

ABB i-bus ${ }^{\ominus}$ KNX

 Room Master RM/S 3.1 Product ManualContents Page
1 General 3
1.1 Using the product manual 3
1.1.1 Notes 4
1.2 Room Master: Areas of application 5
1.2.1 Residential care homes5
1.2.2 Apartments 5
1.2.3 Hospitals. 5
1.2.4 Hotel6
1.3 Product and functional overview 6
1.4 Function of the Room Scenarios 8
2 Device technology 9
2.1 Technical data 9
2.1.1 Binary inputs 10
2.1.2 Rated current output 6 A 11
2.1.3 Output lamp load 6 A 12
2.1.4 Rated current output 20 A 13
2.1.5 Output lamp load 20 A 14
2.2 Connection schematics 15
2.3 Dimension drawing 16
2.4 Assembly and installation 17
3 Commissioning 19
3.1 Overview 19
3.1.1 Functions of the inputs 19
3.1.2 Functions of the outputs 20
3.2 Parameters 21
3.2.1 Parameter window General 22
3.2.2 Parameter window Enable Inputs a...f. 24
3.2.2.1 Parameter window a: Switch sensor 26
3.2.2.1.1 Parameter Distinction between short and long operation - no 28
3.2.2.1.2 Parameter Distinction between short and long operation - yes 36
3.2.2.2 Parameter window a: Dimming sensor 37
3.2.2.3 Parameter window a: Blind sensor 42
3.2.2.4 Parameter window a: Value/Forced operation 46
3.2.2.4.1 Parameter Distinction between short and long operation - no 49
3.2.2.4.2 Parameter Distinction between short and long operation - yes. 54
3.2.3 Parameter window Enable Inputs g...I 54
3.2.4 Parameter window Enable Outputs A..D (20 AX C-Load) 55
3.2.4.1 Parameter window A: Output (20 AX C-Load) 56
3.2.4.1.1 Parameter window A: Output (20 AX C-Load) - Time 62
3.2.4.1.2 Parameter window A: Output (20 AX C-Load) - Scene 68
3.2.4.1.3 Parameter window A: Output (20 AX C-Load) - Logic 71
3.2.5 Parameter window Enable Outputs E...L (6 A) 73
3.2.5.1 Parameter window E: Output (6 A) 77
3.2.5.1.1 Parameter window E: Output (6 A) - Time, Flashing 78
3.2.5.2 Parameter window E, F: Blind (6 A). 81
3.2.5.2.1 Parameter window E, F: Blind (6A) - Drive 85
3.2.5.2.2 Parameter window E, F: Blind (6 A) - Automatic 87
3.2.5.2.3 Parameter window E, F: Blind (6 A) - Scene 90
3.2.5.2.4 Parameter window E, F: Blind (6 A) - Safety 93
3.2.5.3 Parameter window E, F: Shutter (6 A) 95
3.2.5.3.1 Parameter window E, F: Shutter (6A) - Drive 99
3.2.5.3.2 Parameter window E, F: Shutter (6 A) - Automatic 100
3.2.5.3.3 Parameter window E, F: Shutter (6 A) - Scene 100
3.2.5.3.4 Parameter window E, F: Shutter (6 A) - Safety 100

ABB i-bus ${ }^{\circledR}$ KNX
 Contents

3.2.6 Parameter window Enable Room Scenarios 1... 16 101
3.2.6.1 Parameter window Room Scenario x 103
3.2.7 Commissioning without bus voltage 107
3.3 Communication objects 108
3.3.1 Short overview of the communication objects 108
3.3.2 Communication objects General 111
3.3.3 Communication objects Room Scenario 112
3.3.4 Communication objects Inputs a...I 114
3.3.4.1 Communication objects Switch sensor 115
3.3.4.2 Communication objects Switch/Dimming sensor 116
3.3.4.3 Communication objects Blind sensor. 117
3.3.4.4 Communication objects Value/forced operation 119
3.3.5 Communication objects Outputs 120
3.3.5.1 Communication objects Output A 121
3.3.6 Communication objects Output E. F (6 A): Blind and Shutter 124
4 Planning and application 131
4.1 Output 131
4.1.1 Function chart 132
4.1.2 Function Time 133
4.1.2.1 Staircase lighting 134
4.1.2.2 Delay for switching ON and OFF 135
4.1.2.3 Flashing 136
4.1.3 Connection/logic 137
4.1.4 Function Scene 139
4.2 Output E, F (6 A) 140
4.2.1 Drive types 140
4.2.2 General functions. 140
4.2.2.1 Travel times 140
4.2.2.2 Safety 142
4.2.2.3 Determination of the current position 142
4.2.2.4 Move to position in \% [0...100] 143
4.2.3 Automatic control 143
4.2.3.1 Automatic sun protection 144
4.2.3.2 Status feedback 148
4.3 Behaviour with 149
4.3.1 Bus voltage recovery 149
4.3.2 ETS reset 151
4.3.3 Download (DL) 152
4.3.4 Reaction on bus voltage failure 153
5 Pre-configuration 155
5.1 Triggering Room Scenarios 155
5.1.1 Room Scenario internal triggering 156
5.1.2 Room Scenario external triggering 158
5.2 Special feature Switch sensor 160
5.3 Special feature Blind sensor 162
5.3.1 Special feature Blind sensor with external blind actuator 163
A Appendix 165
A. 1 Scope of delivery 165
A. 2 Status byte blind/shutter 166
A. 3 Code table scene (8 bit) 167
A. 4 Input 4 bit dimming telegram 168
A. 5 Ordering information 169

1

General

The Room Master RM/S 3.1 provides intelligent engineering technology for different room layouts and configurations, e.g. for hotel rooms and apartments.
Modern buildings require intelligent building engineering technology for safe and efficient operation. Many buildings world-wide already utilise the full potential of networked electrical installations.

Hotels, hospitals, senior citizen and student residential homes, assisted living accommodation and much, much more: The Room Master covers new possibilities for buildings in the residential, purpose-built and hotel sectors.

The Room Master has been developed for all rooms of this type. It covers all requirements of the electrical installation of this application and offers the following functions in compact form:

- Switching lighting
- Providing shade (via blind or shutter)
- Switching of electrical sockets and loads

In addition to these basic functions, further automation functions can be implemented by a combination with a presence detector. The communication of the devices via the KNX bus also enables control functions as well as sending of emergency signals from the rooms to a control centre.

1.1 Using the product manual

This manual provides you with detailed technical information relating to the function, installation and programming of the ABB i-bus ${ }^{\circledR} \mathrm{KNX}$ Room Master RM/S 3.1. The application of the device is explained using examples.

The manual is divided into the following sections:
Chapter 1
General
Chapter 2 Device technology
Chapter 3 Commissioning
Chapter 4 Planning and application
Chapter 5 Device technology
Chapter A Appendix

ABB i-bus ${ }^{\circledR}$ KNX
 General

1.1.1

Notes
Notes and safety instructions are represented as follows in this manual:

```
Note
Tips for usage and operation
```


Examples

Application examples, installation examples, programming examples

Important

These safety instructions are used as soon as there is danger of a malfunction without risk of damage or injury.

Caution

These safety instructions are used as soon as there is danger of a malfunction without risk of damage or injury.

\triangle Danger

These safety instructions are used if there is a danger for life and limb with inappropriate use.

Danger

These safety instructions are used if there is a danger to life with inappropriate use.

ABB i-bus ${ }^{\circledR}$ KNX General

1.2 Room Master: Areas of application

Residential care homes

The Room Master facilitates comfort and security in residential care homes and supports senior citizens in their daily routine:

- Simple operation of the room functions
- Shading using blinds or curtains
- Automatic transmission of messages to the control station, e.g. emergency signals
- Fast localisation of faults in the rooms
- Indication of room states in the control station
- Day/night service

Apartments

Apartments gain in both their appeal and the standard of living they offer with the Room Master - decisive factors for sale and rental:

- Automatic switching of different lighting arrangements in the room
- Shading using blinds or curtains
- Comfortable and simple operation of the room functions

Hospitals

When used in hospitals and buildings with a similar purpose, the Room Master features many functions which support the efficient running of a modern operation:

- Simple operation of the room functions
- Shading using blinds or curtains
- Day/night service
- Indication of the ward round
- Remote control of the room and display of the room state in the nurses station
- Fast localization of faults in the rooms and simplified room maintenance

ABB i-bus ${ }^{\circledR}$ KNX
 General

Hotel

The Room Master offers all functions which are required in a modern hotel room. During operation, a range of advantages are achieved in comparison to a conventional installation:

- Comfortable and simple operation
- Transmission of messages
- Fast localisation of faults

The advantages of the Room Master are obvious not just during operation, but also for planning:

- World-wide use
- Compact design
- A standard solution for many projects.

1.3 Product and functional overview

The Room Master RM/S is used as a single room solution. The RM/S is used to control the lighting as well as the blinds. The input signals are detected via binary inputs or directly via the sensors connected to the KNX.

Management systems can directly access the RM/S via the ABB i-bus ${ }^{\circledR}$ and activate controls in the room.
The Room Master is a modular installation device with a module width of 12 space units in Pro M design for installation in the distribution board. The connection to the ABB i-bus ${ }^{\circledR}$ is established using the front side bus connection terminal. The device can be operated manually, for example, during commissioning, by applying an auxiliary voltage to the bus terminals. The assignment of the physical addresses as well as the parameterization is carried out with Engineering Tool Software ETS.

The device features four switching outputs for control of lighting or power outlet circuits, e.g. such as

- Lighting in the room
- Bathroom and entrance lighting
- Switching power outlets

Additionally, four changeover contacts are available to control the blinds, shutters or window blinds. They can also be programmed as switch outputs, e.g.:

- As a blind output: Blinds, curtains or shutters
- As a switch output: Switching of loads

Furthermore, twelve floating binary inputs are available. These are used to report room information to the Room Master, e.g. switch light ON/OFF:

- Room lighting
- Bathrom lighting
- Move the blind UP/DOWN
- Transmission of an emergency signal

Higher-level room scenarios can also be programmed.
The scanning voltage for the binary inputs is provided by the device. The binary inputs are divided into six groups of two inputs each.
Overview of the number and allocation of the inputs and outputs:

Inputs	RM/S 3.1
Binary via contact scanning	12
Outputs	RMIS 3.1
Switching contact 16 A (20 AX)	4
Changeover contact 6 A (blind) or Switching contact 6 A	4

ABB i-bus ${ }^{\circledR}$ KNX

General

1.4 Function of the Room Scenarios

With the innovative concept of the Room Master RM/S, it is possible to recall the entire Room Scenarios with just one group address. The recall of a Room Scenario can be undertaken both internally, e.g. via a binary input as well as externally. The recalled room state sets the outputs via KNX scenes. These can also be internally or externally called.
After the room state is recalled, all functions in the room, e.g. illumination, energy supply, blinds are adapted to the parameterization settings.

The Room Master features internal device interconnections between the inputs and outputs. No group addresses are required for internal communication. This prevents an unnecessary bus load.

1 Internal device connections

ABB i-bus ${ }^{\circledR}$ KNX

 Device technology
2 Device technology

The Room Master is a modular installation device (MDRC) in Pro M design. It is intended for installation in the distribution board on 35 mm mounting rails. The assignment of the physical addresses as well as the parameterization is carried out with the ETS and the current application program.

The RM/S is powered via the ABB ibus ${ }^{\circledR}$ and does not require and additional auxiliary voltage supply. The device is ready for operation after connecting the bus voltage.

$2.1 \quad$ Technical data

Supply	Bus voltage	$21 \ldots 32 \mathrm{~V} \mathrm{DC}$
	Current consumption, bus	Maximum 12 mA (Fan-in 1)
	Leakage loss, bus	
Leakage loss, device	Maximum 250 mW	
* The maximum power consumption of the	Relay 20 A	Maximum 4.8 W *
device results from the following specifications:	Relay 6 A	4.0 W
	Blind output	0.8 W
Connections	KNX	$4 \times 6 \mathrm{~A}, \mathrm{AC3,250V} \mathrm{AC}$
		Via bus connection terminals, 2-fold (red/black)
	Circuits	$0.8 \mathrm{~mm} \varnothing$, solid

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

Temperature range	Operation	$-5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$
	Transport	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
	Storage	$-25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Ambient conditions	Maximum air humidity	93%, no condensation allowed
Design	Modular installation device (MDRC)	Modular installation device, Pro M
	Dimensions	$90 \times 216 \times 64.5 \mathrm{~mm}(\mathrm{H} \times \mathrm{W} \times \mathrm{D})$
	Mounting width in space units	12 modules at 18 mm
	Mounting depth	64.5 mm
Installation	On 35 mm mounting rail	To EN 60715
Mounting position	as required	
Weight	0.55 kg	
Housing/colour	Plastic housing, grey	
Approvals	KNX to EN 50 090-1, -2	Certification
CE mark	In accordance with the EMC guidelin voltage guideline	

Important

The maximum permissible current of a KNX line may not be exceeded.
During planning and installation ensure that the KNX line is correctly dimensioned.
The device features a maximum current consumption of 12 mA (Fan-In 1).

2.1.1 Binary inputs

Rated values	Number	$12^{1)}$
U_{n} scanning voltage	32 V , pulsed	
I_{n} scanning current	0.1 mA	
Scanning current I_{n} at switch on	Maximum 355 mA	
Permissible cable length	$\leq 100 \mathrm{~m}$ one-way, at cross-section $1.5 \mathrm{~mm}{ }^{2}$ even	
		when the core is routed in a multi-control cable

[^0]
ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

2.1.2

Rated current output 6 A

Rated values	Number	8 contacts
	U_{n} rated voltage	250/440 V AC ($50 / 60 \mathrm{~Hz}$)
	I_{n} rated current (per output)	6 A
Switching currents	AC3* operation ($\cos \varphi=0.45)$	$6 \mathrm{~A} / 230 \mathrm{~V}$
	To EN 60 947-4-1	
	AC1* operation ($\cos \varphi=0.8)$	$6 \mathrm{~A} / 230 \mathrm{~V}$
	To EN 60 947-4-1	
	Fluorescent lighting load to EN 60 669-1	$6 \mathrm{~A} / 250 \mathrm{~V}(35 \mu \mathrm{~F})^{2}$
	Minimum switching power	$20 \mathrm{~mA} / 5 \mathrm{~V}$
		$10 \mathrm{~mA} / 12 \mathrm{~V}$
		$7 \mathrm{~mA} / 24 \mathrm{~V}$
	DC current switching capacity (resistive load)	$6 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical service life	> 10^{7}
	Electronic service life	
	To IEC 60 947-4-1	
	AC1* (240 V/cos $\varphi=0.8$)	$>10^{5}$
	AC3* (240 V/ $\cos \varphi=0.45)$	$>1.5 \times 10^{4}$
	AC5a* (240 V/cos $\varphi=0.45$)	$>1.5 \times 10^{4}$
Switching times ${ }^{1)}$	Maximum relay position change per output and minute if only one relay is switched.	2,683

[^1]* What do the terms AC1, AC3 and AC5a mean?

In Intelligent Installation Systems, different switching capacity and performance specifications, which are dependent on the special application, have become established in industrial and residential systems. These performance specifications are rooted in the respective national and international standards. The tests are defined so that typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential) are simulated.

The specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:
AC1 - \quad Non-inductive or slightly inductive loads, resistive furnaces (relates to switching of ohmic/resistive loads)
AC3 - Squirrel-cage motors: Starting, switching off motors during running (relates to (inductive) motor load)
AC5a - \quad Switching of electric discharge lamps
These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters Electromechanical contactors and motor-starters. The standard describes starters and/or contactors that previously were preferably used in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

2.1.3

Output lamp load 6 A

Lamps	Incandescent lamp load	1200 W
Fluorescent lamps T5/T8	Uncorrected Parallel compensated DUO circuit	$\begin{aligned} & 800 \mathrm{~W} \\ & 300 \mathrm{~W} \\ & 350 \mathrm{~W} \end{aligned}$
Low-voltage halogen lamps	Inductive transformer Electronic transformer Halogen lamps 230 V	$\begin{aligned} & 800 \mathrm{~W} \\ & 1000 \mathrm{~W} \\ & 1000 \mathrm{~W} \end{aligned}$
Dulux lamp	Uncorrected Parallel compensated	$\begin{aligned} & 800 \mathrm{~W} \\ & 800 \mathrm{~W} \end{aligned}$
Mercury-vapour lamp	Uncorrected Parallel compensated	$\begin{aligned} & 1000 \text { W } \\ & 800 \text { W } \end{aligned}$
Switching capacity (switching contact)	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(150 \mu \mathrm{~s})$ Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$ Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(600 \mu \mathrm{~s})$	$\begin{aligned} & 200 \mathrm{~A} \\ & 160 \mathrm{~A} \\ & 100 \mathrm{~A} \end{aligned}$
Number of electronic ballasts (T5/T8, single element) ${ }^{1)}$	$\begin{aligned} & 18 \mathrm{~W} \text { (ABB EVG } 1 \times 18 \mathrm{CF}) \\ & 24 \mathrm{~W} \text { (ABB EVG-T5 } 1 \times 24 \mathrm{CY}) \\ & 36 \mathrm{~W} \text { (ABB EVG } 1 \times 36 \mathrm{CF}) \\ & 58 \mathrm{~W} \text { (ABB EVG } 1 \times 58 \mathrm{CF}) \\ & 80 \mathrm{~W} \text { (Helvar EL } 1 \times 80 \mathrm{SC}) \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 7 \\ & 5 \\ & 3 \end{aligned}$

1) For multiple element lamps or other types, the number of electronic ballasts must be determined using the peak inrush current of the electronic ballasts.

