Scene" 23
3.3.6 Parameter window "Logic" 24
3.3.7 Parameter window "Safety" 25
3.3.8 Parameter window: "Threshold" 27
3.3.9 Communication objects 29
3.4 Operating mode "Heating actuator" 32
3.4.1 Parameter window "General" 32
3.4.2 Parameter window "Function" 34
3.4.3 Parameter window: "Monitoring" 35
3.4.4 Parameter window "Forced operation" 36
3.4.5 Parameter window: "Valve purge" 37
3.4.6 Communication objects 38
3.5 Operating mode: "Fan coil control (blower convection unit)" 40
3.5.1 What is a fan coil unit? 40
3.5.2 Parameter window "General" 41
3.5.3 Parameter window: "Speeds" 43
3.5.4 Parameter window "Function" 44
3.5.5 Parameter window: "Monitoring" 45
3.5.6 Parameter window "Step limiting" 46
3.5.7 Parameter window "Forced operation" 46
3.5.8 Communication objects 47
4 Planning and application 50
4.1 The three operating modes 50
4.2 Operating mode "Switch actuator" 51
4.2.1 Time functions 51
4.2.2 Connection/logic 52
4.2.3 Presets 53
4.2.4 8 bit scene 55
4.2.5 Threshold value function 55
4.2.6 Function chart. 57
4.3 Operating mode "Heating actuator" 58
4.4 Operating mode: "Fan coil control" 60
4.4.1 Terms60
4.4.2 Configuration of a HVAC system with Fan Coil units 60
4.4.3 Design of a Fan Coil unit 60
4.4.4 Variants 61
4.4.5 Connection 61
4.5 Reaction on voltage failure and recovery 63
4.6 Behaviour after programming 63
5 Appendix 64
5.1 Table of values of object "Status byte" 64
5.2 Ordering information 65

General

1 General

The Switch Actuator Modules SA/M 2.6.1 and SA/M 2.16.1 as well as the Electronic Switch Actuator Modules ES/M 2.230.1 and ES/M 2.24.1 are snapped into a module slot of the Room Controller Basis Device RC/A. They are used to control switched loads:

Load type	Suitable module type
Lighting	SA/M
Electrothermal valve drives (heating control)	ES/M
Fan coil units	SA/M
Signalling equipment	ES/M

The Room Controller Basis Device establishes the connection to the ABB ibus ${ }^{\circledR} \mathrm{KNX}$ installation bus.

All the modules have two outputs each. The Switch Actuator Module SA/M switches via relay outputs while the Electronic Switch Actuator Modules ES/M switch via noise-free, wear-resistant electronic semiconductor components.

SA/M 2.6.1 and ES/M 2.230.1 are automatically connected to the incoming supply when they are snapped into the Room Controller Basis Device. The incoming supply of the SA/M 2.16.1 and the ES/M 2.24.1 should be connected directly to the modules.

On the output side, the devices feature screw terminals.
The comprehensive functionality is defined by programming the Room Controller Basis Device with the ETS. It is almost identical for all three devices.

Device Technology

2 Device technology

2.1 SA/M 2.6.1
 Switch Actuator Module, 2-fold, 6 AX

2.1.1 Technical data

ABB i-bus ${ }^{\circledR}$ KNX

Device Technology

2.1.2 Lamp loads at 230 V AC

Lamps	- Incandescent lamp load	1380 W
Fluorescent lamp T5 / T8	- Uncorrected - Parallel compensated - DUO circuit	$\begin{aligned} & 1380 \mathrm{~W} \\ & 1380 \mathrm{~W} \\ & 1380 \mathrm{~W} \end{aligned}$
Low-volt halogen lamps	- Inductive transformer - Electronic transformer - Halogen lamp 230 V	$\begin{aligned} & 1200 \mathrm{~W} \\ & 1380 \mathrm{~W} \\ & 1380 \mathrm{~W} \end{aligned}$
Dulux lamp	- Uncorrected - Parallel compensated	$\begin{aligned} & 1100 \mathrm{~W} \\ & 1100 \mathrm{~W} \end{aligned}$
Mercury-vapour lamp	- Uncorrected - Parallel compensated	$\begin{aligned} & 1380 \mathrm{~W} \\ & 1380 \mathrm{~W} \end{aligned}$
Switching capacity	- Max. peak inrush-current IP $(150 \mu \mathrm{~s})$ - Max. peak inrush-current IP ($250 \mu \mathrm{~s}$) - Max. peak inrush-current Ip $(600 \mu \mathrm{~s})$	$\begin{aligned} & 400 \mathrm{~A} \\ & 320 \mathrm{~A} \\ & 200 \mathrm{~A} \end{aligned}$
Number of electronic ballasts (T5/T8, single element) ${ }^{1)}$	- 18 W (e.g. ABB EVG 1×18 CF) -24 W (ABB EVG-T5 1x24 CY) -36 W (ABB EVG $1 \times 36 \mathrm{CF}$) -58 W (ABB EVG $1 \times 58 \mathrm{CF}$) - 80 W (Helvar EL 1x80 SC)	$\begin{aligned} & 23 \\ & 23 \\ & 14 \\ & 11 \\ & 10 \end{aligned}$

${ }^{1)}$ For multiple element lamps or other types the number of electronic ballasts must be determined using the peak inrush current of the electronic ballasts.

ABB i-bus ${ }^{\circledR}$ KNX

Device Technology

2.1.3 Circuit diagram

2.1.4 Description of the

 outputs
2.1.5 Assembly and

The device has two relay outputs A and B. The switched incoming supply is applied at output L'. The PE conductor is brought out from the device to connect the protective conductor.

installation

The device is solely intended for operation in the Room Controller Basis Device. It can be snapped into any module slot. The mounting position can be selected as required.

ABB i-bus ${ }^{\circledR}$ KNX

Device Technology

2.2 SA/M 2.6.1

Switch Actuator Module, 2-fold, 16 A, floating

The 2-fold Switch Actuator Module can be operated in any module slot of the Room Controller Basis Device. Using relay contacts, it switches two independent groups of electrical loads such as fluorescent lamps. The outputs are distinguished by a high switching current.

Important: The voltage to be switched must be applied directly to the module.. The device supply is thus independent of the voltage in the Room Controller.

2.2.1 Technical data

Supply / Incoming supply	- Operating voltage	Made available by the Room Controller Basis Device, contact made via contact system on base of module
	- Incoming supply	$0 . .264 \mathrm{~V} \mathrm{AC}$, connected directly of the module
Outputs	- 2 load circuits $-U_{n}$ rated voltage - I_{n} rated current	Relay outputs, floating $\begin{aligned} & 250 / 440 \mathrm{~V} \mathrm{AC} \\ & 16 \mathrm{~A} \end{aligned}$
Switching currents per output	- AC3 operation $(\cos \varphi=0.45)$ EN 60 947-4-1 - AC1 operation ($\cos \varphi=0.8$) EN 60 947-4-1 - Fluorescent lighting load AX to EN 60 669-1 - Minimum switching performance - DC current switching capacity (resistive load)	$\begin{aligned} & 8 \mathrm{~A} / 230 \mathrm{~V} \\ & 16 \mathrm{~A} / 230 \mathrm{~V} \\ & 16 \mathrm{~A} / 250 \mathrm{~V}(70 \mu \mathrm{~F})^{1)} \\ & 100 \mathrm{~mA} / 12 \mathrm{~V} \\ & 100 \mathrm{~mA} / 24 \mathrm{~V} \\ & 16 \mathrm{~A} / 24 \mathrm{~V}= \end{aligned}$
Output service life	- Mechanical endurance - Electrical endurance to EN 60 947-4-1 - $\mathrm{AC} 1(240 \mathrm{~V} / \cos \varphi=0.8)$ - AC3 (240 V/cos $\varphi=0.45$) - AC5a (240 V/cos $\varphi=0.45$)	$\begin{aligned} & 3 \times 10^{6} \\ & >10^{5} \\ & >3 \times 10^{4} \\ & >3 \times 10^{4} \end{aligned}$
Connections	- Load circuits - Connection cross-sections	2×3-pole screw terminals, fixed $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ stranded $0.2 \ldots 4.0 \mathrm{~mm}^{2}$ solid
Ambient temperature range	- Storage - Transport	$\begin{aligned} & -25^{\circ} \mathrm{C} \ldots 55^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C} \end{aligned}$
Design	- Type of installation - Housing, colour - Housing dimensions (W x H x D) - Weight	For snapping into the Room Controller Basis Device Plastic housing, anthracite, halogen-free $49 \mathrm{~mm} \times 42 \mathrm{~mm} \times 93 \mathrm{~mm}$ 0.117 kg
CE mark	- in accordance with the EMC guideline and low voltage guideline	

${ }^{1)}$ The maximum inrush-current peak (see lamp loads) may not be exceeded.

ABB i-bus ${ }^{\circledR}$ KNX

Device Technology

2.2.2 Lamp loads at 230 V AC

Lamps	- Incandescent lamp load	2300 W
Fluorescent lamp T5 / T8	- Uncorrected - Parallel compensated - DUO circuit	$\begin{aligned} & 2300 \mathrm{~W} \\ & 1500 \mathrm{~W} \\ & 1500 \mathrm{~W} \end{aligned}$
Low-volt halogen lamps	- Inductive transformer - Electronic transformer - Halogen lamp 230 V	$\begin{aligned} & 1200 \mathrm{~W} \\ & 1500 \mathrm{~W} \\ & 2300 \mathrm{~W} \end{aligned}$
Dulux lamp	- Uncorrected - Parallel compensated	$\begin{aligned} & 1100 \mathrm{~W} \\ & 1100 \mathrm{~W} \end{aligned}$
Mercury-vapour lamp	- Uncorrected - Parallel compensated	$\begin{aligned} & 2000 \mathrm{~W} \\ & 2000 \mathrm{~W} \end{aligned}$
Switching capacity	- Max. peak inrush-current Ip ($150 \mu \mathrm{~s}$) - Max. peak inrush-current lp ($250 \mu \mathrm{~s}$) - Max. peak inrush-current Ip ($600 \mu \mathrm{~s}$)	$\begin{aligned} & 400 \mathrm{~A} \\ & 320 \mathrm{~A} \\ & 200 \mathrm{~A} \end{aligned}$
Number of electronic ballasts (T5/T8, single element) ${ }^{1)}$	- 18 W (e.g. ABB EVG $1 \times 18 \mathrm{CF}$) - 24 W (ABB EVG-T5 1x24 CY) -36 W (ABB EVG 1x36CF) -58 W (ABB EVG 1x58 CF) - 80 W (Helvar EL 1x80 SC)	$\begin{aligned} & 23 \\ & 23 \\ & 14 \\ & 11 \\ & 10 \end{aligned}$

${ }^{1)}$ For multiple element lamps or other types, the number of electronic ballasts must be determined using the peak inrush current of the electronic ballasts.

ABB i-bus ${ }^{\circledR}$ KNX

Device Technology

2.2.3 Circuit diagram

2.2.4 Description of the outputs

The device has two relay outputs A and B. The switched voltage is applied at terminal L. The switched voltage is applied at output L^{\prime}.
The other terminals are not used and isolated from the device. They can be used as auxiliary terminals (e.g. for looping through the N or PE conductor).

2.2.5 Assembly and installation

The device is solely intended for operation in the Room Controller Basis Device. It can be snapped into any module slot. The mounting position can be selected as required.

ABB i-bus ${ }^{\circledR}$ KNX

Device Technology

2.3 ES/M 2.230.1

Electronic Switch
Actuator Module, 2-fold, 230 V

The 2-fold Electronic Switch Actuator Module is snapped into any module slot of the Room Controller Basis Device. Using two semiconductor outputs, it switches two resistive loads such as electrothermal valve drives for heating control. The outputs are noise-free and wear-resistant. The nominal switching voltage is 115 or 230 V .

Both the incoming supply and the internal voltage are supplied via the Room Controller Basis Device. Contact is automatically established when the modules are snapped in place.

2.3.1 Technical data

Supply / Incoming supply	- Internal supply	Made available by the Room Controller Basis Device, contact made via contact system on base of module
	- Incoming supply	90... 264 V AC / DC, contact established via contact surfaces at the front
Outputs	- 2 load circuits	Semiconductor outputs for resistive loads Inrush current: max. 1 A Continuous current: Max. 700 mA
Connections	- Load circuits - Connection cross-sections	$2 x$ three-pole, plug-in screw terminals $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ stranded $0.2 \ldots 4.0 \mathrm{~mm}^{2}$ solid
Ambient temperature range	- Storage - Transport	$\begin{aligned} & -25^{\circ} \mathrm{C} \ldots 55^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C} \end{aligned}$
Design	- Type of installation - Housing, colour - Housing dimensions (W x H x D) - Weight	For snapping into the Room Controller Basis Device Plastic housing, anthracite, halogen-free $49 \mathrm{~mm} \times 42 \mathrm{~mm} \times 93 \mathrm{~mm}$ 0.08 kg
CE mark	- in accordance with the EMC guideline and low voltage guideline	

2.3.2 Circuit diagram

2.3.3 Description of the outputs

2.3.4 Assembly and
 2.3.4 installation

The device has two semiconductor outputs A and B. The switched incoming supply is applied at output L'. The PE conductor is brought out from the device to connect the protective conductor.

devie to connect the protective conductor.

The device is solely intended for operation in the Room Controller Basis Device. It can be snapped into any module slot. The mounting position can be selected as required.

ABB i-bus ${ }^{\circledR}$ KNX

Device Technology

2.4 ES/M 2.24.1

Electr. Switch Actuator
Module, 2-fold, 24 V
The 2-fold Electronic Switch Actuator Module is snapped into any module slot of the Room Controller Basis Device. Using two semiconductor outputs, it switches two resistive loads such as electrothermal valve drives for heating control. The outputs are noise-free and wear-resistant. The nominal switching voltage is 12 or 24 V .

The internal voltage is supplied via the Room Controller Basis Device. Contact is automatically established when the modules are snapped in place.

2.4.1 Technical data

Supply / Incoming supply	- Internal supply	Made available by the Room Controller Basis Device, contact made via contact system on base of module
	- Incoming supply	10... $30 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$
Outputs	- 2 load circuits	Semiconductor outputs for resistive loads Inrush current: max. 1 A Continuous current: Max. 700 mA
Connections	- Load circuits - Incoming supply - Connection cross-sections	$1 \times$ four-pole, plug-in screw terminals $1 \times$ two-pole, plug-in screw terminal each for connection and for looping through $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ stranded $0.2 \ldots 4.0 \mathrm{~mm}^{2}$ solid
Ambient temperature range	- Storage - Transport	$\begin{aligned} & -25^{\circ} \mathrm{C} \ldots 55^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C} \end{aligned}$
Design	- Type of installation - Housing, colour - Housing dimensions (W x H x D) - Weight	For snapping into the Room Controller Basis Device Plastic housing, anthracite, halogen-free $49 \mathrm{~mm} \times 42 \mathrm{~mm} \times 93 \mathrm{~mm}$ $0,08 \mathrm{~kg}$
CE mark	- In accordance with the EMC guideline and low voltage guideline	

2.4.2 Circuit diagram

2.4.3 Description of the outputs

2.4.4 Assembly and installation

The output has two switched semiconductor outputs A and B. The incoming supply is fed or looped through to the next module via terminals " + " and "-".

The device is solely intended for operation in the Room Controller Basis Device. It can be snapped into any module slot. The mounting position can be selected as required.

Commissioning

3 Commissioning

3.1 Overview

The Room Controller has a single application program which is used to set to the device function. Programming requires ETS3 or higher.

Note: \quad Please note that the programming of the device is only possible when the supply voltage is available.

User programs	Max. number of communication objects	Max. number of group addresses	Max. number of associations
RC/A 4.2: Room Controller modular 4f2/1.0	125	254	255
RC/A 8.1: Room Controller modular 8f/2.0	246	254	255
RC/A 8.2: Room Controller modular 8f2/1.0	245	254	255

Note
The programming requires Engineering Software Tool ETS2 V1.3 or
higher.
If ETS3 is used a *.VD3 or higher type file must be imported.
The application program for the ETS product tree can be found at
ABB/Room automation/Room Controller.
The devices do not support the closing function of a project or the KNX
devices in the ETS. If you inhibit access to all devices of the project with a
$B A$ password (ETS2) or a BCU code (ETS3), it has no effect on this
device.
Data can still be read and programmed.

ABB i-bus ${ }^{\circledR}$ KNX

Commissioning

3.2 General functions

3.2.1 "General" parameter window

The operating mode of the input is set in the first parameter.

Parameter "Operating mode of output"
The function of the output can be selected here. The options available are "Switch actuator", "Heating actuator" and "Fan coil control".

The other parameters are dependent on the selected operating mode.
See section 4 for further explanations about the operating modes.

Commissioning

3.3 Operating mode "Switch actuator"

3.3.1 "General" parameter window

General settings can be carried out in this parameter window such as the reaction during/after bus voltage failure and the status response function.

Parameter "Status response of switching state"

The object "Status switch" is enabled with this parameter. It is used to indicate the current switching state on the bus..

Parameter "Status response inverted"

This parameter is visible if the "Status response of switching state" is carried out. If "yes" is entered here, the status response object sends a " 1 " when the relay contact is open and a " 0 " when the relay contact is closed. This can be advisable for example when the output is operated as a normally closed contact so that the telegram value " 1 " is received as a status response after an ON command.

Parameter "sending after bus voltage recovery"

This parameter is visible if a "Status response of switching state" is undertaken. Here you can set whether the switching state is updated on the bus after a bus voltage recovery. The update is carried out in connection with the transmission delay of the Room Controller.

Parameter "Reaction on bus voltage failure"

The output can adopt a defined state on bus voltage failure via this parameter.

In the parameter you can set whether the output switches "ON" or "OFF". The contact position can also remain unchanged in the setting "unchanged" (internal function is retained). In this case, the output can still be operated, e.g. via push buttons that are connected to binary inputs of the same device.

Parameter "Reaction on bus voltage recovery"

With this parameter, the output can be switched "ON" or "OFF" on recovery of the bus voltage. In the setting "unchanged", the state of the output does not change.

On bus voltage recovery, the output is set once the parameterised initialisation time of the Room Controller has elapsed.

Note: \quad This parameter can be overwritten by the parameters which are enabled in the "Function" parameter window.