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

2.1.4

Rated current output 20 A

Rated values	Number	4
	U_{n} rated voltage	250/440 V AC ($50 / 60 \mathrm{~Hz}$)
	I_{n} rated current	20 A
Switching currents	AC3* operation ($\cos \varphi=0.45)$	$16 \mathrm{~A} / 230 \mathrm{~V}$
	To EN 60 947-4-1	
	AC1* operation ($\cos \varphi=0.8)$	$20 \mathrm{~A} / 230 \mathrm{~V}$
	To EN 60 947-4-1	
	Fluorescent lighting load $A X$	$20 \mathrm{~A} / 250 \mathrm{~V}(140 \mu \mathrm{~F})^{2)}$
	To EN 60 669-1	
	Minimum switching power	$100 \mathrm{~mA} / 12 \mathrm{~V}$
		$100 \mathrm{~mA} / 24 \mathrm{~V}$
	DC current switching capacity (resistive load)	$20 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical service life	$>10^{6}$
	Electronic service life	
	To IEC 60 947-4-1	
	AC1* (240 V/cos $\varphi=0.8$)	$>10^{5}$
	AC3* (240 V/cos $\varphi=0.45$)	$>3 \times 10^{4}$
	AC5a (240 $\mathrm{V} / \cos \varphi=0.45$)	$>3 \times 10^{4}$
Switching times ${ }^{1)}$	Maximum relay position change per output and minute if only one relay is switched.	93

[^2]
* What do the terms AC1, AC3 and AC5a mean?

In Intelligent Installation Systems, different switching capacity and performance specifications, which are dependent on the special application, have become established in industrial and residential systems. These performance specifications are rooted in the respective national and international standards. The tests are defined so that typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential) are simulated.
The specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:
AC1 - \quad Non-inductive or slightly inductive loads, resistive furnaces (relates to switching of ohmic/resistive loads)
AC3 - Squirrel-cage motors: Starting, switching off motors during running (relates to (inductive) motor load)
AC5a - \quad Switching of electric discharge lamps
These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters Electromechanical contactors and motor-starters. The standard describes starter and/or contactors that previously were preferably used in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

2.1.5

Output lamp load 20 A

Lamps	Incandescent lamp load	3680 W
Fluorescent lamps T5/T8	Uncorrected	3680 W
	Parallel compensated	2500 W
	DUO circuit	3680 W
Low-voltage halogen lamps	Inductive transformer	2000 W
	Electronic transformer	2500 W
	Halogen lamps 230 V	3680 W
Dulux lamp	Uncorrected	3680 W
	Parallel compensated	3000 W
Mercury-vapour lamp	Uncorrected	3680 W
	Parallel compensated	3680 W
Switching capacity (switching contact)	Maximum peak inrush-current $I_{p}(150 \mu \mathrm{~s})$	600 A
	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$	480 A
Number of electronic ballasts (T5/T8, single	18 W (ABB EVG $1 \times 18 \mathrm{CF})$	300 A
element) ${ }^{1)}$		$26^{2)}$

1) For multiple element lamps or other types, the number of electronic ballasts must be determined using the peak inrush current of the electronic ballasts.
2) Limited by protection with B16 automatic circuit-breakers.

| Device type | Application program | Max. number of
 Communication objects | Max. number of
 group addresses | Max. number of
 associations |
| :--- | :--- | :--- | :--- | :--- | :--- |
| RM/S 3.1 | Room Master $3 / \ldots *$ | 255 | 255 | 255 |

* ... = current version number of the application program. Please observe the software information on our homepage for this purpose.

Note

The ETS and the current version of the device application program are required for programming The current version of the application program is available for download on the internet at www.abb.com/knx. After import it is available in the ETS under ABB/Room automation/Raum Master. The device does not support the locking function of a KNX device in the ETS. If you inhibit access to all devices of the project with a BCU code, it has no effect on this device. Data can still be read and programmed.

ABB i-bus ${ }^{\circledR}$ KNX
Device technology

Connection schematics

Hotel room example

RM/S 3.1

1 Label carrier
2 Button Programming $=0$
3 LED Programming (red)
4 Bus connection terminal
5 Switch position display and manual operation, output (A, B, C, D) $20 \mathrm{~A} C$-Load
6 Load circuits, with 2 terminals each

7 Blind (E, F)
8 Blind (G, H)
9 Blind (I, J)
10 Blind (K, L)
11 Binary inputs (g, h, i, j, k, l)
12 Binary inputs (a, b, c, d, e, f)

ABB i-bus ${ }^{\circledR}$ KNX

Device technology
2.3

Dimension drawing

2CDC 072020 F0012

2.4
 Assembly and installation

The device is a modular installation device for quick installation in the distribution board on 35 mm mounting rails to EN 60715.

The mounting position can be selected as required.
The electrical connection is implemented using screw terminals. The connection to the bus is implemented using the supplied bus connection terminal. The terminal assignment is located on the housing.

The device is ready for operation after connection to the bus voltage.
Accessibility of the devices for the purpose of operation, testing, visual inspection, maintenance and repair must be provided compliant to VDE 0100-520.

Commissioning requirements

In order to commission the device, a PC with ETS as well as an interface to the ABB i-bus ${ }^{\circledR}$, e.g. via a KNX interface, is required.
The device is ready for operation after connection to the bus voltage supply. No additional auxiliary voltage is required.

Important

The maximum permissible current of a KNX line may not be exceeded.
During planning and installation ensure that the KNX line is correctly dimensioned.
The device features a maximum current consumption of 12 mA (Fan-In 1).
The installation and commissioning may only be carried out by electrical specialists. The appropriate norms, guidelines, regulations and specifications for your country should be observed when planning and setting up electrical installations and security systems for intrusion and fire detection.

- Protect the device from damp, dirt and damage during transport, storage and operation.
- Only operate the device within the specified technical data limits!
- The device should only be operated in an enclosed housing (distribution board)!
- The voltage supply to the device must be switched off, before mounting work is performed.

Danger

In order to avoid dangerous touch voltages, which originate through feedback from differing phase conductors, all-pole disconnection must be observed when extending or modifying the electrical connections.

Supplied state

The device is supplied with the physical address 15.15.255. The application program is preloaded. It is therefore only necessary to load group addresses and parameters during commissioning.
However, the complete application program can be reloaded if required. A longer downtime may result if the application program is changed or after a discharge.

Assignment of the physical address

The assignment and programming of the physical address is carried out in the ETS.
The device features a button for assignment of the physical device address \simeq. The red LED 0 lights up, after the button has been pushed. It switches off, as soon as the ETS has assigned the physical address or the button \simeq has been pressed again.

Download response

Depending on the PC which is used, the progress bar for the download may take up to one and a half minutes, before it appears, due to the complexity of the device.

Cleaning

The voltage supply to the device must be switched off before cleaning. If devices become dirty, they can be cleaned using a dry cloth or a cloth dampened with a soapy solution. Corrosive agents or solutions should never be used.

Maintenance

The device is maintenance-free. No repairs should be carried out by unauthorised personnel if damage occurs, e.g. during transport and/or storage.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

3 Commissioning

3.1

Overview

The parameterization of the Room Master is implemented with the application program Room Master $3 / 1$ and the Engineering Tool Software ETS. Using the application program, a comprehensive and flexible range of functions are available to the device. The standard settings allow simple commissioning. The functions can be extended if required.

The following functions are available:

Lighting	To supply four lighting or power outlets in the area, e.g. room, bathroom, hall, entrance area.
Binary input	12 binary inputs are available, e.g. Light ON/OFF switching in the entrance area of the room, in the bathroom, the freestanding or table lamps, move blind UP/DOWN, and sending of an emergency signal.
Blind/shutter	Four blind outputs are available. They can also be set as switch outputs.

The Room Master features relays in each switching output, which are mechanically independent of the other outputs. Switching noises cannot be avoided due to the mechanical nature of the design.

The device is installed primarily in the distribution board together with the circuit-breakers and RCCBs.

Functions of the inputs

The following table provides an overview of the functions possible with the inputs of the device and the application Room Master:

Functions of the inputs	$\mathrm{a} . . . \mathrm{l}$
Switch sensor	n
Switch/dimming sensor	n
Blind sensor	n
Value / forced operation	n

$\mathrm{n}=$ Function is supported

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Functions of the outputs

The following table provides an overview of the functions possible with the outputs of the device and the application Room Master:

Functions of the outputs	A...D $(20$ AX C-Load $)$	EF, GH, IJ, KL $(6 \mathrm{~A})$	E, G, I, K $(6 \mathrm{~A})$
Time	n		
Staircase lighting	n		n
ON/OFF delay			n
Flashing	n		n
Scene			n
Assignment of the output to scenes	n		n
Logic			n
AND/OR/XOR or GATE	n		
Forced operation		n	
1 bit or 2 bit			

$\mathrm{n}=$ Function is supported

Note

The outputs E...L (6 A) can also be programmed as switching outputs.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

3.2

Parameters

The parameterization of the Room Master is implemented using the Engineering Tool Software ETS. The application program is available in the ETS at ABB/Room automation/Room Master.
The following chapter describes the parameters of the device using the parameter windows. The parameter window features a dynamic structure, so that further parameters may be enabled depending on the parameterization and the function of the outputs.

The default values of the parameters are underlined, e.g.:
Options: yes
no

Note

The device features several inputs/outputs. As the functions are identical for all inputs/outputs, they will only be explained using input/output A as an example. It is explained for the blind function using outputs E and F.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

In this parameter window, higher level parameters can be set.

General	Sending delay after bus voltage recovery in s [2...255]	2	\pm
Enable inputs a...f			\square
Enable inputs g...I			
Enable outputs A...D	Rate of telegrams	not limited	\checkmark
Enable outputs E...L			
Enable Room Scenarios 1... 16	Send communication object "In operation"	no	\checkmark
	Enable communication object "Request status values" 1 bit	no	\checkmark

Sending delay after

bus voltage recovery in s [2...255]
Options: $\underline{2} \ldots 255$
Telegrams are only received during the sending and switching delay. The telegrams are not processed, however, and the outputs remain unchanged. No telegrams are sent on the bus.

After the sending and switching delay, telegrams are sent and the state of the outputs is set to correspond to the parameterization or the communication object values.

If communication objects are read during the sending and switching delay, e.g. by a visualisation system, these read requests are stored, and a response is sent, after the sending and switching delay has been completed.

An initialization time of about two seconds is included in the delay time. The initialisation time is the time that the processor requires to be ready to function.

How does the device behave with bus voltage recovery?
After bus voltage recovery, the device always waits for the send delay time to elapse before sending telegrams on the bus.

Rate of telegrams

Options: not limited
Send maximum 1 telegram/s
Send telegram every 0.1 s

- Send maximum 1 telegram/s: A maximum of one telegram per second is sent.
- Send telegram every 0.1 s : A telegram is sent every 0.1 seconds.

This parameters limits the bus load of the device depending on its parameterization

Send communication object

"In operation"

Options:
no
send value 0 cyclically
send value 1 cyclically

The communication object In operation indicates the presence of the device on the bus. This cyclic telegram can be monitored by an external device. If a telegram is not received, the device may be defective or the bus cable to the transmitting device may be interrupted.

- no: The communication object In operation is not enabled.
- send value 0/1 cyclically: The communication object In operation (No. 0) is sent cyclically on the KNX. The following parameter appears:

Sending cycle time

in s [1...65,535]
Options: 1...60...65,535
Here the time interval, at which the communication object In operation (No. 0) cyclically sends a telegram, is set.

Note

After bus voltage recovery, the communication object sends its value after the set sending and switching delay.

Enable communication object

"Request status values" 1 bit
Options:

yes

- yes: A 1 bit communication object Request status values is enabled.

Via this communication object, all status messages can be requested, provided that they have been parameterized with the option after a change or request.

With the option yes, the following parameters appear:

Request with object value

Options: 0
1
0 or 1

- 0 : Sending status messages is requested with the value 0 .
- 1: Sending status messages is requested with the value 1.
- 0 or 1: Sending status messages is requested with the values 0 or 1 .

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

In this parameter window, all the settings for enabling and description of the inputs a...f are undertaken.

General	
Enable inputs a...f	
Enable inputs g...I Enable outputs A...D Enable outputs E...L Enable Room Scenarios $1 . .16$	Input a (binary input, contact scanning) Description (40 characters) Enable internal blocking
Input b (binary input, contact scanning) Description (40 characters) Enable internal blocking	

Note

In the following, the setting possibilities of Inputs a...f are explained using input a as an example. The setting possibilities are identical for all inputs.

Input a

(binary input, contact scanning)
Option: Disabled
Switch sensor
Switch/dimming sensor
Blind sensor
Value / forced operation
The operating mode of the input is set with this parameter. The respective parameter window $\mathrm{a}: ~ x x x$ also becomes visible with the selection of an operating mode.

Description

(40 characters)

Options: -- TEXT --
With this parameter, it is possible to enter a text of up to 40 characters in length for identification in the ETS .

Note

The text which is entered is used to provide help, in order to obtain an overview of the inputs when they are fully assigned and to indicate the function assigned to the input. The text is purely for informative purposes and has no further function.

Enable internal blocking

Options:

$\frac{\text { no }}{\text { yes }}$

This parameter defines whether a binary input can or cannot be internally inhibited. If an internal block is called, the binary input is physically disabled. Pressing a connected button/switch as well as incoming telegrams on communication object Start event 0/1 are ignored.

This parameterization option enables the establishment of a blocking mask for all twelve binary inputs. This blocking mask may also be called at every room state. It is thus possible to block (inhibit) or enable the binary inputs using this mask when this room state is recalled.

- no: The input cannot be blocked internally nor via the communication object Block.
- yes: The input can be blocked internally.

Inputs b...I

The device features several inputs. However, as the functions for all inputs are identical, only the functions of input a will be described.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

This parameter window is visible if in Parameter window Enable Inputs a...f, page 24, in parameter Input a (binary input, contact scanning), the option Switch sensor has been selected.

Note

The device features several inputs. However, as the functions for all inputs are identical, only the functions of input a will be described.

Debounce time

Options: $\quad 10 / 20 / 30 / 50 / 70 / 100 / 150 \mathrm{~ms}$
Debouncing prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the debounce time?

If an edge is detected at an input, the input will react immediately to this edge, e.g. by sending a telegram. The debounce time T_{D} starts at the same time. When the pulse edges are detected at the input during the debounce time they are ignored.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Example: Debounce time of the input signal for a detected edge:

After detection of an edge on the input, further edges are ignored for the debounce time T_{D}.
Distinction between short and
long operation
Options:
$\frac{\text { no }}{\text { yes }}$
Using this parameter, you set if the input differentiates between short and long operation.

- yes: After opening/closing of the contact, it must first of all be ascertained if a short or long operation has occurred here. Only thereafter will a possible reaction be triggered.
The following table shows the function in detail:

T_{L} is the time duration from where a long operation is detected.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

If the option no is selected with the parameter Distinction between short and long operation, the following parameters appears in Parameter window a: Switch sensor, page 26:

Opening the contacts $=>$ Event 0 Closing the contacts => Event 1
<--- NOTE

Activate minimum signal duration

Options:

$$
\frac{\text { no }}{\text { yes }}
$$

- yes: The following parameters appear:

On closing the contact
in value $\times 0.1 \mathrm{~s}[0 . .65,535]$
Options: 1...10...65,535
On opening the contact in value $\times 0.1 \mathrm{~s}$ [0...65,535]
Options: $1 . . .10$...65,535

What is the minimum signal duration?

In contrast to the debounce time, a telegram is only sent after the minimum signal duration has elapsed.

The individual functions are:
If an edge is detected on the input, the minimum signal duration will commence. No telegram is sent on the bus at this time. The signal on the input is observed within the minimum signal duration. If a further edge appears at the input during the minimum signal duration, it will be interpreted as a new operation, and the minimum signal duration restarts. If no further edges occur after the start of the minimum signal duration, a telegram is sent on the bus, after the minimum signal duration has timed out.

Example: Minimum signal duration of the input signal for a detected edge:

In only two cases, no further edge changes occur within the minimum signal duration T_{M} after a change of edge. For this reason, only both of these are detected as valid.

Scan input after download,

ETS reset and bus voltage recovery
Options:

no
 yes

- no: The object value is not scanned after a download, bus reset and bus voltage recovery.
- yes: The object value is scanned after a download, bus reset and bus voltage recovery. The following parameter appears:

Inactive wait state after bus

voltage recovery in s [0...30,000]
Options: $\underline{0}$...30,000
Here the waiting time after a bus voltage recovery is set. After the waiting time has elapsed the state on the input terminals is scanned. The input reacts as if the state on the input terminals has just changed.

Note

The inactive waiting time does not add to the actual, adjustable send delay time. This can be set separately.

Enable communication objects:

"Block" 1 bit

Options:

- yes: The 1 bit block communication object Block is enabled. This can be used to block the input.

Notes

If the input is disabled and the option Cyclic sending is set, the last state is still sent regardless of the block. The option Block still blocks the physical input, sending continues internally.
Should the internal block with a binary input not be permitted in the Enable inputs a...f, page 24, this communication object has no effect on the respective binary input.

"Start event 0/1" 1 bit

Options: no

yes

- yes: The 1 bit communication object Start event $0 / 1$ is enabled. As a result, the same events, such as those of the push button/switch connected to the binary input, can also be triggered by the receipt of a telegram on the communication object Start event 0/1.

"Switch 1"
 (cyclic sending possible)
 Options:
 no
 yes

- yes: The communication object Switch 1 appears. The following parameters appear:

Reaction on event 0

Options:
ON
OFF
TOGGLE
no reaction
terminate cyclic transmission

Reaction on event 1

Options:
ON
OFF
TOGGLE
no reaction
terminate cyclic transmission
The behaviour of the communication object is determined here. If the option yes has been selected with the parameter Distinction between short and long operation, the reaction occurs with a short or long operation. With the option no, it occurs with each edge change.

Important

If the option terminate cyclic sending is set, it is important to note that this is only effective if the option yes has only been selected in the parameter Cyclic sending.

Internal connection

Options:
no
Output A (20 AX C-Load)
Output B (20 AX C-Load)
Output C (20 AX C-Load)
Output D (20 AX C-Load)
Output E (6 A)
Output G (6 A)
Output I (6 A)
Output K (6 A)
Room Scenario 1/2
Room Scenario 3/4
Room Scenario 5/6
Room Scenario 7/8
Room Scenario 9/10
Room Scenario 11/12
Room Scenario 13/14
Room Scenario 15/16

With this parameter, a direct connection of the binary input with an output or with a Room Scenario can be established. With this connection, no assignment of the group address is necessary.

- Output x: The communication object Switch of the output is updated together with the communication object Switch 1 of the binary input.