Commissioning

3.3.2 Parameter window

"Function"
In this parameter window, basic settings for the function of an output are carried out. Additional functions can also be enabled.

Parameter "Reaction of output"

In this parameter you can set whether the output operates as a "Normally closed contact" or "Normally opened contact".

In the "Normally opened contact" function, an ON command leads to the closing of a contact while an OFF contact causes the contact to be opened. When "Normally closed contact" is selected, the reverse process is carried out.

Parameter: "Enable function 'time, staircase lighting, flashing"
This parameter enables the function "Time, staircase lighting, flashing" (parameter window "A: Time")

Parameter: "Enable function 'presets"

This parameter enables the "Preset" function (parameter window "A: Presets").

Parameter "Enable function "scene (8 bit)"

The object " 8 -bit scene" is enabled via this parameter (parameter window "A: Scene").

Parameter "Enable function 'logic'"

This parameter enables the function "Logical connection, disable function" (parameter window "A: Logic").

Parameter: "Enable function 'priority/forced operation, cyclic

 monitoring'"This parameter enables the safety functions "Cyclic monitoring, forced operation" (parameter window "A: Safety").

Parameter "Enable threshold function"
This parameter enables the "Threshold value function" (parameter window "A: Threshold").

Commissioning

3.3.3 Parameter window
 "Time"

The time functions such as the staircase lighting function, ON/OFF delay and flashing can be set here. The parameter window is enabled under "A: Function".

Explanations about the time functions can be found in section 4.2.1. Please note the function diagram in section 4.2.6.

Parameter "Time function"

This parameter defines the type of the time function. It is possible to choose between three types: "Staircase lighting", "ON/OFF delay" and "Flashing".
Selection "Staircase lighting function"

The staircase light is switched on via an ON telegram. The staircase lighting time is started when the function is activated. It is switched off when the staircase lighting time elapses.

Parameter "Duration of staircase lighting"

The operating time defines how long the staircase lighting remains switched on after an ON command.

Parameter "Extending staircase lighting by multiple operation ("pumping up")

If a further ON telegram is received during the staircase lighting time, the remaining staircase lighting time can be extended by a further period. The maximum time can be set using this parameter.

In the setting "no", the staircase lighting is reset on receipt of an ON telegram ("retrigger function").

Parameter "Staircase lighting can be switched off"

Here you can set whether the staircase lighting is switched off prematurely by an OFF telegram ("yes"), or whether the OFF telegram is ignored during the staircase lighting time ("no").
Note: If the parameter value is "yes", the staircase lighting can also be switched off via the other following objects, if they lead to a disconnection: "Logical connection", "Preset", "Light scene", "Disable", "Permanent ON", "Forced operation".

Commissioning

Parameter

"Restart of staircase time after end of permanent ON"
This parameter defines how the output is set on receipt of the telegram value " 0 " on the object "Permanent ON". The output can switch off immediately ("no") or remain switched on for the duration of the staircase lighting time.

Parameter "Warning before end of staircase lighting"
The user can be warned before the staircase lighting time elapses for the duration of the "Warning time". The warning time is contained in the staircase lighting time.
There are two possibilities for issuing a warning: The first one involves setting the object "Warning staircase lighting" to " 1 ". The other option switches the output off and on again very briefly. Both possibilities can be set together or separately.

Parameter "Warning time"

The above warning time is set in this parameter.
Parameter "Duration of staircase lighting can be changed by object"
The object "Duration of staircase lighting" is enabled by this parameter. It enables the staircase lighting time to be modified via the bus.

Parameter

"After supply voltage recovery the staircase light is"
Here you can set whether the staircase lighting is "switched on" or "switched off" on recovery of the bus voltage or the supply voltage of the Room Controller. If the option "switched on" is selected, the staircase lighting time restarts after bus voltage recovery.

Selection "ON and OFF delay"

Selection "ON and OFF delay"

Parameter "Switch ON delay"

This parameter sets the delay for switching on the output after an ON command.

Parameter "Switch OFF delay"

This parameter sets the delay for switching off the output after an OFF command.

Selection "Flashing"

When the flashing function is activated, the output starts to flash as soon as the object "Switch" receives the corresponding value. The flashing rate can be set in the parameters ("Time for ON" or "Time for OFF"). At the start of the flash rate, the output is always switched on. On receipt of a new value at the object "Switch", the flashing rate starts from the beginning (except if the flashing has stopped).

Commissioning

As soon as the flashing stops, the output switches off immediately. The flashing can be inverted whereby the output is operated as a "Normally closed contact".

Note: If the status response "Status switch" is active, it also indicates the current state of the relay during the flashing. With a rapid flashing rate, this can lead to a high bus load.

Parameter "Flashing if object 'Switching' is"

Here you set the value of the object Switch at which the output flashes. You can also set that the output always flashes.

Parameter "Time for ON" or "Time for OFF"

This parameter defines how long the output is switched on or off during a flashing period. The smallest value each time is a second; a rapid flashing period is not advisable due to the maximum switching frequency of the relay (contact endurance).

Parameter "Limited number of ON-impulses"

The number of flashing pulses can be limited here. After the output has been switched on and off for an adjustable "Number of ON impulses", it will be switched off permanently.

Commissioning

3.3.4 Parameter window
 "Preset"

The preset function is used to retrieve a parameterised value, e.g. in order to implement lightscenes. In addition, the output value that is currently set can be saved as a new preset value. The parameter window is enabled under "A: Function".

There are two objects available for retrieving and storing presets. The parameters for the objects "Preset $1 / 2$ " and "Preset $3 / 4$ " are identical; the objects "Preset $1 / 2$ " are described in the following section by way of example.
Explanations about the preset functions can be found in section 0 . Please note the function diagram in section 4.2.6.

Parameter "Reaction on preset 1 (telegr. value 0)"

Preset 1 is retrieved if the object "Call preset $1 / 2$ " receives the telegram value " 0 ". In this case, the output can trigger a defined state ("ON", "OFF" or "no reaction").

One of the following functions can also be selected.
"Restore old value before Preset 2" recreates the state before the last retrieval of Preset 2.

Example: With preset 2, the lighting in a conference room is retrieved for a presentation. When the presentation is finished, the lighting is restored via preset1 to the state it was in beforehand.
"Restore parameterised value of preset 2" resets Preset 2 to the parameterised value. This can be advisable if the preset can be stored via the bus (see below).

Parameter "Reaction on preset 2 (telegr. value 1)"

This parameter sets which contact position is selected if the object "Call preset ..." receives the telegram value "1".

Parameter "Preset can be set via the bus"
The object "Set preset $1 / 2$ " is enabled via this parameter (parameter value "yes"). It is used to store the current contact position as a preset value.

Telegram value " 0 " stores preset 1 while telegram value " 1 " stores preset 2.

Commissioning

If the special function "restore old value before preset 2 " or "restore parameterised value of preset 2" has been assigned to preset 1 , the telegram value " 0 " is ignored.

ABB i-bus ${ }^{\circledR}$ KNX

Commissioning

3.3.5 Parameter window
 "Scene"

In the 8-bit scene, a push button sends a scene number which causes the actuator to trigger a defined output state. The parameter window is enabled under "A: Function".

Please note the function diagram in section 4.2.6.

Parameter "Output is assigned to"

Max. 64 different scenes (1...64) can be addressed via a group address.
The output can be assigned to a maximum of 5 scenes.

Parameter "Standard value"

This parameter sets which state the output adopts when the scene is retrieved.

By storing a scene, the user has the opportunity to modify the programmed value. After programming or after a supply voltage failure, the value that is parameterised here is restored.

Note: \quad When a scene is retrieved

- the time functions are restarted
- the logic operations are re-evaluated

Commissioning

3.3.6 Parameter window
 "Logic"

The logic function makes up to two logic objects available for each output. These objects are logically linked with the object "Switch". The parameter window is enabled under "A: Function".
The logic is always re-calculated when an object value is received. The object "Logical connection 1 " is first evaluated together with the object "Switch". The result is then liked with object "Logical connection 2".

The parameters are identical for both logic objects. The function is described in the following section using the example of object "Logical connection 1 ".
Explanations about the logic function can be found in section 0 . Please note the function diagram in section 4.2.6.

Parameter: "Function of object 'Logical connection ...'"
The logic function of the object "Logical connection ..." is defined here. All three standard operators are possible (AND, OR, XOR). The gate function is also available which can block switching commands.

Parameter "Result is inverted"

The result of the logic operation can be inverted via this parameter: If the logic result is " 0 ", it is converted into a " 1 " (and vice versa).

Parameter: "Gate disabled, if 'Logical connection ...' is"
This parameter is visible if the "Gate function" has been selected. It defines at which object value the gate is disabled, i.e. telegrams to the object "Switch" are ignored.
Parameter: "Object value after bus voltage recovery"
This parameter defines which value is assigned to the object "Logical connection 1 " or "Logical connection 2 " on bus voltage recovery.

Commissioning

3.3.7 Parameter window
 "Safety"

The safety functions enable a forced operation and the cyclical monitoring of the object "Switch". The parameter window is enabled under "A: Function".

The forced operation sets the output to a defined state which cannot be modified while the forced operation is active. Only the reaction on bus voltage failure/recovery has a higher priority.

The forced operation can take place via a 1 bit or 2 bit object. When using the 2 bit object, the output state is defined via the object value. At the end of the forced operation, the output always follows the state of the switch object.
When using the 1-bit forced operation, the output state is fixed. The reaction at the end of the forced operation can also be parameterised.

Please note the function diagram in section 4.2.6.

Parameter: "Enable function 'forced operation'"

The forced operation function can be enabled via this parameter. It can be carried out via a 1 bit or 2 bit object.

Parameter "Reaction on forced operation"

This parameter sets which state the output adopts during a forced operation. It is only visible for 1 bit forced operation.

Parameter: "Reaction when forced operation ends"
This parameter is visible if forced operation is carried out via a 1 bit object.
The state of the relay at the end of the forced operation is defined here. The output can open, close, follow the switch object or remain unchanged.
Parameter: "After bus voltage recovery the forced operation is"
You set here whether forced operation is active or inactive after bus voltage recovery. If forced operation is active, the status of the output can be defined. If forced operation is inactive, the output normally follows the settings in the "General" parameter window.

Parameter: "Enable cyclic monitoring of object 'Switch'"

The cyclic monitoring of the object "Switch" can be enabled here. If the device does not receive any telegrams via the object "Switch" for an adjustable period, the output is set to the safety position. The telegram value can be " 0 " or " 1 ".

Commissioning

This function is useful if the sensor sends the object "Switch" cyclically on the bus. It is recommended that the monitoring period is set slightly higher than three times the transmission cycle time.

Parameter: "Safety state"

The state which the relay adopts while the safety position is active is set here. The safety position is automatically cancelled as soon as the device again receives a telegram at the object "Switch".

Parameter: "Cyclic monitoring time"

The monitoring time with which the object "Switch" is observed is set here.

Commissioning

3.3.8 Parameter window:

"Threshold"
The threshold value function enables the evaluation of a 1 byte or 2 byte object. As soon as the object value falls below or exceeds a threshold value, a switching operation can be triggered. Up to two independent threshold values are available in total. The parameter window is enabled under "A: Function".

Explanations about the function threshold value can be found in section 0 . Please note the function diagram in section 4.2.6.

Parameter: "Data type of object 'Threshold value'"

The data type of the object "Threshold value" can be defined here. It is possible to choose between a 1 byte integer value and a 2 byte floating point value.

Parameter: "Threshold value 1" and "Threshold value 2"

Two threshold values can be defined here. If they are not required, it is possible to enter zero here. The value range is dependent on the data type.
Parameter: "Object value after bus voltage recovery"
The value of the object "Threshold value" after bus voltage recovery can be defined here.

Note: \quad When a threshold value is exceeded

- the time functions are restarted
- the logic operations are re-evaluated

Parameter: "Threshold values define hysteresis"

This parameter defines whether the 1st and 2nd threshold values should be interpreted as hysteresis limits. The hysteresis can reduce unwanted violations of the threshold value if the input value fluctuates around one of the threshold values.

Parameter: "Object value < lower threshold"
 Parameter: "Lower thrsh. <= object < upper thrsh."
 Parameter: "Object value >= upper threshold"

These parameters are visible if the threshold values are not hysteresis limits.
They define the reaction dependent on the threshold value.
The possible reaction of the output is: ON / OFF / no reaction

Commissioning

Parameter: "Reaction on exceeding upper threshold"
 Parameter: "Reaction on falling below lower threshold"

These parameters are visible if the threshold values are interpreted as hysteresis limits. They define the reaction of the output if the object value "Threshold value" exceeds or falls below the upper or lower threshold. A reaction only occurs if the object value was previously smaller or larger than the lower or upper threshold value. Further explanations can be found in section 0.

ABB i-bus ${ }^{\circledR}$ KNX

Commissioning

3.3.9 Communication objects

3.3.9.1 Overview of the objects

General objects

No.	Function	Object name	Data type	Flags
$\mathbf{0 / 1 5}$	Switch	Output A	1 bit (EIS 1) DPT 1.001	C, W

Switches the output on and off (switch command).
If the output is programmed as a normally open contact, the relay is closed with telegram value " 1 " and opened with telegram value " 0 " (the inverse is true should the output be programmed as a "normally closed" contact).

Additional function "Time, staircase lighting, flashing"

No.	Function	Object name	Data type	Flags
$\mathbf{2 / 1 7}$	Permanent ON	Output A	$\mathbf{1}$ bit (EIS1) DPT 1.001	C, W

For continuous activation of the output in the staircase lighting function.
If this object receives the value " 1 ", the output is switched on permanently should the function Staircase lighting be used. The behaviour can be parameterised when Permanent ON is ended (telegram value " 0 ").

$3 / 18$	Warning staircase lighting	Output A	1 bit (EIS1) DPT 1.005	C, T

Used to provide a warning before the staircase lighting time times out.
This object can be enabled in the time function "Staircase lighting" via a parameter. During the warning time before the staircase lighting time elapses, the object will receive the value " 1 ". Thus, for example, the user can be warned by actuation of the push button LED.

ABB i-bus ${ }^{\circledR}$ KNX

Commissioning

No.	Function	Object name	Data type	Flags
$4 / 19$	Duration of staircase lighting	Output A	2 Byte DPT 7.005	C, R, w

Modifies the duration of staircase lighting (in seconds).
The staircase lighting time (t_{ON}) can be changed via this object. The time is defined in seconds. The object value is set by the original parameterised value after supply voltage recovery.
This object is visible if the parameter "Duration of staircase lighting change via bus" is equal to "yes".
Note:
The duration of the staircase lighting time may not be less than the warning time. The warning "via short switch on/off" is always undertaken.

Additional function "Preset"

No.	Function	Object name	Data type	Flags
$\mathbf{5 / 2 0}$	Call preset 1 and 2 and $\mathbf{7 / 2 2}$	Output A	1 bit (EIS1) DPT 1.017	C, W

Retrieves a parameterised output state.
0 : retrieves preset1 or preset
1: retrieves preset2 or preset4.
For "Preset1" or. "Preset3" it is possible to parameterise as a further option that the state before recall of "Preset2" or "Preset4" is restored, or that the switch state is reset to the parameterised value. This is useful if Preset2 or Preset4 is stored.

$6 / 21$	Set preset $1 / 2$ and	Output A	1 bit (EIS1) DPT 1.017	C, W

Stores the currently set switching state of the output as a new preset value.
" 0 " stores preset1 or preset3
"1" stores preset2 or preset4
If the special function "restore old value before preset 2" or "restore parameterised value of preset 2 " has been assigned to preset 1 , the telegram value " 0 " is ignored.

Additional function "Scene (8 bit)"

No.	Function	Object name	Data type	Flags
$9 / 24$	8 bit scene	Output A	1 Byte DPT 18.001	C, W

Integrates the actuator in a scene. The object value contains a scene number as well as the instruction as to whether a scene should be retrieved or the current output state should be stored as a new scene value.
A scene number ($0 . . .63$, complies with Scene Nos. $1 . . .64$) is received via this object, as well as the information whether a scene is recalled or whether the current brightness should be stored in the scene.
Bit by bit telegram code:

MxSSSSSS

M: 0 - scene is called
1 - Scene is stored
x not used
S: number of the scene (1...64)

The following object values result:	$128:$	Store scene 1	
$0:$	Call scene 1	$129:$	Store scene 2
$1:$	Call scene 2	\ldots	
\ldots	Call scene 64		Store scene 64
$63:$	Ca1:		

Other values are ignored.

ABB i-bus ${ }^{\circledR}$ KNX

Commissioning

Additional function "Connection/logic"

No.	Function	Object name	Data type	Flags
$\mathbf{1 0 / 2 5}$	Logical connection 1 and	Output A	1 bit (EIS1) DPT 1.002	C, w

For logic operation of the object "Switch". The logic function can be parameterised.
First of all the object "Switch" is linked to "Logical connection 1". The result is then liked with object "Logical connection 2". The type of logical connection involved is defined in the parameters

Additional function "Prioritylforced operation, cyclic monitoring"

No.	Function	Object name	Data type	Flags
$\mathbf{1 2 / 2 7}$	Priority/forced operation	Output A	$\mathbf{1}$ bit (EIS1) DPT 1.003 or $\mathbf{2}$ bit (EIS8) DPT 2.001	C, w

Additional function "Threshold value"

No.	Function	Object name	Data type	Flags
$\mathbf{1 3 / 2 8}$	Threshold value	Output A	1 byte (EIS6) DPT 5.010 or $\mathbf{2}$ byte (EIS5) DPT 7.001	C, W

Commissioning

3.4 Operating mode "Heating

 actuator"The function "Heating actuator" switches an electronic relay which is generally used to control an electrothermal valve drive. The device is normally controlled by a room thermostat. Various types of control are possible (e.g. continuous-action control).

3.4.1 Parameter window "General"

Parameter: "Connected valve type"

In this parameter, you can set whether a valve should be controlled as "normally closed" or "normally open". If the valve is normally closed, the OPENING of the valve is achieved via the closing of the relay. If the valve is normally open, the opening of the valve is achieved by the opening of the relay.

Parameter: "Reaction on supply voltage failure"

On failure of the supply voltage, the Room Controller does not function. With this parameter, the output can be set to a defined state.