Caution

If an internal connection with an output is selected, and at the same time the reaction to an event is parameterized with TOGGLE, the communication object Switch 1 of the binary input is updated with the inverted value of the communication object Status Switch of the output. Ensure that the communication object Status Switch of the output is enabled. The settings normally closed contact/normally open contact and Invert status should be parameterized, so that a TOGGLE function is possible.

Note

The binary input cannot be linked with the blind outputs E...L (6 A). This internal connection is only available with the selection Blind sensor.

- Room Scenario x/y: If the communication object Switch 1 is updated with the value 0, a Room Scenario (RS) with an odd number is triggered, i.e. RS 1/3/5/7/9/11/13 or 15 . If the communication object Switch 1 is updated with the value 1, a Room Scenario (RS) with an even number is triggered, i.e. RS 2/4/6/8/10/12/14 or 16.

Cyclic sending

Options: no
yes

What is cyclic sending?

Cyclic sending enables the communication object Switch to send automatically at a fixed interval. If cyclic sending is only carried out for a specific object value (ON or OFF), this condition refers to the value of the communication object. It is therefore possible in principle to start cyclic sending by sending a value to the communication object Switch. As this behaviour is unwanted, the flags Write and Update of the communication object are deleted in the preliminary setting, so that they cannot be changed via the bus. If this functionality is required irrespectively, these flags should be set accordingly. When the communication object Switch changes and after bus recovery (after the send delay time has elapsed), the communication object value is sent immediately on the bus, and the transmission cycle time restarts.

- yes: The following parameters appear:

Telegram repeated every ..
in s [1...65,535]
Options: 1...60...65,535
The send cycle time describes the time used between two cyclically sent telegrams.

On object value

Options: 1
0
0 or 1

- 1: The communication object value is sent cyclically with 1.
- 0 : The communication object value is sent cyclically with 0 .
- 0 or 1: The communication object values 0 and 1 are sent cyclically.

"Switch 2"
 "Switch 3"
 Options:
 $\frac{\text { no }}{\text { yes }}$

- yes: The communication object Switch 2/3 becomes visible. The following parameters appear:

Reaction on event 0

Options:

> | ON |
| :--- |
| OFF |
| TOGGLE |
| no reaction |

Reaction on event 1
Options: ON
OFF
TOGGLE
no reaction
The behaviour of the communication object is determined here. If the option yes has been selected with the parameter Distinction between short and long operation, the reaction occurs with a short or long operation. With the option no, it occurs with each edge change.

Internal connection

Options: no
Output A (20 AX C-Load)
Output B (20 AX C-Load)
Output C (20 AX C-Load)
Output D (20 AX C-Load)
Output E (6 A)
Output G (6 A)
Output I (6 A)
Output K (6 A)
Room Scenario 1/2
Room Scenario 3/4
Room Scenario 5/6
Room Scenario 7/8
Room Scenario 9/10
Room Scenario 11/12
Room Scenario 13/14
Room Scenario 15/16

With this parameter, a direct connection of the binary input with an output or with a Room Scenario can be established. With this connection, no assignment of the group address is necessary

- Output x: The communication object Switch of the output is updated together with the communication object Switch $2 / 3$ of the binary input.

Caution

If an internal connection with an output is selected, and at the same time the reaction to an event is parameterized with TOGGLE, the communication object Switch $2 / 3$ of the binary input is updated with the inverted value of the communication object Status switch of the output. Ensure that the communication object Status Switch of the output is enabled. The settings normally closed contact/normally open contact and Invert status should be parameterized, so that a TOGGLE function is possible.

Note

The binary input cannot be linked with the blind outputs E...L (6 A). This internal connection is only available with the selection Blind sensor.

- Room Scenario x / y : If the communication object Switch $2 / 3$ is updated with the value 0 , a Room Scenario (RS) with an odd number is triggered, i.e. RS 1/3/5/7/9/11/13 or 15 . If the communication object Switch $2 / 3$ is updated with the value 1, a Room Scenario (RS) with an even number is triggered, i.e. RS 2/4/6/8/10/12/14 or 16 .

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

If the option yes is selected with the parameter Difference between long and short operation, the following parameters are visible in Parameter window a: Switch sensor on page 26.

General Enable inputs a...f	Debounce time
a: Switch sensor	
Enable inputs g...	
Enable outputs A...D	
Enable outputs E...L	
Enable Room Scenarios 1...16	
long operation	
Short operation => Event 0	
Long operation => Event 1	
Connected contact type	

Short operation => Event 0
Long operation => Event 1
<--- NOTE
Connected contact type
Options: normally closed normally open

- normally closed: The input is opened on actuation.
- normally open: The input is closed on actuation.

If a normally open contact is connected to the input, the option normally open should be selected; on a normally closed contact the option normally closed should be selected.

Long operation after...

Options: $\quad 0.3 / 0.4 / 0.5 / \underline{0.6} / 0.8 \mathrm{~s}$
1/1.2/1.5 s
2/3/4/5/6/7/8/9/10 s
Here the time period T_{L} after which an operation is considered a "long" operation is defined.

Note

The remaining parameter descriptions can be found in the parameter Distinction between short and long operation - no, page 28.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window a: Dimming sensor

The operating mode allows the operation of dimmable lighting. This parameter window is visible if in Parameter window Enable Inputs a...f, page 24, in parameter Input a (binary input, contact scanning), the option Switch sensor/Dimming sensor has been selected.

Enable communication object
 "Block" 1 bit

Options: no
yes

- yes: The 1 bit block communication object Block is enabled. This can be used to block the input.

Note

If the input is disabled and the option Cyclic sending is set, the last state is still sent regardless of the block. The option Block still blocks the physical input, sending continues internally.

Debounce time

Options: $\quad 10 / 20 / 30 / 50 / 70 / 100 / 150 \mathrm{~ms}$
Debouncing prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the debounce time?

If an edge is detected at an input, the input will react immediately to this edge, e.g. by sending a telegram. The debounce time T_{D} starts at the same time. When the pulse edges are detected at the input during the debounce time they are ignored.

The following example makes this clear:

After detection of an edge on the input, further edges are ignored for the debounce time T_{D}.

Connected contact type

Options: normally closed normally open

Here you set if the contact on the input is a normally closed contact or normally open contact.

Function Dimming

Options: Dimming and switching Only dimming
With this parameter, you define if the lighting can only be dimmed (Only dimming) or if additional switching is also permitted (Dimming and switching). In this case, a long button push dims and a short button push switches.

How does 1 button dimming function?

Switch and dim functions can be controlled completely using a single push button. With each long operation alternate BRIGHTER or DARKER dimming occurs, or with short operation alternate switch on or off occurs.

If the communication object Switch $=0$, a BRIGHTER telegram is sent at all times. In order to evaluate the switch feedback of the actuator, the Write flag of the communication object Switch is set.

The following table shows the function in detail:

Communication object value Switch	Value of the last dimming telegram	Reaction of the dimming actuation (sends dimming telegram)
OFF	DARKER	BRIGHTER
OFF	BRIGHTER	BRIGHTER
ON	DARKER	BRIGHTER
ON	BRIGHTER	DARKER

The advantage of the Only dimming function is that no distinction is made between short and long actuation. The dim telegram is initiated immediately after actuation in this way. It is not necessary to wait for a long operation.

How does $\mathbf{2}$ button dimming function?

If 2 button dimming is required, the functions of the individual buttons should be set with the parameters Reaction on short operation or Reaction on long operation, e.g. ON or BRIGHTER.

The user thus has the choice of the buttons to be combined with one another, e.g. to dim a lighting group or the function that the individual buttons should perform in this case.

Furthermore, two inputs are required for 2 button dimming, e.g. Input a with short operation with switch ON and long operation for BRIGHTER dimming. Input b with short operation for switch OFF and long operation for DARKER dimming.

If the option Dimming and switching is selected with the parameter Function Dimming, the parameters Long operation after..., On short operation: Switch and On long operation: Dimming direction become visible in the parameter window a: Dimming sensor:

Long operation after...

Options: $\quad 0.3 / 0.4 / 0.5 / \underline{0} 6 / 0.8 / 1 / 1.2 / 1.5 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 \mathrm{~s}$
Here the time period T_{L} after which an operation is considered a "long" operation is defined.

On short operation: Switch

Options:
ON
OFF
TOGGLE no reaction

This parameter defines if the communication object Telegram switch TOGGLEs with short operation (typical: 1 button dimming) or only switches OFF or ON (typically: 2 button dimming).

- ON: With short operation the value 1 is sent.
- OFF: With short operation the value 0 is sent.
- TOGGLE: A short operation changes the value of the communication object Telegram switch.

On long operation: Dimming direction

Options: BRIGHTER
DARKER
alternating
alternating, BRIGHTER after switching ON
alternating, DARKER after switching ON
With this parameter, you set what the communication object Dimming should send on the bus with a long operation. A long operation changes the value of the communication object Telegr. dimming. With 1 button dimming, the parameter alternating should be set here. In this case, the dimming telegram, which is diametrically opposed to the last dimming telegram, is sent.

- BRIGHTER: The communication object sends a BRIGHTER telegram.
- DARKER: The communication object sends a DARKER telegram.
- alternating: The communication object alternately sends a BRIGHTER and a DARKER telegram.
- alternating, BRIGHTER after switching ON: The communication object at the first time sends a BRIGHTER telegram after an ON telegram; thereafter it alternately sends BRIGHTER and DARKER telegrams.
- alternating, DARKER after switching ON: The communication object at the first time sends a DARKER telegram after an ON telegram, thereafter it alternately sends BRIGHTER and DARKER telegrams.

[^3]
Dimming functionality

Options: START/STOP dimming
Dimming steps

- START/STOP dimming: The dimming process starts with a telegram BRIGHTER or DARKER and ends with a STOP telegram.

4 bit dimming telegram:

Decimal	Hexadecimal	Binary	Dim telegram
0	0	0000	STOP
1	1	0001	100% DARKER
8	8	1000	STOP
9	9	1001	100% BRIGHTER

For further information see: Input 4 bit dimming telegram, page 168

- Dimming steps: Dimming telegrams are sent cyclically during a long operation. Cyclic sending is terminated after the end of actuation.

Both of the next parameters only appear if in the parameter Dimming functionality the option Dimming steps has been set.

Brightness change on every sent telegram

Options: $\quad 100 / 50 / 25 / 12.5 / 6.25 / \underline{3.13 / 1.56 ~ \% ~}$
Using this parameter, you set the brightness change in percent which is cyclically sent with every dim telegram.

Sending cycle time: Telegram is

repeated every ...
Options: $\quad 0.3 / 0.4 / 0.5 / 0.6 / 0.8 / 1 / 1.2 / 1.5 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 \mathrm{~s}$
The dimming telegram is sent cyclically during a long operation. The cycle time for sending corresponds with the time interval between two telegrams during cyclical sending.

Caution

With dimming steps, you ensure that the set Sending cycle time is matched on the dimming actuator in order to enable a smooth dimming process.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

The operating mode allows the operation of blinds and roller shutters with buttons or switches.
This parameter window is visible if in Parameter window Enable Inputs a...f, page 24, in parameter Input a (binary input, contact scanning), the option Blind sensor has been selected.

Enable communication object
"Block" 1 bit
Options:

- yes: The 1 bit block communication object Block is enabled. This can be used to block the input.

Note

If the input is disabled and the option Cyclic sending is set, the last state is still sent regardless of the block. The option Block still blocks the physical input, sending continues internally.

Debounce time

Options: $\quad 10 / 20 / 30 / \underline{50 / 70 / 100 / 150 ~ m s ~}$
Debouncing prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the debounce time?

If an edge is detected at an input, the input will react immediately to this edge, e.g. by sending a telegram. The debounce time T_{D} starts at the same time. When the pulse edges are detected at the input during the debounce time they are ignored.

The following example makes this clear:

After detection of an edge on the input, further edges are ignored for the debounce time T_{D}.

Connected contact type

Options: normally closed
normally open
Here you set if the contact on the input is a normally closed contact or normally open contact.

Internal connection with blind output

Options:

$$
\begin{aligned}
& \frac{\mathrm{no}}{\mathrm{EF}} \\
& \mathrm{GH} \\
& \mathrm{IJ} \\
& \mathrm{KL}
\end{aligned}
$$

- Output $X(X=E F, G H, I J, K L)$: The binary output is connected directly with the Output X : Blind. The communication object Input x : Blind sensor Blind UP/DOWN ($x=$ a...I) acts internally directly on the communication object Blind output X move UP/DOWN. The communication object Input x : Blind sensor STOP/Slat adjustment ($\mathrm{x}=\mathrm{a}$...I) acts directly internally on the communication object Blind output X STOP/Slat adjustment OPEN/CLOSE.

This internal connection of the binary input with output E...L (6 A) guarantees, for example, that pushbuttons for operation of the blinds are programmable and installable. In this way, maximum flexibility of blind operation is possible.

Operating functionality of blind

Options: 1 button op. (short = stepwise, long = move)
1 button op. (short = move, long = stepwise)
1 push button (Move only - STOP)
1 switch operation (Move only)
2 button op. (short $=$ stepwise, long $=$ move)
2 switch/push button operation (moving only)
2 push button operation (move only)
2 push button operation (slat only)

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

The following list provides an overview of the different blind operating functions:

push buttons (short = stepwise, long = move)	
Short operation	STOP/Stepwise Opposite direction to the last movement telegram* To return to slat adjustment, the blind must be moved UP or DOWN briefly.
Long operation	Move UP or Move DOWN
$\mathbf{1}$ push button op. (short = move, long = stepwise)	
Short operation	Move UP or Move DOWN
Long operation	STOP/stepwise (Cyclic sending); Opposite direction to the last movement telegram
1 push button (Move only - STOP)	
On operation	The following telegrams are sent in sequence:
1 switch operation (Move only)	
On operation	Move UP or Move DOWN
End of operation	STOP/Stepwise*
$\mathbf{2}$ push button operation (short = stepwise, long = move)	
Short operation	STOP/Slat OPEN/CLOSE (programmable)
Long operation	Move UP or Move DOWN (programmable)
$\mathbf{2}$ switch/push button operation (moving only)	
On operation	Move UP or Move DOWN (programmable)
End of operation	STOP/Slat OPEN/CLOSE (programmable)
$\mathbf{2}$ push button operation (move only)	
On operation	Move UP or Move DOWN (programmable)
$\mathbf{2}$ push button operation (slat only)	
On operation	STOP/Slat OPEN/CLOSE (programmable)

[^4]Depending on the selection made in the parameter Operating functionality of the blind, different parameters will appear.
All parameters are described in the following.

```
Long operation after...
Options: \(\quad 0.3 / 0.4 / 0.5 / \underline{0.6 / 0.8 / 1 / 1.2 / 1.5 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 ~ s ~}\)
```

Here the time period T_{L} after which an operation is considered a "long" operation is defined.
Telegram "Slat" is repeated every ...
Options: $\quad 0.3 / 0.4 / \underline{0.5 / 0.6 / 0.8 / 1 / 1.2 / 1.5 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 ~ s ~}$
The time duration, at which the telegram Slat is repeated, is defined here.

Reaction on short operation

Options: STOP/Slat OPEN
STOP/Slat CLOSE

Reaction on long operation

Options: \quad Move UP
Move DOWN
It can be set whether the input triggers telegrams for movement upwards (UP) or downwards (DOWN).

Reaction on operation

Options: Move UP
Move DOWN
It can be set whether the input triggers telegrams for movement upwards (UP) or downwards (DOWN).

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

This operating mode allows the sending of values of any data types.
This parameter window is visible if in Parameter window Enable Inputs a...f, page 24, in parameter Input a (binary input, contact scanning), the option Value/Forced operation has been selected.

General Enable inputs a....f	Enable communication object "Block" 1 bit	no	-
a: Value / forced operation			
Enable inputs g...I	Debounce time	50 ms	\checkmark
Enable outputs A...D	Distinction between short and long operation		
Enable outputs E...L		no	\checkmark
Enable Room Scenarios 1...16	Activate minimum signal duration	no	\checkmark
	Scan input after download, ETS reset and bus voltage recovery	no	\checkmark
	Value 1 (rising edge/short operation)	1 byte value [0...255]	\checkmark
	Sent value [0..255]	0	\pm
	Value 2 (falling edge/long operation)	1 byte value [0...255]	\checkmark
	Sent value [0..255]	0	-

Enable communication object
 "Block" 1 bit

Options:

no

yes

- yes: The 1 bit block communication object Block is enabled. This can be used to block the input.

Note

If the input is disabled and the option Cyclic sending is set, the last state is still sent regardless of the block. The option Block still blocks the physical input, sending continues internally.

Debounce time

Options: $\quad 10 / 20 / 30 / \underline{50 / 70 / 100 / 150 ~ m s ~}$
Debouncing prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

What is the debounce time?

If an edge is detected at an input, the input will react immediately to this edge, e.g. by sending a telegram. The debounce time T_{D} starts at the same time. When the pulse edges are detected at the input during the debounce time they are ignored.

The following example makes this clear:

After detection of an edge on the input, further edges are ignored for the debounce time T_{D}.
Distinction between short and long operation
Options: no
yes
Using this parameter, you set if the input differentiates between short and long operation. With the option yes, after opening/closing of the contact it must first of all be ascertained if a short or long operation has occurred here. Only thereafter will a possible reaction be triggered.

Note

With Distinction between short and long operation, two communication objects are visible for each input. One communication object only transmits during short operation, the other communication object only during a long operation.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

The following table shows the function in detail:

T_{L} is the time duration from where a long operation is detected.
If the option no is selected with the parameter Distinction between short and long operation, the following parameters appear:

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter Distinction between short and long operation - no

If the option no is selected with the parameter Distinction between short and long operation, the following parameters appears in Parameter window a: Value/Forced operation, page 46:

General Enable inputs a....f		no	-
a: Value / forced operation	"Block" 1 bit		
Enable inputs g...I Enable outputs A...D Enable outputs E...L Enable Room Scenarios 1... 16	Debounce time	50 ms	\checkmark
	Distinction between short and long operation	no	\checkmark
		yos ho	
	Activate minimum signal duration		
	Scan input after download,	no	\checkmark
	ETS reset and bus voltage recovery		
	Value 1 (rising edge/short operation)	1 byte value [0...255]	\checkmark
	Sent value [0...255]	0	\pm
	Value 2 (falling edge/long operation)	1 byte value [0...255]	\checkmark
	Sent value [0..255]	0	\square

Activate minimum signal duration

Options:

$$
\frac{\text { no }}{\text { yes }}
$$

- yes: The following parameters appear:

```
for rising edge
in value x 0.1 s [1...65,535]
```

Options: $1 \ldots$ 10...65,535

Note

A rising edge corresponds to a normally opened contact function.
for falling edge
in value $x 0.1 \mathrm{~s}$ [1...65,535]
Options: 1...10...65,535

Note

A falling edge corresponds to a normally closed contact function.

What is the minimum signal duration?

In contrast to the debounce time, a telegram is only sent after the minimum signal duration has elapsed. The individual functions are:
If an edge is detected on the input, the minimum signal duration will commence. No telegram is sent on the bus at this time. The signal on the input is observed within the minimum signal duration. If a further edge appears at the input during the minimum signal duration, it will be interpreted as a new operation, and the minimum signal duration restarts. If no further edges occur after the start of the minimum signal duration, a telegram is sent on the bus, after the minimum signal duration has timed out.

Example: Minimum signal duration of the input signal for a detected edge:

In only two cases, no further edge changes occur within the minimum signal duration T_{M} after a change of edge. For this reason, only both of these are detected as valid.

Scan input after download, ETS reset and bus voltage recovery
Options:
no
yes

- no: The object value is not scanned after a download, bus reset and bus voltage recovery.
- yes: The object value is scanned after a download, bus reset and bus voltage recovery. The following parameter appears:
Inactive wait state after bus
voltage recovery in s [0...30,000]
Options: $\underline{0}$...30,000
Here the waiting time after a bus voltage recovery is set. After the waiting time has elapsed the state on the input terminals is scanned. The input reacts as if the state on the input terminals has just changed.

Note

The inactive waiting time does not add to the actual, adjustable send delay time. This can be set separately.

Value 1 (rising edge/short operation)

Options: do not send
1 bit value [0/1]
2 bit value [Forced operation]
1 byte value [-128...127]
1 byte value [0...255]
1 byte value [8 bit scene]
2 byte value [-32,768...32,767]
2 byte value [$0 . . .65,565$]
2 byte value [floating point]
3 byte value [time of day, weekday]
4 byte value $[-2,147,483,648 \ldots 2,147,483,647]$
4 byte value [0...4,294,967,295]
This parameter serves for defining the data type which is sent when the contact is actuated.
Depending on the selection made in parameter Value 1 (rising edge / short operation), different parameters appear. All parameters are described in the following:

sent value [X]

Options: ON /OFF/ TOGGLE
0/1
-128...0... 127
ㅇ.. 255
-32,768...…32,767
0...65,535
-100... $20 . . .100$
-2,147,483,648...0...2,147,483,647
ㅇ...4,294,967,295
This parameter defines the value which is sent on operation. The value range is dependent on the set data type of the value X .

sent value

Options: ON, activate forced position
OFF, activate forced operation
Disable forced operation
This parameter defines the value which is sent on operation.

In the following table, the Forced operation function is explained:

Bit $\mathbf{1}$	Bit $\mathbf{0}$	Access	Description
0	0	Free	The switch communication object of the actuator is enabled by the binary input. The assigned sensor can control the actuator via the switch object. The binary input does not control the actuator. Bit 0 of the value of the forced operation communication object is not evaluated. The forced operation communication object sends a telegram with the group addresses of the forced operation communication object and the status of the switch communication object with every state change of the switch communication object.
0	1	Free	
1	0	Off	The switch communication object of the actuator is disabled by the binary input. The assigned sensor can not control the actuator via the switch communication object. The binary input controls the actuator via the forced operation communication object. The actuator is switched off. Bit 0 of the value of the forced operation communication object is evaluated.
1	1	On	The switch communication object of the actuator is disabled by the binary input. The assigned sensor can not control the actuator via the switch communication object. The binary input controls the actuator via the forced operation communication object. The actuator is switched ON.

8 bit scene

Options: $\quad 1 \ldots 64$
This parameter defines the scene number, which is sent on actuation.

Recall/store scene

Options: recall
save

This parameter defines whether the scene is to be recalled or stored.

Hour [0...23]

Options: $\underline{0} . . .23$
Minute [0...59]
Options: $\underline{0}$.. 59
Seconds [0...59]
Options: $\underline{0} . .59$
With these parameters, the hours, minutes and seconds are set which are to be send when actuated.

Weekday [1 = Mo, 2..6, 7 = Su]

> Options: $\quad 0=$ no day
> 1 = Monday
> 2 = Tuesday
> 3 = Wednesday
> 4 = Thursday
> 5 = Friday
> 6 = Saturday
> 7 = Sunday

Using these parameters, the weekdays sent on actuation are set.
Value 2 (falling edge/long operation)

Note

The parameter descriptions of the parameter Value 2 (with a rising edge and with short operation) correspond with those of parameters Value 1 (with a rising edge and with short operation).

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Parameter Distinction between short and long operation - yes

If the option yes is selected with the parameter Distinction between short and long operation, the following parameters appear:

Connected contact type

Options: normally closed
normally open

- normally closed: The input is opened on actuation.
- normally open: The input is closed on actuation.

Long operation after...

Options: $\quad 0.3 / 0.4 / 0.5 / 0.6 / 0.8 \mathrm{~s}$
1/1.2/1.5 s
2/3/4/5/6/7/8/9/10 s
Here the time period T_{L} after which an operation is considered a "long" operation is defined.

Note

The remaining parameter descriptions can be found in Parameter Distinction between short and long operation - no, page 49

Parameter window Enable Inputs g...I

The inputs g-I do not differ from input a.
The descriptions of the parameter setting options and the adjustable communication objects for the inputs g...I can be found in the descriptions at Parameter window Enable Inputs a...f, page 24 and Parameter window a: Switch sensor page 26.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

In this parameter window, Outputs A...D (20 AX C-Load) are enabled.

General Enable inputs a...f Enable inputs g...I	Output A (20 AX C-Load) Description (40 characters)	
Enable outputs A...D Enable outputs E...L Enable Room Scenarios $1 . .16$	Output B (20 AX C-Load) Description (40 characters)	

Note

In the following, the setting possibilities of Outputs A...D (20 AX C-Load) are explained using output A (20 AX C-Load) as an example.
The setting possibilities for outputs A...D (20 AX C-Load) are identical.

Output A

(20 AX C-Load)
Options: Enable
Disable

- Enable: The parameter window A: Output (20 AX C-Load) appears. Dependent communication objects become visible.
- Disable: Output A (20 AX C-Load) is blocked/invisible, no communication objects are visible.

Description

(40 characters)
Options: --- TEXT --
With this parameter, it is possible to enter a text of up to 40 characters in length for identification in the ETS.

Note

The text which is entered is used to provide help, in order to obtain an overview of the inputs when they are fully assigned and to indicate the function assigned to the input. The text is purely for informative purposes and has no further function.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Parameter window A: Output (20 AX C-Load)

In this parameter window, all settings for the output A (20 AX C-Load) are undertaken. The explanations also apply for the Outputs B...D (20 AX C-Load).

This parameter window is visible if in Parameter window Enable Outputs A...D..., page 55, the Output A (20 AX C-Load) has been enabled.

General Enable inputs a...f Enable inputs g...I Enable outputs A...D	Reaction of output	
A: Output (20 AX C-Load)		
Enable outputs E...L		
Enable Room Scenarios 1...16	Object value "Switch" on position on bus voltage failure bus voltage recovery Enable function time Enable function scene	

Reaction of output

Options:
N/C
N/O
It can be set in this parameter whether the output operates as a normally closed contact or normally open contact.

- N/O: An ON telegram (1) closes the contact, and an OFF telegram (0) opens the contact.
- N/C: An ON telegram (1) opens the contact, and an OFF telegram (0) closes the contact.

Contact position on bus voltage failure

Options: normally closed
normally open
Unchanged
The output can adopt a defined state on bus voltage failure (BVF) using this parameter.

- normally closed: The contact is opened with bus voltage failure.
- normally open: The contact is closed with bus voltage failure.
- unchanged: No change of the contact position.

```
Note
The reaction on bus voltage failure, recovery and download is to be monitored.
```

Object value "Switch" on
bus voltage recovery
Options: not write
write with 0
write with 1
With this parameter, the output can be influenced by the value of the communication object Switch on bus voltage recovery.

The communication object Switch can be written with either a 0 or 1 when the bus voltage recovers. The contact position is redefined and set in dependence on the set device parameterization.

- not write: The communication object assumes the value 0 . This value remains as it is until modified via the bus. The contact position is only re-evaluated and set at this time.

Note

The reaction on bus voltage failure, recovery and download is to be monitored.
The Room Master draws the energy for switching the contact from the bus. After bus voltage is applied, sufficient energy is only available after about ten seconds in order to switch all contacts simultaneously. Depending on the set transmission and switching delay after recovery of bus voltage set in the parameter window General, the individual outputs will only assume the desired contact position after this time.
If a shorter time is set, the RM/S will only switch the first contact when sufficient energy is stored in the Room Master, in order to ensure that enough energy is available to immediately bring all outputs safely to the required position with a renewed bus voltage failure.

Enable function time

Options: no

yes

- no: The parameter window remains disabled and invisible.
- yes: The parameter window - Time appears.

After the function Time has been enabled, the parameter window - Time is enabled. Further settings can be made here, e.g. on and off delays with staircase lighting.

Note

A more exact description of the function can be found at Communication objects Output A, page 121, No. 136.

Enable function scene
Options: no
yes

- no: The parameter window remains disabled and invisible.
- yes: The parameter window - Scene appears.

After the function Scene has been enabled, the parameter window - Scene is enabled. Here you can undertake further settings, e.g. allocation of the output to a scene or standard value.

Enable function logic

Options:
$\frac{\text { no }}{\text { yes }}$
yes

- no: The parameter window remains disabled and invisible.
- yes: The parameter window - Logic appears.

After the function Connection/Logic has been enabled, the parameter window - Logic is enabled. Here further settings can be undertaken, e.g. connection and linking of the connection.

Enable function forced operation
Options:
no
yes
This parameter enables the function Forced operation.
A communication object forced operation is available for every output.
The forced operation (a 1 bit or 2 bit communication object per output) sets the output in a defined state, where - as long as the forced operation is active - it can only be changed via the communication object forced operation.
The switch state after the end of forced operation can be set using the parameter Contact position with end of the forced operation.

- yes: The following parameters appear:

Type of object "Forced operation"
Options: $\frac{1 \text { bit }}{2 \text { bit }}$
Using the 2 bit communication object, the output state is defined directly via the communication object value. The control of the output via the communication object Switch is blocked as long as the output is forcibly switched ON or OFF.

The following parameters appear when 1 bit is selected:

Contact position if forced operation

Options:

ON

OFF
Unchanged

- ON: Contact position of the output during forced operation.
- OFF: Contact position of the output during forced operation.
- Unchanged: Contact position of the output during forced operation.

The options unchanged, ON and OFF related to the 1 bit forced operation object and determine the switching state of the output during forced operation. The forced operation relates to the 1 bit forced operation communication object of output X that is available to every output.
Contact position with end of the forced operation
Options: ON
OFF
Unchanged
calculate present contact position
This parameter determines the contact position of the relay after the end of forced operation.

- ON: The output is switched ON after forced operation has ended.
- OFF: The output is switched OFF after forced operation has ended
- Unchanged: The contact position is retained during forced operation or safety priority. The contact position only changes when a new calculated switch value is received.
- calculate present contact position: After forced operation has ended, the value of the switch position is recalculated and immediately initiated, i.e., the output continues to operate normally in the background during forced operation.

The following parameters appear when 2 bit is selected:

Contact position with end of the forced operation

Options:
ON
OFF
Unchanged
calculate present contact position
This parameter determines the contact position of the relay after the end of forced operation.

- ON: The output is switched ON after forced operation has ended.
- OFF: The output is switched OFF after forced operation has ended
- Unchanged: The contact position is retained during forced operation or safety priority. The contact position only changes when a new calculated switch value is received.
- calculate present contact position: After forced operation has ended, the value of the switch position is recalculated and immediately initiated, i.e., the output continues to operate normally in the background during forced operation.
The telegram value which is sent via the 2 bit communication object determines the switch position as follows:

Value	Bit 1	Bit 0	State	Description
0	0	0	Free	If the communication object Forced operation receives a telegram with the value 0 (binary 00) or 1 (binary 01), the output is enabled and can be actuated via different communication objects.
1	0	1	Free	Forced OFF
2	1	0	If the communication object Forced operation receives a telegram with the value 2 (binary 10), the output of the Room Master is forced OFF and remains disabled until forced operation is again deactivated. Actuation via another communication object is not possible as long as the forced operation is activated. The state of the output at the end of forced operation can be programmed.	
3	1	1	Forced ON	If the communication object Forced operation receives a telegram with the value 3 (binary 11), the output of the Room Master is forced ON and remains disabled until forced operation is again deactivated. Actuation via another communication object is not possible as long as the forced operation is activated.

Enable communication object
 "Status Switch" 1 bit

Options: no
yes

Caution

If an internal connection with an output is selected, and at the same time the reaction to an event is parameterized with TOGGLE, the communication object Switch 1 of the binary input is updated with the inverted value of the communication object Status Switch of the output.
Ensure that the communication object Status Switch of the output is enabled. The settings normally closed contact/normally open contact and Invert status should be parameterized, so that a TOGGLE function is possible.

- yes: The following parameters appear:

Send object value

Options: no, update only after a change
on request
after a change or on request

- no, update only: The status is updated but not sent.
- after a change: The status is sent after a change.
- after request: The status is sent after a request.
- after a change or request: The status is sent after a change or a request.

Object value of contact position

$$
\begin{array}{ll}
\text { Options: } & \frac{1=\text { closed, } 0=\text { open }}{0=\text { closed, } 1=\text { opened }}
\end{array}
$$

With this parameter, the communication object value of the switch status (Status switch) is defined.

- $1=$ closed, $0=o p e n$: A closed contact is represented by communication object value 1 and an open contact is represented by the value 0 .
- $0=c l o s e d, 1=o p e n:$ A closed contact is represented by communication object value 0 and an open contact is represented by the value 1 .

Note

The contact position and thus the switch status can result from a series of priorities and links.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Parameter window A: Output (20 AX C-Load) - Time

In this parameter window, all settings for the function Time are undertaken: Staircase lighting and Switching ON and OFF delay.

This parameter is visible if in parameter window Parameter window A: Output (20 AX C-Load), page 56, the parameter Enable function time has been enabled.

General	Function time	Staircase lighting	-
Enable inputs a			
Enable inputs g...l		30	\square
Enable outputs A...D	$\text { in } s[1 \ldots 65,535]$	30	
A: Output (20 AX C-Load)			
- Time	Extending staircase lighting by	yes (retriggerable)	-
Enable outputs E...L	multiple operation ["pumping up"]		
Enable Room Scenarios 1...16	Staircase lighting can be switched	ON with 1 and OFF with 0	-
	Restart of staircase lighting after end of permanent ON	no	-
	Value object "Disable function Time" on bus voltage recovery	0, i.e., Enable function time	-

Explanations concerning the time functions and the timing sequences can be found in Planning and application, page 131. Please observe the Function chart, page 132, from which the switching and timing priorities originate.

Note

Observe the contact life span and switching cycles per minute.
For the contact life and switching operations per minute, see Technical data, page 9

Function time

Options: Staircase lighting
Delay for switching ON and OFF
This parameter defines the type of function Time for each output.

- Staircase lighting: The value, with which the staircase lighting is switched on and off, can be parameterized. The staircase lighting time is started when the function is activated. It is switched off immediately after the staircase lighting time has been completed.

Note

The function Staircase lighting can also be called via the communication object Switch, Logical connection $x(x=1,2)$ or called with a light scene recall.

- Delay for switching ON and OFF: The output can be switched on or off with a delay via this function.

The following parameter appears with the selection Staircase lighting:

Staircase lighting time
 in s [1...65,535]

Options: $\quad 1 \ldots 30 \ldots 65,535$
The staircase lighting defines how long the contact is closed - provided that the contact is programmed as a normally open contact - and how long the light remains on after an ON telegram. The input is made in seconds.

Extending staircase lighting by multiple operation ["pumping up"]

Options: no (not retriggerable)
yes (retriggerable)
up to max. $2 \times$ staircase lighting time up to max. $3 \times$ staircase lighting time up to max. $4 \times$ staircase lighting time up to max. $5 \times$ staircase lighting time
If a further ON telegram is received during the staircase lighting time sequence, the remaining staircase lighting time can be extended by a further period. This is possible by repeated operation of the button ("Pumping up") until the maximum programmed number of retriggering operations is reached. The maximum time can be set to $1,2,3,4$ or 5 -fold time of the staircase lighting time.

The staircase lighting time is extended by "Pumping up" to the maximum time. If some of the time has already timed out, the staircase lighting time can again be extended to the maximum time by "pumping up". The parameterized maximum time may not however be exceeded.

- no: The receipt of an ON telegram is ignored. The staircase lighting time continues without modification to completion.
- yes (retriggerable): The staircase lighting time is reset each time by a renewed ON telegram and starts to count again. This process can be repeated as often as desired using this selection.
- up to max. 2/3/4/5 x staircase lighting time: The staircase lighting time is extended by the $2 / 3 / 4 / 5$-fold staircase lighting time with renewed ON telegrams.

Staircase lighting can be switched

Options: \quad ON with 1 and OFF with 0
ON with 1 no action with 0
ON with 0 or 1, switch OFF not possible
This parameter defines the telegram value used for switching the staircase lighting on and off prematurely.

- ON with 0 or 1, switch OFF not possible: The function Staircase lighting is switched on independently of the value of the incoming telegram. Premature switch off is not possible.

Restart of staircase lighting after end of permanent ON

Options: $\frac{\text { no }}{\text { yes }}$

- no: The lighting switches off if Permanent $O N$ is ended.
- yes: The lighting remains on and the staircase lighting time restarts.