This parameter is only visible for the Switch Actuator Module SA/M. The Electronic Switch Actuator Modules ES/M 2.xx. 1 always switch off on failure of the supply voltage (high-resistance).

Parameter: "Control signal is received as"

The heating actuator can either be controlled via the 1 bit object "Switch" or the 1 byte object "Control value (PWM)".

In 1 bit control, the heating actuator functions in a similar way to a standard switch actuator: The room thermostat controls the heating actuator via standard switching commands. A 2-step control or pulse width modulation of the control value can be implemented in this way.

For 1 byte control, a value of $0 . . .255$ (corresponds to $0 \% \ldots 100 \%$) is preset by the room thermostat. This process is also known as "continuous-action control". At 0%, the valve is closed and at 100% it is fully opened. The heating actuator controls intermediate values via pulse width modulation (see graphics above).

Commissioning

Parameter "Send status response"

This parameter enables the object "Status switch" and defines its function. The object can have various functions depending on whether the actuator is controlled via a 1 bit or 8 bit object. The following table provides an overview:

$\mathbf{1}$ bit (PWM or 2-step)	Object value is identical to the value of the object "Switch"
$\mathbf{1}$ byte (continuous)	Setting "0\% = OFF, otherwise = ON": If the valve is fully closed, the object has the value " 0 ", otherwise it has the value "1". Setting "current status of the output": The object value corresponds to the current control of the valve. If the value is "ON", the valve is open. If the value is "OFF", the valve is closed. Please note that this setting may result in an increased bus load!

Parameter: "PWM cycle time for continuous control"

The interpulse period of the pulse width modulation for continuous-action control is set here (corresponds to t_{CYC} in section 4.3).

For 2-step control (1 bit control), the pulse width modulation is only used in fault mode, during forced operation and directly after bus voltage recovery.

Parameter: "Position of the valve drive on bus voltage failure"

This parameter sets how the valve drive is triggered on failure of the bus voltage. The programmed value is used as the PWM cycle time.
Parameter: "Position of the valve drive on bus voltage recovery"
This parameter sets how the valve drive is triggered after bus voltage recovery until the first switching or positioning command is received from the room thermostat. The programmed value is used as the PWM cycle time.

ABB i-bus ${ }^{\circledR}$ KNX

Commissioning

3.4.2 Parameter window

"Function"

Modul	A: Allgemein	A: Funktion
	B: Allgemein	
Funktion Überwachung des Reglers freigeben	nein	
Funktion Zwangsfuihrung freigeben nein Funktion Ventilspuilung freigeben nein 		

Parameter "Enable monitoring of the thermostat"

The cyclic monitoring of the room thermostat can be enabled here. The failure of the thermostat can thus be detected. The output switches to fault mode and moves to a defined position.

Parameter: "Enable function 'forced operation'"
The forced operation of the output can be enabled here in order to move the outputs to a specific position, e.g. for inspection purposes.
Parameter: "Enable function 'valve purge'"
The cyclic valve purge can be enabled here to prevent deposits from forming in the valves.

Commissioning

3.4.3 Parameter window:
 "Monitoring"

This parameter window is visible if the value yes has been entered in the parameter Enable cyclic monitoring time of room thermostat in the parameter window "x: Function".

Parameter: "Cyclic monitoring time of room thermostat"

The telegrams of the room thermostat are transferred to the electronic actuator at specific intervals. If one or more of the consecutive telegrams is omitted, this can indicate a communications fault or a malfunction in the room thermostat. If there are no telegrams to the objects "Switch" or "Control value (PWM)" during the period defined in this parameter, the actuator switches to fault mode and triggers a safety position. The fault mode is ended as soon as a telegram is received.

Note: If this parameter window is visible, the room thermostat must send the control value cyclically, otherwise no function is possible. The monitoring time should be greater than the cyclic transmission time (recommended: factor 2).

Parameter: "Position of the valve drive on failure of the room thermostat"

The safety position which is triggered by the actuator in fault mode is defined here. The switch cycle time t_{CYc} of the control is defined in the parameter "PWM cycle time for continuous control".

Parameter "Enable object "Telegr. Thermostat fault"

The object "Telegr. fault thermostat" that can display the failure of the room thermostat can be enabled in this parameter.

ABB i-bus ${ }^{\circledR}$ KNX

Commissioning

3.4.4 Parameter window

"Forced operation"
The function can be activated and deactivated via the object "Forced operation". During a forced operation, the actuator triggers a freely adjustable forced position, which can no longer be changed. This has the highest priority, i.e. it is not modified by a valve purge or safety position.

			A: Zwangführung	B: Allgemein	unverändert 0% (geschlossen)
Modul	A: Allgemein	A: Funktion			
Ventilstellung während Z wangsführung					10\% [26]
			unverändert		20\% (51)
					$\begin{array}{ll} 30 \% & (77) \\ 40 \% & (102] \end{array}$
					50\% (128)
					60\% (153)
					70\% (179)
					80\% [204]
					90\% [230]

Parameter: "Valve position during forced positioning"

The valve position triggered by the actuator during the forced operation is defined in this parameter. The switch cycle time t_{CYC} of the control is defined in the parameter "PWM cycle time for continuous control".

ABB i-bus ${ }^{\circledR}$ KNX

Commissioning

3.4.5 Parameter window:

"Valve purge"
Regular purging of a heating valve can prevent deposits from forming in the valve area and restricting the valve function. This is particularly important at times when the valve position does not change very much. The valve is opened to the maximum during a valve purge. It can be triggered via the object "Trigger valve purge" and/or automatically at adjustable intervals.

Parameter: "Time of valve purge"

The duration of a valve purge is set here.
Parameter: "Automatic valve purge"
If "yes" is entered in this parameter, the valve is automatically purged at adjustable intervals.

Parameter: "Period between valve purges"

This parameter is only visible with Automatic valve purge. It defines the interval between two valve purges.

ABB i-bus ${ }^{\circledR}$ KNX

Commissioning

3.4.6 Communication objects

3.4.6.1 Overview of the objects

No.	Function	Object name	Data type	Flags
0/15	Switch	Output A	1 bit (EIS1) DPT 1.001	c, W
This object is visible if the control of the heating actuator is implemented via a 1 bit object. It is used for switching the output. " 0 ": close valve "1": open valve The output is controlled directly depending on if the valve is a "normally open" or "normally closed" type.				
0/15	Control value (PWM)	Output A	1 byte (EIS6) DPT 5.001	C, W
Determ the outp This ob e.g. with it is fully Telegra 0 255	es the control value of the t. t is visible if the contro a continuous control. opened. value: lve closed Ive fully opened	via the interp heating actuat t value 0 , the	pulse width mo mented via an 8 sed and at obje	ation) objec value
1/16	Status switch	Output A	1 bit (EIS1) DPT 1.001	C, T
Reports the switching state of the valve control (valve opens / closes). The object is visible if the feedback is activated in the parameter settings. It indicates the switching state of the output. The object value is sent with changes. The response of the object can be set when controlling a heating actuator via an 8 bit object in the parameter "Send status response": current status of the output: 0 : Valve will be closed 1: Valve will be opened $0 \%=0, \text { otherwise }=1$ 0 : Valve is closed (0%) 1: Valve is not closed ($1 \% \ldots 100 \%$)				
3/18	Forced operation	Output A	$\begin{aligned} & 1 \text { bit (EIS1) } \\ & \text { DPT } 1.003 \end{aligned}$	C, w
Sets the output to a defined state and disables it. This object is visible if the 1 bit forced operation is enabled in the parameters. If the value " 1 " is received, forced operation is activated and the output controls the set valve position. If the value " 0 " is received, forced operation ends. The output remains unchanged until a new control value is received (via object "Switch" or "Control value PWM").				
4/19	Trigger valve purge	Output A	$\begin{aligned} & 1 \text { bit (EIS1) } \\ & \text { DPT } 1.010 \end{aligned}$	c, w
This object is visible if the purge function is enabled in the parameters. If the value " 1 " is received, the valve is opened for the duration of the valve purge. If the value " 0 " is received, the valve purge ends.				
5/20	Status valve purge	Output A	1 bit (EIS1) DPT 1.001	C, T
Indicates that valve purge is active. This object indicates that valve purge is active. 0 : valve purge is not active: 1: valve purge is active				

ABB i-bus ${ }^{\circledR}$ KNX

Commissioning

No.	Function	Object name	Data type	Flags
11/26	Thermostat fault	Output A	1 bit (EIS1) DPT 1.005	C, T
Indicates a possible thermostat fault. This object indicates a possible fault in the room thermostat. The object "Switch" or "Control value (PWM)" can be cyclically monitored. If the object value is not received for a programmable time, the device assumes that the room thermostat has failed and signals a fault. 0 : no fault 1: fault				
29	Status byte	Output A...B	1 byte non DPT	C, R, T
This ob Electron This ob more de with ch Bit 0 1 2 3 4 5 6 7 A detail	ct provides further Switch Actuator ct is only visible with ailed information ab ges. eaning verload (e.g. short verload (e.g. short coming supply volta pply voltage type: used, always "0" used, always "0" used, always "0" used, always "0" table for encoding	about the operat M 2.x.1). nic Switch Actu rating state of th utput A tput B DC value can be fou	of the device ules ES/M 2.x The object ion 5.	provides is sent

Commissioning

3.5 Operating mode:

"Fan coil control (blower convection unit)"

3.5.1 What is a fan coil unit?

The application provides the opportunity of controlling a fan coil airconditioning device (blower convection unit).
If this operating mode is selected, this output has the master function in fan coil control. On the one hand, it controls fans speed 1 directly, while on the other hand it controls further outputs of switch actuator modules via communication objects that switch valves and other fan speeds. These outputs are parameterised as a "Slave" function.