The function of continuously ON is controlled via the communication object Permanent ON. If the communication object receives a telegram with the value 1, the output is switched ON regardless of the value of the communication object Switch and remains switched on until the communication object Permanent ON has the value 0 .
Value object "Disable function Time" on bus voltage recovery
Options: unchanged
1 = Disable function time
$0=$ Enable function time
This parameter defines how the parameter function Time should behave after bus voltage recovery. With a telegram to the communication object Disable function time, the function Time can be disabled.

- unchanged: The function Time can continue unchanged.

Note

The state Function time is stored with bus voltage failure and continues unchanged after bus voltage recovery.

- 1 = disable function time: The function Time is disabled by a telegram with the value 1 .

Note

They can only be enabled via the communication object Disable function time.

- $0=$ enable function time: The function Time is enabled by a telegram with the value 0 .

Note

If the staircase lighting is disabled when the function Time is operational, the light will stay at ON until it is switched to OFF manually.

How does the staircase lighting behave with bus voltage failure?
The behaviour at bus voltage failure is determined by the parameter Reaction on bus voltage failure in the parameter window A: Output (20 AX C-Load).

How does the staircase lighting behave with bus voltage recovery?

The behaviour at bus voltage recovery is defined by two conditions.

1. By the communication object Disable function time. If the staircase lighting is blocked after bus voltage recovery, the staircase lighting can only be switched on or off via the communication object Switch.
2. By the parameterization of the communication object Switch. Whether the light is switched on or off with bus voltage recovery depends on the programming of the communication object Switch.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

The following parameters appear with Delay for switching ON and OFF:

Enable inputs a...f	Function time	Delay for switching ON and OFF	-
Enable inputs g .		Staircase lighting	
Enable outputs A...	Delay for switching ON in s [$0 . . .65,535$]	Delay for switching ON and OFF	
A: Output (20 AX C-Load)	Delay for switching OFF$\text { in s }[0 . . .65,535]$	5	
- Time			$\stackrel{\square}{\square}$
Enable outputs E...L			
Enable Room Scenarios 1...16	Switching delays retriggerable	yes	\checkmark
	Value object "Disable function Time" on bus voltage recovery	0, i.e., Enable function time	\checkmark

Explanations for the ON and OFF delay can be found at Delay for switching ON and OFF, page 135. You will also find a timing diagram as well as explanations on the effect of various ON and OFF telegrams in combination with the switching ON and OFF delay.

Delay for switching ON

in s [0...65,535]
Options: $\quad 0 . . . \underline{5} . .65,535$
Here you set the time by which an ON telegram is delayed after switch on
Delay for switching OFF
in s [0...65,535]
Options: $\quad 0 . . . \underline{5} . .65,535$
Here you set the time by which switch OFF is delayed after a switch OFF telegram.
Switching delays retriggerable
Options: no
yes

- no: The delay time cannot be retriggered.
- yes: The delay time can be retriggered.

Value object "Disable function Time" on bus voltage recovery
Options: unchanged
1 = Disable function time
$0=$ Enable function time
This parameter defines how the function Time should behave after bus voltage recovery. With a telegram to the communication object Disable function time, the function Time can be disabled or enabled.

- unchanged: After bus voltage recovery, the function Time reacts in the same way as before bus voltage failure.
- 1 = disable function time: The function Time is disabled by a telegram with the value 1
- $0=$ enable function time: The function Time is enabled by a telegram with the value 0 .

How does the staircase lighting behave with bus voltage failure?

The behaviour at bus voltage failure is determined by the parameter Reaction on bus voltage failure in the parameter window A: Output (20 AX C-Load).
How does the staircase lighting behave with bus voltage recovery?
The behaviour at bus voltage recovery is defined by two conditions.

1. By the communication object Disable function time. If the staircase lighting is blocked after bus voltage recovery, the staircase lighting can only be switched on or off via the communication object Switch.
2. By the parameterization of the communication object Switch. Whether the light is switched on or off with bus voltage recovery depends on the programming of the communication object Switch.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Parameter window A: Output (20 AX C-Load) - Scene

In this parameter window, all settings for the function Scene are undertaken.
This parameter window is visible if in Parameter window A: Output (20 AX C-Load), page 56, the parameter Enable function time has been enabled.

	Set standard value after the download or ETS reset	yes	\checkmark	
Enable inputs a...f				
Enable inputs g...1				
Enable outputs A...D				
A: Output (20 AX C-Load)		Assignment to scene number [No. 1...64, $0=$ no assignment]	0	-
- Scene				
Enable outputs E...L Enable Room Scenarios 1... 16	Standard value	ON	-	
		0	\square	
	[No. 1...64, $0=$ no assignment]		\square	
	Standard value	ON	\checkmark	
			\pm	
	Assignment to scene number [No. 1...64, $0=$ no assignment]	0	\%	
	Standard value	ON	\checkmark	
	Assignment to scene number [No. 1...64, $0=$ no assignment]	0	\square	
	Standard value	ON	\checkmark	
	Assignment to scene number [No. 1...64, $0=$ no assignment]	0	\square	
	Standard value	ON	\checkmark	
	Assignment to scene number [No. 1...64, $0=$ no assignment]	0	\pm	
	Standard value	ON	-	
	Assignment to scene number [No. 1...64, $0=$ no assignment]	0	\square	
	Standard value	ON	-	
	Assignment to scene number [No. 1...64, $0=$ no assignment]	0	\pm	
	Standard value	ON	\checkmark	

How is a scene set?

Via the communication object Scene

- Sets the value for standard values.
- The scene can be recalled.
- The scene can be changed.
- The scene can be saved.

An example:

Scene recall:

- Send value 0... 63 for the scene (no. 1...64) to the communication object Scene.

Scene change and save:

- Scene no. 24 is assigned to the output with the value ON.
- Scene no. 24 should be assigned to the output with the value OFF:
o Set the output to OFF with a switch telegram.
o Send value $151(128+23)$ for storage of scene number 24 to the communication object Scene.
General values for scene storage:
- $128+(0 . . .63)$ for the scene (No. 1...64)
o The stored scene values are retained until there is a device reset.

Note

After a device reset, the parameterized values can be reactivated. For further information see: ETS reset, page 151.

Set standard value after the download or ETS reset

Options: no yes

- no: The standard values are not set after a download or ETS reset.
- yes: The standard values are set after a download or ETS reset.

Assignment to scene number

[No. 1...64, $0=$ no assignment]
Options: $\underline{0}$... 64
Using the function Scene, up to 64 scenes are managed using just a single group address. With this group address, all slaves integrated into a scene are linked via a 1 byte communication object. The following information is contained in a telegram:

- Number of the scene (1...64) as well as
- Telegram: Call scene or store scene.

The output can be integrated in up to eight scenes. So for example, the scene can be switched on in the morning and switched off in the evening, or the output can be integrated into light scenes.
If a telegram is received on the communication object Scene, the sent scene number is allocated for all outputs, which carry out the stored scene position, or the current position is stored as the new scene position.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Standard value

Options: $\quad \underline{O N}$
Here you set the state that the output has when the scene is recalled.
Note
When a scene is recalled:

- the function Time is restarted
- the logical connections are re-evaluated.

For further information see: Communication objects Output A, page 121, Function Scene, page 139 and Code table scene (8 bit), page 167.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

3.2.4.1.3

Parameter window A: Output (20 AX C-Load) - Logic

In this parameter window, all settings for the function Function Logic are undertaken.
This parameter window is visible if in Parameter window A: Output (20 AX C-Load), page 56 , the parameter Enable function time has been enabled.

General	
Enable inputs a...f	
Enable inputs g...I	
Enable outputs A...D	
A: Output (20 AX C-Load)	Logical connection 1 active
- Logic	
Enable outputs E...L	
Enable Room Scenarios $1 \ldots 16$	

The function Function Logic provides up to two logic objects for each output, which can be logically linked with the communication object Switch.

The logic is always re-calculated when a communication object value is received. Hereby, the communication object Logical connection 1 is first of all evaluated with the communication object Switch. The result is then logically linked with the communication object Logical connection 2

Explanation for the logical function can be found at Connection/logic, page 137. Please also observe the Function chart, page 132, where the priorities become evident.

Logical connection 1 active

Options: no
yes
With these parameters, the communication object Logical connection 1 is enabled.

- yes: The following parameters appear:

Function of logical connection

Options: AND
OR
XOR
GATE
The logical function of the communication object Logical connection 1 is determined with the switch telegram. All three standard operations (AND, OR, XOR) are possible. Furthermore, the GATE operation can be used to inhibit switch commands.
For further information see: Connection/logic, page 137

Result is inverted

Options:

$$
\frac{\text { no }}{\text { yes }}
$$

- yes: The result of the logical connection can be inverted.
- no: There is no inversion.

Object value "Logical connection 1"
after bus voltage recovery
Options: not write write with 0 write with 1

This parameter defines the value allocated to the communication object Logical connection 1 with bus voltage recovery.

- not write: after bus voltage recovery, the value 0 remains in the communication object Switch. This value remains as it is until the communication object is modified via the bus. The contact position is only re-evaluated and set at this time. The correct status of the contact position is displayed via the communication object Status switch independently of the value of the communication object Switch. A precondition however is that no manual switching actions have occurred on the outputs A, B, C or D (20 AX C-Load).

Note

The values of the communication objects Logical connection $1 / 2$ are stored at bus voltage failure. The values are set again after a bus voltage recovery
If values are not assigned for communication objects Logical connection $1 / 2$, they will be deactivated.
At a reset via the bus, the values of the communication objects Logical connection $1 / 2$ remain unchanged.

A further parameter appears if GATE is selected with the parameter Function of logical connection:

Gate disabled, if object value "Logical connection 1 " is
 Options: 1
 O

This parameter defines the value, at which the communication object Logical connection 1 disables the GATE.

Disabling of the gate means that the telegrams received on the communication object Switch are ignored. As long as the GATE is activated, the value that was sent last to the input of the GATE remains on the output. After a gate is blocked, the value that was on the output before the block remains on the output of the gate.
After the gate is enabled, this value will be retained until a new value is received.
For further information see: Function chart, page 132
The GATE is disabled after bus voltage failure and remains deactivated after bus voltage recovery.

Logical connection 2 active

The same programming options exist as those for parameter Logical connection 1 active.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window Enable Outputs E...L (6 A)

In this parameter window, Outputs E...L (6 A) are enabled.

General	Output E, F (6A) (with switch actuator E only)	Disabled	-
Enable inputs a...f			
Enable inputs g...l			
Enable outputs A...D	Description (40 characters)		
Enable outputs E...L			
Enable Room Scenarios 1...16			
	Output G, H (6 A) (with switch actuator G only)	Disabled	-
	Description (40 characters)		
	Output I, J (6 A) (with switch actuator I only)	Disabled	\checkmark
	Description (40 characters)		
	Output K, L (6 A) (with switch actuator K only)	Disabled	\checkmark
	Description (40 characters)		

Note

In the following, the setting possibilities of Outputs E...L (6 A) are explained using outputs E, F (6 A) as an example.
The setting possibilities for outputs E...L (6 A) are identical.

Output E, F (6 A)
(with switch actuator E only)
Options: Disabled
Switch actuator
Blind
Shutter

- Disabled: The Output E, F (6 A) is blocked/invisible, no communication objects are visible.
- Switch actuator: The parameter window E: Output (6 A) appears. Dependent communication objects appear.
- Blind: The parameter window E, F: Blind (6 A) appears. Dependent communication objects appear.
- Shutter: The parameter window E, F Shutter ($6 A$) appears. Dependent communication objects appear.

Description

(40 characters)
Options: --- TEXT ---
With this parameter, it is possible to enter a text of up to 40 characters in length for identification in the ETS.

Note

The text which is entered is used to provide help, in order to obtain an overview of the inputs when they are fully assigned and to indicate the function assigned to the input. The text is purely for informative purposes and has no further function.

Output G, H (6 A)

(with switch actuator G only)
Options: Disabled
Switch actuator
Blind
Shutter

- Disabled: The Output G, H (6 A) is blocked/invisible, no communication objects are visible.
- Switch actuator: The parameter window G: Output (6A) appears. Dependent communication objects appear.
- Blind: The parameter window G, H Blind (6 A) appears. Dependent communication objects appear.
- Shutter: The parameter window G, H Shutter (6 A) appear. Dependent communication objects appear.

Description

(40 characters)
Options: -- TEXT --
With this parameter, it is possible to enter a text of up to 40 characters in length for identification in the ETS.

Note

The text which is entered is used to provide help, in order to obtain an overview of the inputs when they are fully assigned and to indicate the function assigned to the input. The text is purely for informative purposes and has no further function.

Output I, J (6 A)
(with switch actuator I only)
Options: Disabled
Switch actuator
Blind
Shutter

- Disabled: The Output I (6A) is blocked/invisible, no communication objects are visible.
- Switch actuator: The parameter window I, J: Output (6A) appears. Dependent communication objects appear.
- Blind: The parameter window I, J Blind (6 A) appears. Dependent communication objects appear.
- Shutter: The parameter window I, J Shutter (6A) appear. Dependent communication objects appear.

Description
 (40 characters)

Options: -- TEXT - -
With this parameter, it is possible to enter a text of up to 40 characters in length for identification in the ETS.

Note

The text which is entered is used to provide help, in order to obtain an overview of the inputs when they are fully assigned and to indicate the function assigned to the input. The text is purely for informative purposes and has no further function.

Output K, L (6 A)
(with switch actuator K only)
Options: Disabled
Switch actuator
Blind
Shutter

- Disabled: The Output K (6 A) is blocked/invisible, no communication objects are visible.
- Switch actuator: The parameter window K: Output (6 A) appears. Dependent communication objects appear.
- Blind: The parameter window K, L Blind (6 A) appears. Dependent communication objects appear.
- Shutter: The parameter window K, L Shutter (6A) appear. Dependent communication objects appear.

Description
 (40 characters)

Options: -- TEXT--
With this parameter, it is possible to enter a text of up to 40 characters in length for identification in the ETS.

Note

The text which is entered is used to provide help, in order to obtain an overview of the inputs when they are fully assigned and to indicate the function assigned to the input. The text is purely for informative purposes and has no further function.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window E: Output (6 A)

All settings for the parameter window E: Output ($6 A$) are made in this parameter window. The explanations also apply for the Outputs G, I and K (6 A).

This parameter window is visible if in Parameter window Enable Outputs E....... page 73, the output E : Output (6A) has been enabled.

General Enable inputs a...f	Reaction of output	N/O	\checkmark
Enable inputs g...l	Contact position on bus voltage failure	Unchanged	\checkmark
Enable outputs A...D			
Enable outputs E...L	Object value "Switch" on bus voltage recovery	not write	-
E: Output (6 A)			
Enable Room Scenarios 1... 16	Enable function time	no	\checkmark
	Enable function scene	no	\checkmark
	Enable function logic	no	\checkmark
	Enable function forced operation	no	\checkmark
	Enable communication object "Status Switch" 1 bit	no	\checkmark

The descriptions of the parameter setting options and the adjustable communication objects for the Outputs E...K (6 A) do not differ from the Output E (6 A).

However, the function Time with the Outputs E...K (6A) has a further adjustment option: Flashing. The function Flashing is described using Output E ($6 A$) as an example. The function Time must be enabled for this purpose.

Enable function time

Options:

$$
\frac{\text { no }}{\text { yes }}
$$

- yes: The parameter window - Time appears.
- no: The parameter window remains disabled and invisible.

After the function Time has been enabled, the communication object Permanent ON is enabled. The output is switched ON via this communication object. It remains switched ON until a telegram with the value 0 is received by the communication object Permanent $O N$. The functions continue to operate in the background during the Permanent ON phase. The contact position at the end of the Permanent ON phase results from the functions operating in the background.
Note
All other descriptions of the parameter can be found in Parameter window A: Output (20 AX C-Load),
page 56 .

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Parameter window E: Output (6 A) - Time, Flashing

In this parameter window, all settings for the function Time are undertaken: Staircase lighting, Switching ON and OFF delay and Flashing. This parameter window is visible if in Parameter window E: Output (6 A), page 77, the parameter Enable function time has been enabled.

Observe contact life span and switching cycles per minute

Note

For the contact life and switching operations per minute, see Technical data, page 9.

Function time

Options: Staircase lighting
Delay for switching ON and OFF Flashing

This parameter defines the type of function Time for each output.

- Staircase lighting: The staircase lighting is switched via an ON telegram of the communication object Switch of output A (20 AX C-Load). The value of the communication object Switch can be programmed. The staircase lighting time is started when the function is activated. It is switched off immediately after the staircase lighting time has been completed.

Note

The function Staircase lighting can also be called via the communication object Switch, Logical connection $x(x=1,2)$ or called with a light scene recall.

- Delay for switching ON and OFF: The output can be switched on or off with a delay via this function.
- Flashing: The output starts to flash as soon as the parameterized value is received in the communication object Switch. The flashing period can be adjusted via the parameterized time duration for ON or OFF. The output is switched on at the start of the flashing period. At the start of the flashing period, the output is switched on with a normally open contact and off with a normally closed contact. When a new value is received on the communication object Switch, the flashing period will recommence. The relay state after flashing can be programmed. Flashing can be inverted when the output is used as a normally closed contact. The communication object Status switch indicates the current relay state during flashing.

The following parameter appears with the selection Flashing:

Flashing if communication object

"Switch" is
Options:
ON (1)
OFF (0)
ON (1) or OFF (0)
Here you set the value of the communication object Switch at which the output flashes. Flashing is not retriggerable.

- ON (1): Flashing starts when a telegram with the value 1 is received on the communication object Switch. A telegram with the value 0 ends flashing.
- OFF (0): Flashing starts when a telegram with the value 0 is received on the communication object Switch. A telegram with the value 1 ends flashing.
- ON (1) or OFF (0): A telegram with the value 1 or 0 triggers flashing. Suspension of flashing is not possible in this case.

Duration for ON in value $\times 0.1 \mathrm{~s}$

[5...65,535]
Options: 5...10...65,535
This parameter defines how long the output is switched ON during a flashing period.
Duration for OFF in value $\times 0.1 \mathrm{~s}$
[5...65,535]
Options: $\quad 5 \ldots 10 \ldots 65,535$
This parameter defines how long the output is switched off during a flashing period.
Number of impulses [1...100]
Options: 1...5... 100
This parameter defines the maximum number of pulses. This is useful to avoid unnecessary wear of the contacts caused by flashing.

Contact position after flashing

Options:
ON
OFF calculate present contact position

This parameter defines the state that the parameter should assume after flashing.

- ON: The output is switched on after flashing.
- OFF: The output is switched off after flashing.
- calculate present contact position: The output assumes the switching state which it had before flashing commenced.

For further information see: Function chart, page 132
Value object "Disable function Time" on bus voltage recovery
Options: unchanged
1 = Disable function time
0 = Enable function time
This parameter defines how the Function time should behave after bus voltage recovery. With a telegram to the communication object Disable function time, the function Time can be disabled.

- unchanged: After bus voltage recovery, the function Time reacts in the same way as before bus voltage failure.
- 1 = disable function time: The function Time is disabled by a telegram with the value 1
- $0=$ enable function time: The function Time is enabled by a telegram with the value 0 .

How does the staircase lighting behave with bus voltage failure?
The behaviour at bus voltage failure is determined by the parameter Reaction on bus voltage failure in the parameter window A: Output (20 AX C-Load).

How does the staircase lighting behave with bus voltage recovery?
The behaviour at bus voltage recovery is defined by two conditions.

1. By the communication object Disable function time. If the staircase lighting is blocked after bus voltage recovery, the staircase lighting can only be switched on or off via the communication object Switch.
2. By the parameterization of the communication object Switch. Whether the light is switched on or off with bus voltage recovery depends on the programming of the communication object Switch.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window E, F: Blind (6 A)

All settings for the Output E, F: Blind (6A) are made in this parameter window. This parameter window is visible if in Parameter window Enable Outputs E...L, page 73, in parameter Output E, F (Blind) (6 A), the option Blind has been selected.

General Enable inputs a....f	Reaction on bus voltage failure	Unchanged	-
Enable inputs g...I	Reaction on bus voltage recovery	Unchanged	\checkmark
Enable outputs A...D			
Enable outputs E...L			
EF: Blind (6A)	Position after reference movement	Deactivated	-
- Drive			
Enable Room Scenarios 1...16	Position of slat after reaching	100\% (deactivated)	-
	lower end position setting		
	Move to position [0...255]	direct	\checkmark
	Feedback via communication objects	no	-
	"Move to position/slat [0...255]"		
	Additional status response	None	-
	Enable function automatic	no	\checkmark
	Enable function scene	no	-
	Enable function safety	no	-

Reaction on bus voltage failure

Options:

unchanged
UP
DOWN
STOP

The output can adopt a defined state on bus voltage failure (BVF) using this parameter.

- unchanged: The relay position of the outputs remains unchanged. A movement process is thus performed to completion.
- UP/DOWN/STOP: A fixed relay contact position is set.

```
Note
If the relay has been switched immediately before a bus voltage failure, it may not be possible to implement the options UP and DOWN.
The energy stored in the Room Master may not be sufficient for this purpose.
```


Reaction on bus voltage recovery

Options: unchanged
UP
DOWN
STOP
This parameter defines how the output should respond with bus voltage recovery.

- unchanged: The current state is retained.
- UP/DOWN/STOP: A fixed relay contact position is set.

Position after reference movement
Options: deactivated
no reaction move to saved position

This parameter enables the Reference movement communication object and defines how the Room Master responds after a reference movement.

For further information see: Communication objects Output E, F: Blind and Shutter, page 124.

- deactivated: The communication object Reference movement is not visible. No referencing can be performed.
- No reaction: The blind remains either up or down in the reference position after the reference movement.
- move to saved position: The blind is retracted to the position in which it was before the reference movement was performed. If the Automatic function was activated for the blind before the reference movement, then the function Automatic is re-activated again automatically after the stored position is reached.

Note

If during a reference movement, a direct or automatic movement position telegram is received, then the reference movement is performed first and the received target position is approached afterwards.

For further information see: Determination of the current position, page 142
Position of slat after reaching lower end position setting

Options: $\quad \frac{100 \% \text { deactivated }}{90 \%}$
... 10 \%
0 \%
After the blinds are moved to the end positions, the slats are normally closed. The slat positions can be set via this parameter as the Room Master is set after the lower end position is reached.

The parameter relates to the reaction of the blind, if the motion has been triggered via the communication object Move Blind/Shutter UP/DOWN or by the Automatic function.

Move to position [0...255]

Options: directly
indirectly via up indirectly via down indirectly via shortest way

- direct: The blind moves with a position telegram from the current position directly to the new target position.
- indirectly via up/indirectly via down: The blind will initially move fully up or down after a position telegram is received and then move to the target position.
- indirectly via shortest way: The blind will initially move after a position telegram fully upwards or downwards, depending on which direction is the shortest distance. Thereafter, the blind moves to the target position.

Feedback via communication objects

"Move to position/slat [0...255]"
Options:

$$
\frac{\text { no }}{\text { yes }}
$$

This parameter defines if the communication object Move to position/slat [0...255] sends a status response.

- yes: The following parameter appears:

Send object value

Options: no, update only after a change
on request
after a change or on request

- no, update only: The status is updated but not sent.
- after a change: The status is sent after a change.
- on request: The status is sent after a request.
- after a change or request: The status is sent after a change or a request.

Additional status response

Options:
$\frac{\text { none }}{\text { End positions }}$
Status byte

An additional status response can be enabled with this parameter.

- none: There is no feedback.
- End positions: The communication objects Status of lower position and Status of upper position are enabled. These indicate that the blinds are in the upper or lower position (measured based on total movement time).
- Status byte: The communication object Status byte is enabled. This contains further information in coded form.

The following parameters appear when End positions and Status byte is selected:

Send object value

Options: no, update only after a change on request after a change or on request

- no, update only: The status is updated but not sent.
- after a change: The status is sent after a change.
- on request: The status is sent after a request.
- after a change or request: The status is sent after a change or a request.

Enable function automatic
Options:

- no: The parameter window remains disabled and invisible.
- yes: The parameter window - Automatic appears.

By enabling the function Automatic, the parameter window - Automatic is enabled, where further settings can be made.

Enable function scene
Options: no
yes

- no: The parameter window remains disabled and invisible.
- yes: The parameter window - Scene appears.

By enabling the function Scene, the parameter window - Scene is enabled, where further settings can be made, e.g. the assignment of the output to a scene.

Enable function safety

Options: no
yes

- no: The parameter window remains disabled and invisible.
- yes: The parameter window - Safety appears.

By enabling the function Safety, the parameter window - Safety is enabled, where further settings can be made.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window E, F: Blind (6 A) - Drive

In this parameter window, all settings for the blind drive are undertaken. This parameter window is visible if in Parameter window Enable Outputs E...L, page 73, in parameter Output E, F (Blind) (6A), the option Blind has been selected.

General	Total travel time in $5[1 \ldots 18,000]$	60	
Enable inputs a...f			\square
Enable inputs g...I			
Enable outputs A...D	Slat adjustment switch on duration in ms [30...65,535]	300	0
Enable outputs E...L			
EF: Blind (6 A)	Total travel time slat adjustment [$0 . . .100 \%$] in ms [$30 . . .65,535$]	1200	\bigcirc
- Drive			\square
Enable Room Scenarios 1...16	Reversing time delay in ms [$50 . . .5,000$] (see techn, data of the drive!)	700	0
	Outputs are disconnected from voltage after	Total travel time $+10 \%$ Overflow	\checkmark

Total travel time

in s [1...18,000]

Options: $1 \ldots \underline{60} \ldots 18,000$
This parameter defines the total travel time from the upper end position to the lower end position.

Slat adjustment switch on duration in ms [30...65,535]

Options: $\quad 30 \ldots 300 \ldots 65,535$
This parameter determines the switch on duration with the slat adjustment, i.e. the time for which a slat is rotated after it receives a STOP/slat adjustment telegram.
Total travel time slat adjustment
[0... 100 \%] in ms [30...65,535]
Options: $\quad 30 \ldots 1200 \ldots 65,535$
This parameter determines the total travel time with the slat adjustment, i.e. the time which a slat requires to rotate from one end position to another end position.

Note

On larger slats there is a mechanical dead zone time involved until the blind reacts. For this reason, the total slat movement time will be extended by this reaction time.

Reversing time delay in ms [50...5,000]

(see techn. data of the drive!)
Options:

$$
50 \ldots \underline{700 \ldots 5,000}
$$

This parameter defines the duration of the minimum reversing time between two directions of motion.

Outputs are disconnected from voltage after

Options: End position, no overflow
End position + 2 \% overflow End position +5 \% overflow End position + 10 \% overflow End position + 20 \% overflow Total travel time +10 \% Overflow

- End position...: The application program calculates the movement time required from the current position to the end position. After the end position has been reached (as the very top or bottom), the blind drive will switch off independently. A so-called "Overload" can be set to ensure that the Room Master safely reaches the end position. Thus, the voltage still remains applied for a short time to move the drive to a defined end position in a controlled manner.
- Total travel time + 10 \% Overflow: The blind drive is always activated for the set total movement time + 10% independently of the current position of the blind.

For further information see: Travel times, page 140

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window E, F: Blind (6 A) - Automatic

In this parameter window, the settings for the Automatic function are undertaken. This parameter window is visible if in parameter window Parameter window E, F: Blind (6 A), page 81 , the option yes has been selected in the Enable automatic operation parameter.

General Enable inputs a...f	Deactivation by direct operation	no	\checkmark
Enable inputs g...I			
Enable outputs A...D	Position for sun $=1$ (sun)		
Enable outputs E...L		Receive position via 8 bit values:	
EF: Blind (6 A)			
- Drive	Delay for sun =1 in $s[0 . . .65,535]$	60	\square
- Automatic			
Enable Room Scenarios 1...16	Position for sun $=0$ (no sun)	UP	\checkmark
	$\begin{aligned} & \text { Delay for sun }=0 \\ & \text { in } s[0 \ldots 65,535] \end{aligned}$	60	\square

The Automatic function enables a simple automatic sun protection and automatic protection against dazzle in conjunction with the JSB/S.
For further information see: Automatic sun protection, page 144 and communication objects Output E, F: Blind and Shutter, page 124.

Deactivation by direct operation

Options:

$$
\frac{\text { no }}{\text { yes }}
$$

This parameter defines how the Automatic function is deactivated. The Automatic function can be deactivated via the communication object Activation of aut. control and via direct operation.

```
Note
The position of the blind or the shutter is also stored at bus voltage failure, if the function Automatic is activated. The blind or shutter remains in the same position.
On bus voltage recovery, the position is retained and the value of the communication object is undefined. The value is updated only after a renewed movement telegram.
If the communication object Activation of aut. control has not been assigned a group address, the function Automatic is deactivated with a download.
```

- yes: The following parameter appears:

Automatic reactivation

of automatic control
Options:

no

 yesIf automatic control has been deactivated via a telegram to the direct communication objects, it can be automatically reactivated after the parameterized time has timed out. This function is also particularly suitable if no additional button is available for the activation or deactivation of automatic control.

- yes: The following parameter appears:

Automatically reactivate after in min [10...6,000]

Options: 10...300...6,000
With this parameter, the period for automatic reactivation of automatic control is determined. If automatic control is interrupted during the parameterised time by a direct communication object, the parameterised period for automatic reactivation of automatic control recommences to count from 0 (retriggering).

Note

A change of the parameter value will only become active after the next deactivation of automatic control.

Position for sun = 1
(sun)
Options: no reaction
UP
DOWN
STOP
Receive position via 8 bit values:
This parameter defines the reaction with sun = 1 (sun) in the automatic sun screen operation.

- no reaction: The current movement action is completed.
- UP: The blind moves UP.
- DOWN: The blind moves DOWN.
- STOP: The output is electrically disconnected, i.e. a moving blind is stopped.
- Receive position via 8 bit values: The blind moves to position by receiving an 8 bit value. For this purpose, the communication objects Sun: Move to position [0..255] and Sun: adjust slats [0...255] are available.

Delay for sun = 1

in s [0...65,535]
Options: $\quad 0 . . .60 \ldots 65,535$
This parameter defines the delay with activation of the Position if sun $=1$.
Via these parameters, for example, you can prevent that the blind moves UP and DOWN if the sun is only overcast for a short period of time.

Position for sun $=0$
(no sun)
Options: no reaction
UP
DOWN
STOP
Receive position via 8 bit values:
For setting the behaviour with sun $=0$ (no sun) in automatic sun screen operation.

- no reaction: The current movement action is completed.
- UP: The blind moves UP.
- DOWN: The blind moves DOWN.
- STOP: The output is electrically disconnected, i.e. a moving blind is stopped.
- Receive position via 8 bit values: The blind moves to position by receiving an 8 bit value. For this purpose, the communication objects Sun: Move to position [0..255] and Sun: adjust slats [0...255] are available.

Delay for sun $=0$
in s [0...65,535]
Options: $\quad 0 \ldots$... $\underline{00}$..65,535
This parameter defines the delay with activation of the Position for sun $=0$.
Via these parameters, for example, you can prevent that the blind moves UP and DOWN if the sun is only overcast for a short period of time.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

In this parameter window, all settings for the function Scene are undertaken.
This parameter window is visible if in Parameter window E, F: Blind (6 A), page 81, the parameter Function scene has been enabled.

General	Set standard value after the download or ETS reset	yes	-
Enable inputs a...f			
Enable inputs g...1			
Enable outputs A...D	Assignment to scene number [No. 1...64, $0=$ no assignment]	0	$\stackrel{\square}{\square}$
Enable outputs E...L			
EF: Blind (6 A)	Standard value position in \% [0...100]	0	\square
- Drive			
- Scene	Standard value slatin \% [0...100]	0	
Enable Room Scenarios 1... 16			-
	Assignment to scene number [No. 1...64, $0=$ no assignment]	0	\square
	Standard value position in \% [0...100]	0	\square
	Standard value slat in \% [0...100]	0	\square
	Assignment to scene number [No. 1...64, $0=$ no assignment]	0	\square
	Standard value position in \% [0...100]	0	$\stackrel{\square}{\square}$
	Standard value slat in \% [0...100]	0	\square
	Assignment to scene number [No. 1...64, $0=$ no assignment]	0	\square
	Standard value position in $\%$ [$0 . .100$]	0	\square
	Standard value slat in \% [0...100]	0	\square

How is a scene set?

Via the communication object Scene

- The scene can be recalled.
- The scene can be changed.
- The scene can be saved.

An example:

Scene recall:

- Send value 0-63 for the scene (no. 1-64) to the communication object Scene.

Scene change and save:

- Scene no. 24 is assigned to the output with the value move UP.
- Scene no. 24 should be assigned to the output with the value move DOWN.
o Set the output to move DOWN with a switch telegram.
o Send value $151(128+23)$ for storage of scene number 24 to the communication object Scene.

General values for scene storage:

- $128+(0 . . .63)$ for the scene (No. 1...64)
o The stored scene values are retained until there is a device reset.

Note

The saved scene values are retained with a bus voltage failure.
After a device reset, the parameterized scene values can be reactivated.
For further information see: ETS reset, page 151.

Set standard value after the download
 or ETS reset

Options: no

yes

- no: The standard values are not set after a download or ETS reset.
- yes: The standard values are set after a download or ETS reset.

Assignment to scene number

[No. 1...64, $0=$ no assignment]

Options: $\underline{0}$... 64
The scene values are undefined by default and must therefore be learned once via the bus.
With the scene function, up to 64 different scenes are managed via a single group address. With this group address, all slaves integrated into a scene are linked via a 1 byte communication object. The following information is contained in a telegram:

- Number of the scene (1...64) as well as
- Telegram: Call scene or store scene.

Each blind can be integrated in up to eight scenes. For example, the scene for the blind can be opened UP in the morning and moved DOWN in the evening, or the blind can also be integrated into a light scene.

If a telegram is received on the communication object Scene, the sent scene number is allocated for all outputs, which can move to the stored scene position, or the current position is stored as the new scene position.

For further information see: Communication objects Output E, F: Blind and Shutter, page 124, Function Scene, page 139 and Code table scene (8 bit), page 167.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Standard value position
in \% [0...100]
Options: $\quad \underline{0} . . .100$
This parameter determines the position in percent to which the blind should move when the scene is recalled.

Standard value slat
in \% [0...100]
Options: $\underline{0} \ldots 100$
This parameter determines the slat position in percent to which the blind should move when the scene is recalled.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window E, F: Blind (6 A) - Safety

In this parameter window, all settings for the function Safety are undertaken. This parameter window is visible if in Parameter window E, F: Blind (6A), page 81, the parameter Enable function time has been enabled.

General	Safety operation A active	yes	
Enable inputs g...I	Activate safety operation on object value	1	\checkmark
Enable outputs A...D			
Enable outputs E...L	Position on safety operation	Unchanged $*$	
EF: Blind (6 A)		0	
- Drive	Cyclic monitoring time in s [$0 . . .65,535,0=$ no monitoring]		-
- Safety			
Enable Room Scenarios 1... 16			
	Safety operation B active	no	\checkmark
	Position with cancelling of the safety operation.	move to saved position	\checkmark

Safety operation A active

This parameter is defined with yes.
Activate safety operation on object value
Options:
$\frac{1}{0}$

- 1: The safety operation is triggered with the value 1.
- 0 : The safety operation is triggered with the value 0 .

Position on safety operation

Options:
unchanged
UP
DOWN
STOP
This parameter defines the reaction to the triggering of safety operation.

- unchanged: The blinds remain unchanged in their positions and/or the current movement action is completed.
- UP: The blind moves UP.
- DOWN: The blind moves DOWN.
- STOP: The output is electrically disconnected, i.e. a moving blind is stopped.

Cyclic monitoring time in s

[0...65,535, $0=$ no monitoring]
Options: $\underline{0}$...65,535
The parameter defines the intervals at which the safety is monitored. The safety is not monitored with the setting 0 . If the communication object Safety A does not receive a telegram after the set monitoring time, the safety is activated.