A fan coil unit consists of one or two cooling or heating circuits which are controlled via valves. The valves are controlled via the outputs of the switch actuator (on/off). There is also a fan which blows on the heat exchanger. It can be controlled in stages (generally 3 speeds):

Control value (example)	Fan speed	Output 1	Output 2	Output 3
$0 \ldots 30 \%$	Speed 1	ON	OFF	OFF
$30 \ldots 60 \%$	Speed 2	OFF	ON	OFF
e.g. $60 \ldots 100 \%$	Speed 3	OFF	OFF	ON

2-pipe system

With a 2-pipe system, only hot or cold water flows through the fan coil unit. The device therefore only has one heat exchanger.

4-pipe system

In a 4-pipe system, the fan coil unit has separate connections for hot and cold water. The device thus has two heat exchangers.

Commissioning

3.5.2 Parameter window

"General"

Modul A: Allgemein A: Stufen A: Funktion	B: Allgemein
Betriebsart des Ausgangs	Fan Coil-Steuerung [Gebläsekonvektor)
Funktion des Ausgangs in der Steuerung	Master
Ruickmeldung des Schaltzustandes	nein
Wartezeit für Stufenumschaltung	1): 0 (s:ms)
Art der Fan-Coil-Einheit	2-Rohr-System
Betriebsart	Heizen und Kühlen
Funktion des Objektes "Umschaltung Heizen/Kuihlen"	normal (Heizen $=0$, Kühlen $=1$)

Parameter "Function of output when control is active"

Here you can set whether the output operates as a "Master" or "Slave" in fan coil control mode.

There can only be one output with the master function per fan coil unit. This output controls fan speed 1. The master controls valve drives or further fan speeds via communication objects. These outputs must then be parameterised with the "Slave" function.

Note: \quad Outputs with the slave function should be parameterised as such. If parameterised, e.g. as a "Switch actuator", there is a danger that more than one output is closed under unfavourable conditions. The fan motor for example can be damaged as a result.

Outputs with the slave function are only controlled via the object "Fan coil slave". The following parameters are only visible in the "Master" setting.

Parameter "Status response of switching state"

The object "Status switch" can be enabled via this parameter if the status of the output is reported on the bus.

Parameter "Waiting time for switching between two speeds"

The operating time is delayed to enable an idle period when switching over the motor or valve, or to prevent the period that they are switched on/off from being too short. The value range can be set between 500 ms and 1 min .

Parameter: "Type of fan coil unit"

The type of fan coil unit can be chosen here.
In a 2-pipe system, only hot or cold water flows through the fan coil unit and the device therefore only has one heat exchanger. In a 4-pipe system, the fan coil unit has separate connections for hot and cold water. The device thus has two heat exchangers.

Parameter: "Operating mode"

A two-pipe system can be used for "heating", "cooling" or both "heating and cooling". In latter case, the object "Toggle between heat and cool" is released, which the building control uses to indicate whether hot or cold water is supplied.

Commissioning

Parameter: "Function of object 'Toggle between heat and cool'"
The object "Toggle between heat and cool" can be inverted via this parameter. This is preset by the room thermostat.

Commissioning

3.5.3 Parameter window:

"Speeds"

Modul A: Allgemein A: Stufen	A: Funktion	B: Allgemein		$\begin{aligned} & 1 \text { Stufe } \\ & 2 \text { Stufen } \end{aligned}$	
Anzahl Lifterstufen		5 Stufen		4 Stufen5 Stufen	
Schwellwert Aus -> Stufe1				1\% [3]	-
Schwellwert Stufe1 -> Stufe2		20\% (51)	\checkmark	2% (5) 3% $(8]$ 4% (10)	\square
Schwellwert Stufe2 -> Stufe3		40\% (102)	\checkmark	5% ...	
Schwellwert Stufe3 -> Stufe4		60\% (153)	-	$\begin{array}{ll} 95 \% & (242) \\ 96 \% & (245) \\ 97 \% & (247) \end{array}$	
Schwellwert Stufe4 -> Stufe5		80\% (204]	\checkmark	$\begin{array}{ll} 98 \% & (250] \\ 99 \% & {[252]} \\ 100 \% & 255] \end{array}$	\checkmark
Hysterese Stufen in \%		5	-1	100\% (250)	

(0\% .. 20\%)

Parameter: "Number of fan speeds"

Here you can set the number of fan speeds that the Fan Coil unit has. It is possible to set between " 1 speed" and " 5 speeds". The corresponding objects "Speed 2" to "Speed 5" are enabled.
Parameter: "Threshold OFF \rightarrow speed1" to "... speed4 \rightarrow speed5"
These parameters become visible depending on the number of fan speeds selected. The threshold values of the control value from which a fan switches up or down must be entered here.

Parameter: "Hysteresis between fan speeds in \%"

If a fan value fluctuates around a fan speed, the ventilation would be switched on and off continually. This can be prevented by setting a hysteresis.

ABB i-bus ${ }^{\circledR}$ KNX

Commissioning

3.5.4 Parameter window

"Function"

| Modul | A: Allgemein | A: Stufen | A: Funktion | B: Allgemein |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Funktion Überwachung des Reglers
 freigeben | nein | | | |
| Funktion Luifterstufenbegrenzung
 freigeben
 Funktion Zwangsfiuhrung freigeben | nein | | | |

Parameter "Enable monitoring of the thermostat"

The cyclic monitoring of the room thermostat can be enabled here. The failure of the thermostat can thus be detected. The output switches to fault mode and moves to a defined position.
Parameter: "Enable function "fan speed limitation"
This function enables, e.g. noise reduction via the bus during operation at night.

Parameter: "Enable function 'forced operation'"

The forced operation of the fan speed and the valve position can be enabled here in order to move the outputs to a specific position, e.g. for inspection purposes.

Commissioning

3.5.5 Parameter window:

"Monitoring"

The cyclic monitoring of the room thermostat can be enabled here via the objects "Control value heating" and "Control value cooling". As soon as the objects are not received for a certain period, the device switches to fault mode (object "Fault" = "1").

Cyclic monitoring may only be enabled if the room thermostat sends the objects "Heating" and/or "Cooling" cyclically.

Parameter "Cyclic monitoring time of room thermostat"

This parameter is visible if cyclic monitoring has been enabled. The cyclic monitoring time is set here.

Parameter "Fan speed during fault of thermostat"
This parameter is visible if cyclic monitoring has been enabled. It defines which fan speed and valve position are triggered during fault mode.

Parameter "Valve position during fault of room thermostat"

Here you can set whether heating or cooling should be carried out in fault mode, or whether the current setting should be maintained.

The parameter is visible, if a 4-pipe system is used.

Parameter "Enable object "Telegr. Thermostat fault"

The object "Telegr. fault thermostat" that can display the failure of the room thermostat can be enabled in this parameter.

Commissioning

3.5.6 Parameter window

"Step limiting"

Parameter "Highest speed during active limitation"

The highest fan speed during active speed limitation is set here (see object "Speed limitation").

3.5.7 Parameter window

"Forced operation"

During a forced operation, the actuator triggers a freely adjustable forced position. This has the highest priority, i.e. it is not modified by a valve purge or safety position. The forced operation can be activated via the object
"Forced operation" = ON and deactivated via "Forced operation" = OFF.

Parameter "Valve position during forced operation"

This parameter defines which fan speed and valve position are triggered during the forced operation.

Parameter: "Valve position during forced positioning"

The valve position triggered by the actuator during the forced operation is defined in this parameter. The switch cycle time $\mathrm{t}_{\mathrm{CYC}}$ of the control is defined in the parameter "PWM cycle time for continuous control".