Note

The safety is reset if an ETS reset has occurred.

Important

At bus voltage recovery, safety remains active until enable is resent.

Safety operation B active

Options: no
yes
This parameter defines how the safety B active is activated.

Note

The setting options for Safety B do not differ from those of Safety A, see above.

Position with cancelling of the safety operation.

Options: unchanged
UP
DOWN
STOP
move to saved position
This parameter defines the position to which the shutter/blind moves after safety is cancelled.

- unchanged: The blinds remain unchanged in their positions and/or the current movement action is completed.
- UP: The blind moves UP.
- DOWN: The blind moves DOWN.
- STOP: The output is electrically disconnected, i.e. a moving blind is stopped.
- move to saved position: The blind is moved to its preset position.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window E, F: Shutter (6 A)

All settings for the parameter window E: Shutter (6A) are made in this parameter window. This parameter window is visible if in Parameter window Enable Outputs E...L, page 73, in parameter Output E, F (Blind) (6 A), the option Shutter has been selected.

Reaction on bus voltage failure

Options:

$$
\begin{aligned}
& \text { unchanged } \\
& \frac{\text { UP }}{} \\
& \text { DOWN } \\
& \text { STOP }
\end{aligned}
$$

The output can adopt a defined state on bus voltage failure (BVF) using this parameter.

- unchanged: The relay position of the outputs remains unchanged. A movement process is thus performed to completion.
- UP/DOWN/STOP: A fixed relay contact position is set.

[^5]
Reaction on bus voltage recovery

Options: unchanged
UP
DOWN
STOP
This parameter defines how the output should respond with bus voltage recovery.

- unchanged: The current state is retained.
- UP/DOWN/STOP: A fixed relay contact position is set.

Position after reference movement
Options: deactivated
no reaction move to saved position

This parameter enables the Reference movement communication object and defines how the Room Master responds after a reference movement.

- deactivated: The communication object Reference movement is not visible. No referencing can be performed.
- no reaction: The shutter remains either up or down in the reference position after the reference movement.
- move to saved position: The shutter is retracted to the position in which it was before the reference movement was performed. If the Automatic function was activated for the shutters before the reference movement, then the Automatic function is re-activated again after the stored position is reached.

Note

If during a reference movement a direct or automatic movement of position telegram is received, then the reference movement is performed first and the received target position is approached afterwards.

For further information see: Determination of the current position, page 142

Move to position [0...255]

Options: directly
indirectly via up
indirectly via down
indirectly via shortest way

- directly: The shutter moves with a position telegram from the current position directly to the new target position.
- indirectly via up/indirectly via down: The shutter will initially move fully up or down after a position telegram is received and then move to the target position.
- indirectly via shortest way: The shutter will initially move after a position telegram fully upwards or downwards, depending on which direction is the shortest distance. Thereafter, the shutters move to the target position.

Feedback via communication object

"Move to position [0...255]"
Options: $\frac{\text { no }}{\text { yes }}$

This parameter defines if the communication object Move to position [0...255] sends a status response.

- yes: The following parameter appears:

Send object value

Options: no, update only
after a change
on request
after a change or on request

- no, update only: The status is updated but not sent.
- after a change: The status is sent after a change.
- after request: The status is sent after a request.
- after a change or request: The status is sent after a change or a request.

Additional status response

Options: none
 End positions
 Status byte

An additional status response can be enabled with this parameter.

- none: There is no feedback.
- End positions: The communication objects Status of lower position and Status of upper position are enabled, these indicate that the shutters/blinds are in the upper or lower position (measured based on total movement time).
- Status byte: The communication object Status byte, which contains further information in coded format, is enabled.

The following parameters appear when End positions and Status byte is selected:

Send object value

Options:	no, update only after a change
on request after a change or on request	

- no, update only: The status is updated but not sent.
- after a change: The status is sent after a change.
- after request: The status is sent after a request.
- after a change or request: The status is sent after a change or a request.

Enable function automatic

Options: no
yes

- no: The parameter window remains disabled and invisible.
- yes: The parameter window - Automatic appears.

By enabling the function Automatic, the parameter window - Automatic is enabled, where further settings can be made.

Enable function scene
Options: no
yes

- no: The parameter window remains disabled and invisible.
- yes: The parameter window - Scene appears.

By enabling the function Scene, the parameter window - Scene is enabled, where further settings can be made, e.g. the assignment of the output to a scene.

Enable function safety
Options: no
yes

- no: The parameter window remains disabled and invisible.
- yes: The parameter window - Safety appears.

By enabling the function Safety, the parameter window - Safety is enabled, where further settings can be made.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window E, F: Shutter (6 A) - Drive

In this parameter window, the settings for the shutter drive are undertaken. This parameter window is visible if in Parameter window Enable Outputs E...L, page 73, in parameter Output E, F (Blind) (6 A), the option Shutter has been selected.

General	Total travel time in 5 [$1 \ldots 18,000$]	60	
Enable inputs a...f			0
Enable inputs g...I			
Enable outputs A...D	Reversing time delay in ms [50...5,000] (see techn, data of the drive!)	700	4
Enable outputs E...L			
EF: Shutter (6 A)	Outputs are disconnected from voltage after	Total travel time $+10 \%$ Overflow	-
- Drive			
Enable Room Scenarios 1...16			

Total travel time
 in s [1...18,000]
 Options: $1 \ldots 60$... 18,000

This parameter defines the total travel time from the upper end position to the lower end position.

Reversing time delay in ms [50...5,000]
 (see techn. data of the drive!)

Options: 50...700...5,000
This parameter defines the duration of the minimum reversing time between two directions of motion.

Outputs are disconnected from voltage after

Options: End position, no overflow
End position + 2 \% overflow
End position +5 \% overflow
End position $+10 \%$ overflow
End position +20 \% overflow
Total travel time + 10 \% Overflow

- End position...: The application program calculates the movement time required from the current position to the end position. After the end position has been reached (as the very top or bottom), the blind drive will switch off independently. A so-called "Overload" can be set to ensure that the Room Master safely reaches the end position. Thus, the voltage still remains applied for a short time to move the drive to a defined end position in a controlled manner.
- Total travel time + 10 \% Overflow: The blind drive is always activated for the set total movement time $+10 \%$ independently of the current position of the blind.

For further information see: Travel times, page 140

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window E, F: Shutter (6 A) - Automatic

The function Automatic shutters does not differ from the function Automatic blinds
The descriptions of the parameter setting options and the adjustable communication objects can be found at Parameter window E, F: Blind (6 A) - Automatic, page 87. Total travel time $+10 \%$ Overflow: The blind drive is always activated for the set total movement time $+10 \%$ independently of the current position of the blind.

For further information see: Travel times, page 140
Parameter window E, F: Shutter (6 A) - Scene

The function Scene shutters does not differ from the function Scene blinds.
The descriptions of the parameter setting options and the adjustable communication objects can be found at Parameter window E, F: Blind (6 A) - Scene, page 90.

Parameter window E, F: Shutter (6 A) - Safety

The function Safety shutters does not differ from the function Safety blinds.
The descriptions of the parameter setting options and the adjustable communication objects can be found at Parameter window E, F: Blind (6 A) - Safety, page 93.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

In this parameter window, the Room Scenarios 1... 16 can be enabled in pairs and assigned with a description.

General Enable inputs a...f	Enable Room Scenarios	yes	*
Enable inputs g...I	Room Scenario 1 and 2	Enable	-
Enable outputs A...D			
Enable outputs E...L	Description Room Scenario 1 (40 characters)		
Enable Room Scenarios 1...16			
Room Scenario 1Room Scenario 2	Description Room Scenario 2 (40 characters)		
	Room Scenario 3 and 4	Disable	\checkmark
	Room Scenario 5 and 6	Disable	-
	Room Scenario 7 and 8	Disable	-
	Room Scenario 9 and 10	Disable	-
	Room Scenario 11 and 12	Disable	-
	Room Scenario 13 and 14	Disable	-
	Room Scenario 15 and 16	Disable	\checkmark

Enable Room Scenarios

Options:
no
yes
With this parameter, the Room Scenarios $1 \ldots 16$ as well as the seven communication objects No. $2 \ldots .8$ are enabled.

Note

In the following parameters, the Room Scenarios $1 \ldots 16$ are represented by x and y , as the functions for all Room Scenarios are the same. Here x represents the oddly numbered room scenarios 1/3/5/7/9/11/13 or 15 , and y represents the evenly numbered room scenarios 2/4/6/8/10/12/14 or 16 .

Room Scenario x and y

Options: Enable Disable

- Disable: The Room Scenarios x/y are disabled.
- Enable: The Room Scenarios x / y are enabled. They are triggered by the receipt of a telegram on the communication object no. 2. The parameter windows Room Scenario x and Room Scenario y also appear. The following parameters also appear:

Description Room Scenario x
 (40 characters)

Options: --- TEXT ---
With this parameter, it is possible to enter a text of up to 40 characters in length for identification or the Room Scenario in the ETS.

Description Room Scenario y

(40 characters)
Options: -- TEXT --
With this parameter, it is possible to enter a text of up to 40 characters in length for identification or the Room Scenario in the ETS.

Note

The entered text is used as to assist in providing an overview of the Room Scenarios and the functions they involve. It has no other function.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window Room Scenario x

This parameter window is visible if in parameter window Enable Room Scenarios 1...16, the option yes is selected with Enable Room Scenarios as well as with parameter Room Scenario x and y and the option Enable has been selected.

Note

In the following parameters, the Room Scenarios $1 \ldots 16$ are represented by x and y, as the functions for all Room Scenarios are the same. Here x represents the oddly numbered room scenarios $1 / 3 / 5 / 7 / 9 / 11 / 13$ or 15 , and y represents the evenly numbered room scenarios 2/4/6/8/10/12/14 or 16 .

Recall on object value $=0$
(object "Room Scenario 1... 16 recall")
<--- NOTE
The Room Scenarios are triggered via communication object no. 2 Room Scenario 1... 16 recall, i.e. Room Scenario 1 is triggered when a 0 is received. Room Scenario 2 when a 1 is received, etc.

For further information see: Communication objects General, page 111, and Room Scenario external triggering, page 158

The Room Scenarios can also be internally triggered via binary inputs. It is important to note that the Room Scenarios are always triggered in pairs, e.g. Room Scenario 5 when a 0 is received and Room Scenario 6 when a 1 is received.

For further information see: Communication objects General, page 111, and Room Scenario external triggering, page 158

On bus voltage recovery

recall Room Scenario

Options: $\frac{\text { no }}{\text { yes }}$

Using this parameter, the reaction after bus voltage recovery is set.

- no: After bus voltage recovery, the state, which existed before bus voltage failure, is set.
- yes: This Room Scenario is triggered after bus voltage recovery.

Start event 1 immediately

Options:
no
yes

- no: This is no reaction, when the value 0 is received. Event 1 is not started.
- yes: If the value 0 is received, event 1 starts. Event 1 is set via the following parameters:

Recall scene

Options: no
only device internal only via the bus device internal and via the bus

This parameter defines how and where a scene recall is sent with the start of event 1 via communication object no. 6 Room Scenario Recall KNX scene.

- only device internal: The set scene number is only recalled internally in the device, e.g. in order to trigger a determined room scenario.
- only via the bus: The set scene number is sent via the bus. Accordingly, further KNX devices can be integrated into the Room Scenario, or these are also contacted by a scene recall.
- device internal and via the bus: The set scene number is recalled both device internally as well as being sent via the bus. Thus, a Room Scenario can be triggered, and further KNX devices integrated into the scene can be contacted.

Scene number [1...64]

Options: 1... 64
This parameter defines the scene number, which is to be triggered by a scene recall. 64 scene numbers are available.

Switch 1 send

Options:
$\frac{\mathrm{nO}}{\mathrm{ON}}$
OFF
TOGGLE
This parameter defines the value at which communication object no. 3 should send a telegram.

- no: There is no reaction with the start of the event.
- ON: A telegram with the value 1 is sent via the communication object no. 3 .
- OFF: A telegram with the value 0 is sent via the communication object no. 3 .
- TOGGLE: Via the communication object no. 3, a telegram is sent with the opposite value, e.g. if the value 1 was read beforehand, when the event 1 is recalled the value 0 is sent, and vice versa.

Switch 2 send

Options:
$\frac{\text { no }}{\text { ON }}$
OFF
TOGGLE
This parameter defines the value at which communication object no. 4 should send a telegram.

- no: There is no reaction with the start of the event.
- ON: A telegram with the value 1 is sent via the communication object no. 4
- OFF: A telegram with the value 0 is sent via the communication object no. 4 .
- TOGGLE: Via the communication object no. 4, a telegram is sent with the opposite value, e.g. if the value 1 was read beforehand, when the event 1 is recalled the value 0 is sent, and vice versa.

ON/OFF send to thermostat
Options:
no
OFF
This parameter defines whether a thermostat, e.g. RDF/A is switched on or off, or whether it remains in an unchanged state.

- no: There is no reaction with the start of the event.
- ON: A telegram with the value 1 is sent via the communication object no. 8 .
- OFF: A telegram with the value 0 is sent via the communication object no. 8 .

Send 1 byte value

Options:
no
Value [0...255]
This parameter defines whether a 1 byte value is sent.

- Value [0...255]: The following parameter appears:

Sent value

$$
\text { Options: } \quad 0 . . .255
$$

A telegram with the respective value is sent on the bus via communication object no. 9 .

Activate automatic blind output

Options:

```
no
yes
```

- no: There is no reaction with the start of the event.
- yes: Automatic of output E, F (6 A) is internally activated via communication object No. 5 Automatic blind triggering (1 bit). At the same time, the telegram for automatic activation is sent on the bus. The KNX devices integrated into the automatic function are also contacted.

Note

Internal activation of Automatic only occurs when in parameter window Output E, F (6 A): Shutter the function Enable automatic has been enabled.

Internal blocking of the inputs

Options: $\begin{aligned} & \frac{\text { unchanged }}{\text { Activate }} \\ & \\ & \\ & \text { Deactivate }\end{aligned}$
This parameter acts directly on the binary inputs, which allow an internal block.

- unchanged: The internal block remains unchanged.
- Activate: The internal block is activated.
- Deactivate: The internal block is deactivated.

Event 2 started with a delay

Options:

$$
\frac{\text { no }}{v o c}
$$

- no: This is no reaction, when the value 0 is received. Event 2 is not started.
- yes: If the value 0 is received, event 2 starts. Event 2 is set via the following parameters:

Delay time

in s [0...65,535]
Options: $\quad 0 .$. 30 $\ldots 65,535$
This parameter determines the duration, after which event 2 is started.

[^6]
ABB i-bus ${ }^{\circledR}$ KNX Commissioning

3.2.7

Commissioning without bus voltage

How is the device switched on and put into operation?
The device can be made operational by applying an auxiliary voltage from the mobile power supply (NTI).

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

3.3 Communication objects

Note

As standard, the write flag (with the exception of 1 bit communication objects) is deleted with the communication object values. Thus the communication object value cannot be changed via the bus. If this function is required, the Write flag must be set in the ETS.
The communication object value is overwritten with the parameterized value after bus voltage recovery.

3.3.1 Short overview of the communication objects

CO No.	Function	Name	Data Point Type (DPT)	Length	Flags				
					C	R	S	T	R
45	Block	Input a: Switch sensor	1.003	1 bit	x		x		
		Input a: Switch/dimming sensor	1.003	1 bit	x		x		
		Input a: Blind sensor	1.003	1 bit	x		X		
		Input a: Value/forced operation	1.003	1 bit	x		x		
46	Switch 1	Input a: Switch sensor	1.001	1 bit	x		X	x	
	Switch	Input a: Switch/dimming sensor	1.001	1 bit	x		X	x	
	Blind UP/DOWN	Input a: Blind sensor	1.008	1 bit	x		x	x	
	Value 1, unsigned	Input a: Value/forced operation	8.001	2 byte	x			x	
	Value 1, floating point	Input a: Value/forced operation	9.001	2 byte	x			x	
	Value 1, forced operation	Input a: Value/forced operation	2.001	2 bit	x			x	
	Value 1, signed	Input a: Value/forced operation	13.001	4 byte	x			x	
	Value 1, signed	Input a: Value/forced operation	6.010	1 byte	x			x	
	Value 1, unsigned	Input a: Value/forced operation	5.010	1 byte	x			x	
	Value 1, scene number	Input a: Value/forced operation	18.001	1 byte	x			x	
	Value 1	Input a: Value/forced operation	1.001	1 bit	x			x	
	Value 1, time, weekday	Input a: Value/forced operation	10.001	3 byte	x			x	
	Value 1, signed	Input a: Value/forced operation	7.001	2 byte	x			X	
	Value 1, unsigned	Input a: Value/forced operation	12.001	4 byte	x		X	x	
47	Switch 2	Input a: Switch sensor	1.001	1 bit	x		x	x	
	Dimming	Input a: Switch/dimming sensor	3.007	4 bit	x			x	
	STOP/slat adjustment	Input a: Blind sensor	1.007	1 bit	x			x	
	Value 2, unsigned	Input a: Value/forced operation	8.001	2 byte	x			x	
	Value 2, floating point	Input a: Value/forced operation	9.001	2 byte	x			x	
	Value 2, forced operation	Input a: Value/forced operation	2.001	2 bit	x			x	
	Value 2, signed	Input a: Value/forced operation	13.001	4 byte	x			x	
	Value 2, signed	Input a: Value/forced operation	6.010	1 byte	X			X	
	Value 2, unsigned	Input a: Value/forced operation	5.010	1 byte	X			X	
	Value 2, scene number	Input a: Value/forced operation	18.001	1 byte	x			x	
	Value 2	Input a: Value/forced operation	1.001	1 bit	x			x	
	Value 2, time, weekday	Input a: Value/forced operation	10.001	3 byte	x			x	
	Value 2, signed	Input a: Value/forced operation	7.001	2 byte	x			x	
	Value 2, unsigned	Input a: Value/forced operation	12.001	4 byte	x			x	
48	Switch 3	Input a: Switch sensor	1.001	1 bit	x		x	x	
	Upper limit position	Input a: Blind sensor	1.002	1 bit	x		x		
49	Start event 0/1	Input a: Switch sensor	1.001	1 bit	X		X		
	Lower limit position	Input a: Blind sensor	1.002	1 bit	x		x		
50... 104	the same CO as input a	Input b...l							