ABB i-bus ${ }^{\circledR}$ KNX

Commissioning

3.5.8 Communication objects

3.5.8.1 Overview of the objects

Communication object for the function "Master"

No.	Function	Object name	Data type	Flags
0/15	Control value heating	Output A, Master	1 byte (EIS6) DPT 5.001	C, w
The heat output is preset via this object. The object value is sent, e.g. from a room thermostat. 0 : no heating output 255: maximum heating output				
1/16	Control value cooling	Output A, Master	1 byte (EIS6) DPT 5.001	C, W
The cooling output is preset via this object. The object value is sent, e.g. from a room thermostat. 0 no cooling output 255 maximum cooling output				
2/17	Step limiting	Output A, Master	$\begin{aligned} & 1 \text { bit (EIS1) } \\ & \text { DPT } 1.002 \end{aligned}$	C, W
Using this object, the fan speed can be limited to a maximum value. This prevents, for example, that the fan does not exceed a certain speed (at night to prevent noise). 0 : Step limiting not active 1: Step limiting active				
3/18	Forced operation	Output A, Master	$\begin{aligned} & 1 \text { bit (EIS1) } \\ & \text { DPT } 1.003 \end{aligned}$	C, w
Using this object, the Fan-Coil control is forced to use a predefined fan speed and valve position and the control is inhibited. The fan speed and valve position can be parameterised. 0 : Forced operation not active 1: Forced operation active				
4/19	Toggle between heat and cool	Output A, Master	$\begin{aligned} & 1 \text { bit (EIS1) } \\ & \text { DPT } 1.001 \end{aligned}$	C, w
This object is visible with operating mode "2-pipe system, heating and cooling", i.e. the Fan Coil unit features a connection for the supply of hot and cold water. The device receives the information whether hot or cold water is required from the building control via this object. The object "Control value heating" or "Control value cooling" is evaluated accordingly. The object can be inverted. Default: 0 : Heating 1: Cooling Inverted: 0 : Cooling 1: Heating				
$\begin{aligned} & 5 / 20 \\ & 6 / 21 \\ & 7 / 22 \\ & 8 / 23 \end{aligned}$	Slave fan speed 2 Slave fan speed 3 Slave fan speed 4 Slave fan speed 5	Output A, Master	$\begin{aligned} & 1 \text { bit (EIS1) } \\ & \text { DPT } 1.001 \end{aligned}$	C, R, T
The master output controls further outputs via these objects which are used to control the ventilation. These outputs must be parameterised as "Slaves". 0 : fan speed off 1: fan speed on				

ABB i-bus ${ }^{\circledR}$ KNX

Commissioning

No.	Function	Object name	Data type	Flags
$\mathbf{9 / 2 4}$	Slave valve	Output A, Master	$\mathbf{1}$ bit (EIS1) DPT 1.001	C, R, T

This object is visible when controlling a 2-pipe system, i.e. there is only one valve. The object controls a further output that controls the valve. The output must be parameterised as a "Slave". As soon as the fan operates with at least the first speed, the object value = " 1 ", otherwise it is " 0 ".
0 : valve closed
1: valve opened

$9 / 24$	Slave valve heating 10/25	Output A, Master	1 bit (EIS1) DPT 1.001	C, R, T

With these objects, the master controls two switch outputs for control of the heating and cooling valves.
"Slave valve heating" has the value " 1 ", if the room thermostat has issued the command for heating via the object "Control value heating" ("Control value heating" \geq threshold for fan speed 1).
"Slave valve cooling" has the value " 1 ", if the room thermostat has issued the command for heating via the object "Control value cooling" ("Control value cooling" \geq threshold for fan speed 1).
Either "Slave valve heating" or "Slave valve cooling" can have the value "1". Should a simultaneous command (malfunction) from the thermostat be received for both heating and cooling, heating has priority.
0 valve closed
1 valve opened
These objects are visible when controlling a 4-pipe system, i.e. there are two valves for heating and cooling.

11/26	Thermostat fault	Output A, Master	1 bit (EIS1) DPT 1.005	C, T
This object indicates a possible fault in the room thermostat. Should the object value "Control value heating" or "Control value cooling" remain absent for a programmable time, a fault is assumed in the room thermometer and the Fan Coil control reports a fault and moves to the safety position. 0 : no fault 1: fault				
12/27	Status switch	Output A	1 bit (EIS 1) DPT 1.001	C, ${ }^{\text {T }}$
Displays the current state of the output. 0 : relay opened 1: relay is closed				
29	Status byte	Output A...B	1 byte non DPT	$\mathrm{C}, \mathrm{R}, \mathrm{T}$
This ob more d with ch Bit	ct is only visible with ailed information ab ges. eaning verload (e.g. short verload (e.g. short coming supply volt upply voltage type: t used, always "0" t used, always " 0 " t used, always "0" t used, always " 0 " d table for encoding	in Switch Actuato rating state of the d utput A utput B DC value can be found	ules ES/M 2.x The object valu tion 5.	provides is sent

ABB i-bus ${ }^{\circledR}$ KNX

Commissioning

Object for the function "Slave"

No.	Function	Object name	Data type	Flags
0/15	Fan Coil slave	Output A	1 Bit DPT 1.001	C, w

Application and Planning

4 Planning and application

4.1 The three operating modes

It is possible to choose between three operating modes for each output:

1. Switch actuator

This function is used for normal switching, e.g. of lighting. The output is controlled directly via the object "Switch". A large number of additional functions are possible. See section 3 for more details.
2. Heating actuator

In this function, the output is used to control heating valves, e.g. in an individual room temperature control system. A room thermostat sends a control value which the output uses to control the valve (e.g. as PWM or 2 -step control). See section 4.3 for more details.
3. Fan coil control

This function is used to control a fan coil unit for air conditioning in a room, e.g. in an individual room temperature control system.
The function is as follows: An external room thermostat determines the setpoint value ($0 \ldots 255$). The fan speed and the setpoint value of the fan coil unit are to be controlled depending on this setpoint value. Several outputs are required for control and the output therefore controls further outputs ("Slaves") as a "Master" via the bus. The master output itself controls fan speed 1 . See section 4.4 for more detailed information.

ABB i-bus ${ }^{\circledR}$ KNX

Application and Planning

4.2 Operating mode "Switch actuator"

4.2.1 Time functions

The output switches off automatically after the staircase lighting time T_{ON}. With each " 1 " telegram, the time restarts ("retrigger function").

A warning function enables the user to be warned in good time before the staircase lighting time elapses. The warning can be carried out by switching the output on/off briefly or by sending an object.

The output is switched off briefly for the period "T WARN" before the staircase lighting time "Ton" elapses and the object "Warning stairc. lighting" is sent. Push button LEDs for example can flash to indicate a warning.

With pumping up, the user can adapt the staircase lighting time to the current requirements by pressing the push button several times in succession. The maximum duration of the staircase lighting time can be set in the parameters.

Output

If the device receives a further ON command when the staircase lighting is switched on, the staircase lighting time is added to the remaining period. In this case, the time does not restart (no retrigger).

Application: Lighting control on staircases, monitoring of telegrams

ON/OFF delay

The switching ON / OFF delay delays switch on or switch off of the output.

ABB i-bus ${ }^{\circledR}$ KNX
研
\qquad
Output
The delay time $T_{D 1}$ or $T_{D 0}$ starts after a switch command, and after it has timed out, the output executes the switch command.
Note: If the device receives an OFF command during the ON delay period $T_{D 1}$, the ON command is rejected.
Application: e.g. dynamic lightscene, in which luminaires are connected in sequence

Flashing

The output can flash when the output is switched on and off periodically.

The switch on time (T_{oN}) and switch off time ($\mathrm{T}_{\mathrm{OFF}}$) during flashing can be programmed.
Note: Please note that the maximum number of switching operations is limited for the Switch Actuator Module SA/M. The number of switching operations is unlimited for the Electronic Switch Actuator.

4.2.2 Connection/logic

With the function "Connection/Logic", it is possible to connect the switching of the output with certain conditions. Two connection objects are available:

First, the object "Switch" is evaluated together with the object "Logical connection 1 ". The result is then liked with "Logical connection 2".
The following logic functions are possible:

Application and Planning

	Object values			
Logic function	Switch	Logical connection	Result	Explanation
AND	0	0	0	The result is 1 if both input values are
	0	1	0	1.
	1	0	0	
OR	0	1	1	
	0	0	0	The result is 1 if one of both input
	1	1	1	values is 1.
	1	1	1	
XOR	0	0	1	
	0	1	0	The result is 1 when both input values
	1	0	1	have a different value.
	1	1	0	
Gate	0	0	-	The object "Switch" is only allowed
function	0	1	0	through if the GATE is open.
	1	0	Otherwise the receipt of the object	
	1	1	1	"Switch" is ignored.
				Example shown here:
				Disable if "0" (OFF)

The logic function is always re-calculated when an object value is received.
Example: The gate function is parameterised with "Block if, 0 (OFF)"..
The logical connection object has the value " 0 ".
The object "Switch" receives the value " 1 "
\rightarrow No reaction of the output. .
Logic object receives the value "1" (gate open)
\rightarrow No reaction of the output.
The object "Switch" receives the value "1"
\rightarrow The output switches on.
Application: Disable the switching of the lighting.
Only switch the lighting on under certain conditions.

4.2.3 Presets

A parameterisable switching state can be retrieved with the help of presets.
Lightscenes can therefore be implemented for example.

Retrieve preset

Fig. 1: Controlling light scenes via presets
Switch states ("preset values") can be retrieved via the object "Call Preset". A maximum of 4 preset values are available for each output:

Application and Planning

Action	Telegram
Retrieve preset1	Object "Call preset $1 / 2 "=0$
Retrieve preset2	Object "Call preset $1 / 2$ " $=1$
Retrieve preset3	Object "Call preset $3 / 4 "=0$
Retrieve preset4	Object "Call preset $3 / 4 "=1$

Store preset

Fig. 2: Storing the current output state as the new preset value
The current switching state is stored as a new preset value via the object "Set preset ...". The user can for example adapt a lightscene in this way. The presets are stored via the following values:

Action	Telegram
Store preset1	Object "Set preset $1 / 2$ " $=0$
Store preset2	Object "Set preset $1 / 2$ " $=1$
Store preset3	Object "Set preset $3 / 4$ " $=0$
Store preset4	Object "Set preset $3 / 4$ " $=1$

Special function: Restore state

A useful special function can also be assigned to preset1 and preset3, which is used to recreate the brightness level that was present before retrieving preset2 or preset4. The following diagram clarifies this:

Fig. 3: Restoring the old brightness state (example)

Application and Planning

This function can be used for example after a presentation to restore the lighting to the state it was in beforehand.

4.2.4 8 bit scene

Fig. 4: Retrieve scene, 8-bit scene
With the 8 bit scene, the push button issues the instruction to call a scene. The scene is not stored in the push button but rather in the actuator. All actuators are addressed using the same group address. It is thus sufficient to send just a single telegram to recall the scene.
A scene number is sent with the telegram value that must correspond with the scene number in the parameters of the actuator.

After a long push button action (for example), the actuators receive a save command that causes them to store the current value issued by the actuator as a new scene value.

Up to 64 different scenes are managed via a single group address. An 8 bit scene telegram contains the following information:

- Number of the scene (1...64)
- Retrieve scene / store scene

4.2.5 Threshold value function

The threshold function monitors a 1 byte or 2 byte value. As soon as this value exceeds or falls below a threshold value, the output can be switched. The threshold values can be interpreted as hysteresis values:
Threshold values are hysteresis values

When the value exceeds the upper threshold or falls below the lower threshold, the output is switched.

Application and Planning

Threshold values are not hysteresis values

When the value exceeds or falls below any threshold value, the output is switched.

Note: If the object "Threshold value" receives a value, which does not exceed or fall below any of the threshold values when compared to the old value, no switching operations are triggered.

ABB i-bus ${ }^{\circledR}$ KNX

4.2.6 Function chart

The following illustration indicates the sequence in which the functions are processed.

Command input:

Fig. 5: Interdependence and priority of the functional groups

Example: On receipt of a "Logical connection" object, the linking logic is evaluated first of all. The result is analysed by the time function; when the staircase lighting function is active, this can result in the staircase lighting being switched on.
The forced operation has the highest priority as it is evaluated last of all the functions.

ABB i-bus ${ }^{\circledR}$ KNX

Application and Planning

4.3 Operating mode "Heating actuator"

The "Heating actuator" function is normally used to control an electrothermal valve drive. The output receives its control value from a room thermostat.

The electrothermal valve drive can be triggered via two-step control or pulse width modulation. With pulse width modulation, the control is implemented by a variable mark-space ratio. The following example clarifies this:

Fig. 6: Pulse width modulation (example)
During $t_{\text {ON }}$, the valve is triggered with OPEN ("ON phase"). During $t_{\text {OFF }}$ the valve is triggered with CLOSE ("OFF phase"). Due to $\mathrm{t}_{\mathrm{ON}}=0.4 \times \mathrm{T}_{\mathrm{CYc}}$, the valve is set at approx. 40%. $\mathrm{T}_{\mathrm{CYC}}$ is the so-called PWM cycle time for continuous control.

Important: Pulse width modulation leads to frequent switching of the outputs. Consider the limited number of switching cycles for standard switch actuators! The use of electronic switch actuators should be the preferred method.

ABB i-bus ${ }^{\circledR}$ KNX

Application and Planning

Special functions

The actuator can trigger specific special positions during "Forced positioning", "Valve purge" and "Safety position". The following diagram provides an overview of the priority of the special positions:

Fig. 7: Priority of the special functions (flow chart)

ABB i-bus ${ }^{\circledR}$ KNX

4.4 Operating mode:

"Fan coil control"

4.4.1 Terms

4.4.2 Configuration of a HVAC system with Fan Coil units

Application and Planning

Fan Coil unit is a term used for a valve convector or blower convection unit. The Fan Coil unit is connected to a central heating and cooling water supply and generates the desired temperature for the room. A room can be heated, cooled and ventilated using a Fan Coil unit.

A HVAC system with Fan Coil units (HVAC = heating, ventilation, airconditioning) consists of a central heating and cooling water system. The Fan Coil units are installed in rooms and directly connected to the heating and cooling circuit.

Fig. 8: Configuration of a HVAC system with Fan Coil units

4.4.3 Design of a Fan Coil unit

ABB i-bus ${ }^{\circledR}$ KNX

4.4.4 Variants

Pipe systems

A Fan Coil unit can be configured as a 2,3 or 4 -pipe system.

Fig. 10: Pipe systems of fan coil units
In the 4-pipe version, separate water circulation loops are used for hot and cold water. There are thus also two separate heat exchangers for heating and cooling which are each triggered via a valve in the Fan Coil unit.
The 3-pipe version functions in a similar way to the 4-pipe version. In the 3pipe version there is also a separate inlet for heating and cooling water as well as two separate heat exchangers with one valve each. In contrast to a 4 pipe version, the 3 pipe version has a common return for heating and cooling water.

The 2-pipe version consists of just a single water circuit which is heated or cooled alternately to suit the season. In a 2-pipe Fan Coil unit there is only one heat exchanger with a valve.

In some HVAC systems cooling is undertaken exclusively with a 2-pipe Fan Coil unit. The heating function is undertaken by a conventional heater or an electrical heater.

4.4.5 Connection

Fig. 11: Connection of a fan coil unit (example)

Application and Planning

The diagram shows the control of a fan coil unit, consisting of a fan drive (3 speed) and two valves for a cooling or heating circuit. The device is therefore a 3 or 4-pipe version.
Five switch outputs are required for control which is why three switch actuator modules are necessary. The free output can be used elsewhere.
Switch output A of the switch actuator at the top controls fan speed 1 and simultaneously adopts the function of the "master". These outputs must be parameterised as a "Slave". The master controls the slaves via the normal group address assignment.

Allocation of group addresses

Variations

If the Fan Coil unit only cools or heats (2-pipe-version), only one valve is required and two switch actuator modules are sufficient.
When using electrothermal valve drives for valve control, the use of Electronic Switch Actuator Modules (ES/M) is recommended.

ABB i-bus ${ }^{\circledR} \mathrm{KNX}$

4.5 Reaction on voltage

 failure and recovery
Application and Planning

Reaction on bus voltage failure

The behaviour of the outputs on bus voltage failure can be parameterised. The function of the Room Controller is retained provided that the supply voltage (115 / 230 V AC or 12 V DC auxiliary voltage) is available.

If it has been set in the parameters, the Room Controller can thus continue to keep the functions in the room maintained.

In the "Heating actuator" operating mode, any neutral position of the valve can be triggered. In the "Fan coil control" operating mode, the master and slave outputs are switched off (high-resistance). Fan speed 0 is thus triggered.
Example: Conventional push buttons are connected to a Room Controller via binary input modules. The Room Controller also regulates the lighting in the room. After bus voltage failure, the lighting can still be operated since the Room Controller is not supplied by the bus.

Reaction on bus voltage recovery

The behaviour of the outputs is programmable. In the master "Fan coil control" function, the outputs remain switched off until a new control value is received.

Reaction on supply voltage failure

The supply voltage has failed if there is a failure of both the $115 / 230 \mathrm{~V}$ AC supply and the 12 V DC auxiliary supply. The Room Controller has no function in this case.

For the Switch Actuator Module SA/M, the status of the relay outputs can be parameterised so that a defined state can be established. The setting is carried out in the parameter "Reaction on bus voltage failure".

In the "Heating actuator" operating mode, it can be set whether the valve should be fully open or closed during the supply voltage failure. In the "Fan coil control" operating mode, the master and slave outputs are opened. Fan speed 0 is thus triggered.
For the Electronic Switch Actuator Modules ES/M, the outputs always switch off during the supply voltage failure (high-resistance).

Note: \quad The preset and scene values that have been changed by the user are lost on failure of the supply voltage. They are overwritten by the parameterised default values.

Reaction on supply voltage recovery

The behaviour of the outputs is identical to the behaviour on bus voltage recovery. It can be parameterised for each output (except for fan coil control).

4.6 Behaviour after programming

After programming, the device behaves in the same way as after bus voltage recovery (parameterisable).

5 Appendix

5.1 Table of values of object

"Status byte"
The object shows the initial state of the electronic switch actuator modules:

0	00				
1	01				-
2	02			\square	
3	03			-	\square
4	04		\square		
5	05		-		\square

6	06		\square	\square	
7	07		\square	\square	\square
8	08	-			
9	09	-			\square
10	OA	\square		\square	

11	OB	\square		\square	\square
12	OC	-	-		
13	OD	\square	\square		\square
14	OE	-	-	-	
15	OF	-	\square	\square	\square

ABB i-bus ${ }^{\circledR}$ KNX

Appendix

5.2 Ordering information

Designation	Type	Order No.	bbn 40 16779 EAN	Price 1 pc. [EURO]	Price group	Weig ht 1 pc. [kg]	Packag ing [pc.]
Switch Actuator Module, 2-fold, 6 AX	SA/M 2.6.1	2CDG 110002 R0011	583145		26		1
Switch Actuator Module, 2-fold, 16 A	SA/M 2.16.1	2CDG 110100 R0011	681582		26		1
Electronic Switch Actuator Module, 2-fold, 230 V AC	ES/M 2.230.1	2CDG 110013 R0011	583619		26		1
Electronic Switch Actuator Module, 2-fold, 24 V DC	ES/M 2.24.1	2CDG 110014 R0011	583626		26		1

Your KNX-Partner