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

CO No.	Function	Name	Data Point Type (DPT)	Length	Flags				
					C	R	S	T	R
105	Switch	Output E (6 A)	1.001	1 bit	x		x		
	UP/DOWN move	Blind output E (6 A)	1.008	1 bit	x		x		
	UP/DOWN move	Shutter output E (6 A)	1.008	1 bit	x		x		
106	Permanent ON	Output E (6 A)	1.003	1 bit	x		x		
	Slat adjust OPEN/CLOSE	Blind output E (6 A)	1.007	1 byte	x		x		
	STOP UP/DOWN	Shutter output E (6 A)	1.007	1 byte	x		x		
107	Disable function time	Output E (6 A)	1.003	1 bit	x		x		
	Move to position [0...255]	Blind output E (6A)	5.001	1 byte	x		x	x	
	Move to position [0...255]	Shutter output E (6 A)	5.001	1 byte	x		x	x	
108	Scene	Output E (6 A)	18.001	1 byte	x		x		
	Move slat [0...255]	Blind output E (6 A)	5.001	1 byte	x		x	x	
109	Forced operation	Output E (6 A)	2.001	2 bit	x		X		
	Forced operation	Output E (6 A)	1.003	1 bit	x		x		
	Reference movement	Blind output E (6A)	1.008	1 bit	x		x		
	Reference movement	Blind output E (6A)	1.008	1 bit	x		x		
	Reference movement	Shutter output E (6 A)	1.008	1 bit	x		x		
	Reference movement	Shutter output E (6 A)	1.008	1 bit	x		x		
110	Status switch	Output E (6 A)	1.001	1 bit	x	x		x	
	Scene	Blind output E (6 A)	18.001	1 byte	x		x		
	Scene	Shutter output E (6 A)	18.001	1 byte	x		X		
111	Logical connection 1	Output E (6 A)	1.002	1 bit	x		x		
	Activation of aut. control	Blind output E (6 A)	1.003	1 bit	x		X	x	
	Activation of aut. control	Shutter output E (6 A)	1.003	1 bit	x		x	x	
112	Logical connection 2	Output E (6 A)	1.002	1 bit	x		X		
	Sun	Blind output E (6 A)	1.001	1 bit	x		X		
	Sun	Shutter output E (6 A)	1.001	1 bit	X		X		
113	Move to pos. for sun [0...255]	Blind output E (6 A)	5.001	1 byte	x		X		
	Move to pos. for sun [0...255]	Shutter output E (6 A)	5.001	1 byte	x		x		
114	Sun slat adjust [0...255]	Blind output E (6 A)	5.001	1 byte	x		x		
115	Safety A	Blind output E (6 A)	1.005	1 bit	x		X		
	Safety A	Shutter output E (6 A)	1.005	1 bit	x		x		
116	Safety B	Blind output E (6A)	1.005	1 bit	x		x		
	Safety B	Shutter output E (6 A)	1.005	1 bit	x		x		
117	Status byte	Blind output E (6 A)	-	1 byte	x	X		X	
	Status of upper position	Blind output E (6 A)	1.002	1 bit	x	X		x	
	Status byte	Shutter output E (6 A)	-	1 byte	X	X		X	
	Status of upper position	Shutter output E (6 A)	1.002	1 bit	x	x		X	
118	Status of lower position	Blind output E (6A)	1.002	1 byte	x	x		x	
	Status of lower position	Shutter output E (6 A)	1.002	1 byte	x	x		x	
119	Not assigned								
120... 163	the same CO as output E	Output G, I, K (6 A)							
	the same CO as blind output E	Blind output G, I, K (6 A)							
	the same CO as	Shutter output G, I, K (6 A)							

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

No.	Function	Object name	Data type	Flags
0	In operation	System	1 bit DPT 1.002	C, T
The communication object is enabled if in parameter window General the parameter Send communication object "In operation" has been selected with option yes. In order to regularly monitor the presence of the device on the KNX, an in operation monitoring telegram can be sent cyclically on the bus. As long as the communication object is activated, it sends a programmable in operation telegram. Telegram value $\quad 1$ = system in operation with option send value 1 cyclically $0=$ system in operation with option send value 0 cyclically				
1	Request status values	General	$\begin{array}{\|l\|} \hline 1 \text { bit } \\ \text { DPT } 1.017 \end{array}$	C, w

The communication object is enabled if in parameter window General the parameter Enable communication object "Request status values" 1 bit has been selected with option yes.
If a telegram with the value $x(x=0 ; 1 ; 0$ or 1$)$ is received in the communication object, all status objects are sent on the bus, as long as these have not been programmed with the option after a change or after request or after a change or request.
The following function results for the option $x=1$:
Telegram value: $1=$ All status messages are sent.
$0=$ nothing happens.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

No.	Function	Object name	Data type	Flags
$\mathbf{2}$	Recall 1...16	Room Scenario	1 byte DPT 17.001	C, W

This communication object is enabled if in parameter window Enable Room Scenarios 1...16, the parameter Enable Room Scenarios has been selected with the option yes.

1 byte value $[0 \ldots 255]$	EIS:	DPT 5.010 value
Value $0=$	Room Scenario 1	00000000
Value $1=$	Room Scenario 2	00000001
Value $2=$	Room Scenario 3	00000010
Value $3=$	Room Scenario 4	00000011
Value $4=$	Room Scenario 5	00000100
Value $5=$	Room Scenario 6	00000101
Value $6=$	Room Scenario 7	00000110
Value $7=$	Room Scenario 8	00000111
Value $8=$	Room Scenario 9	00001000
Value $9=$	Room Scenario 10	00001001
Value $10=$	Room Scenario 11	00001010
Value $11=$	Room Scenario 12	00001011
Value $12=$	Room Scenario 13	00001100
Value $13=$	Room Scenario 14	00001101
Value $14=$	Room Scenario 15	00001110
Value $15=$	Room Scenario 16	00001111

Sending a value from 16 to 255 is invalid and will be ignored.

This communication object is enabled if in parameter window Enable Room Scenarios 1...16, the parameter Enable Room Scenarios has been selected with the option yes.
Using this communication object, further KNX blind devices can be moved on automatic via the bus.
Telegram value: $\quad 0=$ no activation of automatic blind
$1=$ activation of automatic blind

No.	Function	Object name	Data type	Flags
$\mathbf{6}$	Recall KNX scene	Room Scenario	$\mathbf{1}$ byte DPT 18.001	C, T

This communication object is enabled if in parameter window Enable Room Scenarios 1...16, the parameter Enable Room Scenarios has been selected with the option yes.
Using this 1 byte communication object, a scene recall can be sent using a coded scene telegram. The telegram contains the number of the respective scene as well as the information on whether the scene is to be retrieved, or if the current switch state is to be assigned to the scene.
Telegram format (1 byte): MXSSSSSS
(MSB) (LSB)
M : $\quad 0-$ Scene is recalled
1 - store scene not possible
X: not used
S: Number of the scene (1...64: 00000000...00111111)

1 byte telegram		Meaning
Decimal	Hexadecimal	
00	00 h	Recall scene 1
01	01 h	Recall scene 2
02	02 h	Recall scene 3
\ldots	\ldots	\ldots
03	3Fh	Recall scene 64

7	Trigger internal block	Room Scenario	1 bit DPT 1.001	C, T

This communication object is enabled if in parameter window Enable Room Scenarios 1...16, the parameter Enable Room Scenarios has been selected with the option yes.
KNX devices can be disabled via this communication object.
Telegram value: $0=$ deactivate internal block.
1 = activate internal block.

8	Thermostat ON/OFF	Room Scenario	1 bit DPT 1.001	C, T

This communication object is enabled if in parameter window Enable Room Scenarios 1...16, the parameter Enable Room Scenarios has been selected with the option yes.
Telegram value: $0=$ Thermostat OFF
1 = Thermostat ON

9	Send value [0...255]	Room Scenario	1 byte DPT 5.010	C, T

This communication object is enabled if in parameter window Enable Room Scenarios 1...16, the parameter Enable Room Scenarios has been selected with the option yes.
This communication object sends a value on the bus
1 byte value [0...255]

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Communication objects Inputs a...I

The communication objects of all Inputs do not differentiate from one another and are explained using Input a.

The descriptions of the parameter setting options of Inputs a...I are described in Parameter window Enable Inputs a...f, page 24.

The communication objects Input a have the nos. 45... 49
The communication objects Input b have the nos. 50... 54
The communication objects Input c have the nos. 55... 59
The communication objects Input d have the nos. 60... 64
The communication objects Input e have the nos. 65... 69
The communication objects Input f have the nos. 70... 74 .
The communication objects Input g have the nos. 75... 79
The communication objects Input h have the nos. 80... 84
The communication objects Input i have the nos. 85... 89.
The communication objects Input j have the nos. 90... 94.
The communication objects Input k have the nos. 95...99
The communication objects Input / have the nos. 100...104.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

3.3.4.1

Communication objects Switch sensor

No.	Function	Object name	Data type	Flags
45	Block	Input a: Switch sensor	$\mathbf{1}$ bit DPT 1.003	C, W
This communication object is enabled if in parameter window a: Switch sensor, the parameter Enable communication object "Block" 1 bit has been selected with option yes. Using the communication object Block, the input can be blocked or enabled. With activated communication object Block the inputs are blocked.				
Note When the input is blocked there is fundamentally no reaction to a signal change on the input, but: - Waiting for a long button operation or a minimum signal duration is suspended. - Parameterised Cyclic sending is not interrupted. - The description of the communication object Switch x is still possible. If the input state changed during the blocked phase, this leads to immediate sending of the new communication object value after enabling. If the input state remains the same during the blocking phase, the communication object value is not sent.				

Telegram value $\quad 0=$ enable input a
$1=$ block input a

46	Switch 1	Input a: Switch sensor	1 bit DPT 1.001	C, W, T

This communication object is enabled if in the parameter window Enable inputs a...f the parameter Input a (binary input, contact scanning) has been selected with the option Switch sensor.
In accordance with the parameter setting, this communication object can be switched by actuation of the input to ON, OFF or TOGGLE or can be set to no reaction. With toggle the previous value, e.g. 1, is toggled directly to the value 0 . The communication object can be sent cyclically, e.g. for lifesign monitoring of the sensor.

Note

The communication object can be written to externally. Thus cyclic sending is interrupted or may not be possible depending on the parameter setting.
No further communication objects are visible with the setting.

Telegram value: \quad| $0=\mathrm{OFF}$ |
| :--- |
| $1=\mathrm{ON}$ |

47 48	Switch 2 Switch 3								
See communication object 46.							Input a: Switch sensor	1 bit DPT 1.001	C, W
49	Start event 0/1								

This communication object is enabled if in parameter window a: Switch sensor, the parameter Enable communication object "Start event 0/1" 1 bit has been selected with option yes.
The 1 bit communication object Start event $0 / 1$ is enabled. As a result, the same events except those of the push button/switch connected to the binary input can also be triggered by the receipt of a telegram on the communication object Event 0/1 started.
Telegram value: $\quad 0=$ start event 0
1 = start event 1

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

No.	Function	Object name	Data type	Flags
45	Block	Input a: Blind sensor	1 bit DPT 1.003	C, W

This communication object is enabled if in parameter window a: Blind sensor, the parameter Enable communication object "Block" 1 bit has been selected with option yes.
Using the communication object Block, the input can be blocked or enabled. With activated communication object Block the inputs are blocked.

Note

When the input is blocked there is fundamentally no reaction to a signal change, but:

- Waiting for a long button operation or a minimum signal duration is suspended.
- Parameterized Cyclic sending is interrupted.
- Communication objects continue to be updated and sent if necessary.

When enabling an input, a change of the signal states (as opposed to before the block) leads to immediate processing, e.g.:

- The minimum actuation or detection of a long/short button push starts.
- Communication objects send their current value if necessary.
Telegram value $\quad 0=$ enable input a
$1=$ block input a

46	Blind UPIDOWN	Input a: Blind sensor	1 bit DTP 1.008	C, W, T

This communication object is enabled if in the parameter window Enable inputs a... h the parameter Input a (binary input, contact scanning) has been selected with the option Blind sensor.
This communication object sends a blind motion telegram UP or DOWN on the bus. By receiving telegrams, the device also recognises movement telegrams of another sensor, e.g. parallel operation.
Telegram value $0=$ UP
$1=$ DOWN

47	STOP/slat adjustment	Input a: Blind sensor	1 bit DTP 1.007	C, T

This communication object is enabled if in the parameter window Enable inputs a... h the parameter Input a (binary input, contact scanning) has been selected with the option Blind sensor.
This communication object sends a STOP telegram or slat adjustment.
Telegram value $0=$ STOP/slat adjustment OPEN
1 = STOP/slat adjustment CLOSE

ABB i-bus ${ }^{\circledR}$ KNX

No.	Function	Object name	Data type	Flags
48	Upper limit position	Input a: Blind sensor	$\mathbf{1}$ bit DTP 1.002	C, W

This communication object is enabled if in the parameter window Enable inputs a... h the parameter Input a (binary input, contact scanning) has been selected with the option Blind sensor.
With this communication object, the feedback of a blind actuator, which indicates whether the blind is located in the upper end position, can be integrated.

Note
The communication object is important for 1-button operation (synchronisation).
Telegram value: $\quad 0=$ blind is not in upper end position.
1 = blind has reached the upper end position.

49	Lower limit position	Input a: Blind sensor	1 bit DTP 1.002	C, W

This communication object is enabled if in the parameter window Enable inputs a... h the parameter Input a (binary input, contact scanning) has been selected with the option Blind sensor.
With this communication object, the feedback of a blind actuator which indicates whether the blind is located in the lower end position can be integrated.

Note
The communication object is important for 1-button operation (synchronisation).

```
Telegram value: 0 = blind is not in lower end position
    1 = blind has reached the lower end position
```


ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

3.3.4.4

Communication objects Value/forced operation

No.	Function	Object name	Data type	Flags
$\mathbf{4 5}$	Block	Input a: Value / forced operation	1 bit DPT 1.003	C, W

This communication object is enabled if in parameter window a: Value/Forced operation, the parameter Enable communication object "Block" 1 bit has been selected with option yes.
Using the communication object Block, the input can be blocked or enabled. With activated communication object Block the inputs are blocked.

Note

When the input is blocked there is fundamentally no reaction to a signal change, but:

- Waiting for a long button operation or a minimum signal duration is suspended.
- The parameter setting 8 bit scene is ended with saving.
- Communication objects continue to be updated and sent if necessary.

When enabling an input, a change of the signal states (as opposed to before the block) leads to immediate processing, e.g.:

- The minimum actuation or detection of a long/short button push starts.
- Communication objects send their current value if necessary.

Telegram value $0=$ enable input a
1 = block input a

46	Value 1	Input a: Value $/$ forced operation	DPT variable	C, T

This communication object is enabled if in the parameter window Enable inputs a...f, the parameter Input a (binary input, contact scanning) has been selected with the option Value/forced operation.
This communication object sends a value on the bus with short operation when opening or closing of the contact. The value and data type can be freely set in the parameters.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Communication objects Outputs

The communication objects of all outputs differentiate from one another with the exception of the communication objects Logical connection 1 and Logical connection 2. They are therefore explained using Output A (20 AX C-Load).
The descriptions of the parameter setting options of Outputs A...D (20 AX C-Load) are described in Parameter window Enable Outputs A...D, page 55.
The descriptions of the parameter setting options of Outputs E, G, I and $K(6 A)$ are described in Parameter window E: Output (6 A), page 77.

The communication objects Output A (20 AX C-Load) have the nos. 10...17.
The communication objects Output B (20 AX C-Load) have the nos. 18...25.
The communication objects Output C (20 AX C-Load) have the nos. 26...33.
The communication objects Output D (20 AX C-Load) have the nos. 34...41.
The communication objects Output $E(6 A)$ have the nos. 105... 112 .
The communication objects Output G (6 A) have the nos. 120...127.
The communication objects Output I (6 A) have the nos. 135... 142.
The communication objects Output $K(6 A)$ have the nos. 150...157.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Communication objects Output A

No.	Function	Object name	Data type	Flags
$\mathbf{1 0}$	Switch	Output A (20 AX C-Load)	1 bit DPT 1.001	C, W

This communication object is enabled if in the parameter window Enable Outputs A...D the parameter Output A (20 AX CLoad) has been enabled.
This communication object is used for switching of the output ON/OFF. The device receives a switch telegram via a switch communication object.
N/O:

Telegram value	$1=$ switch ON $0=$ switch OFF
N/C:	
Telegram value	$1=$ switch OFF 0
	0 switch ON

Note

With logical connections or forced operations, a modification of the communication object Switch does not necessarily lead to a change of the contact position.
For further information see: Function chart, page 132

11	Permanent ON	Output A (20 AX C-Load)	1 bit DPT 1.003	C, W

This communication object is enabled if in parameter window A: Output (20 AX C-Load), the parameter Enable function Time has been selected with the option yes.
The output can be forcibly switched on with this communication object.
If the communication object is assigned with the value 1 , the output is switched on irrespective of the value of the object Switch and remains switched on until the communication object Permanent ON has the value 0 . After ending the permanent ON state, the state of the communication object Switch is used.
Permanent ON only switches ON and "masks" the other functions. This means that the other functions, e.g. staircase lighting, continue to run in the background but do not initiate a switching action. After the end of permanent ON, the switching state, which would result without the permanent ON function, becomes active. For the function Staircase lighting, the response after permanent ON is parameterized in Parameter window A: Output (20 AX C-Load) - Time, page 62.
This communication object can be used, for example, to allow the service or maintenance and cleaning personnel to initiate a permanent ON. The device receives a switch telegram via the switch object.
Permanent ON becomes inactive after a download or bus voltage recovery.
Telegram value $\quad 1=$ activates permanent ON mode
$0=$ deactivates permanent ON mode

No.	Function	Object name	Data type	Flags
$\mathbf{1 2}$	Disable function time	Output A (20 AX C-Load)	$\mathbf{1}$ bit DPT 1.003	C, W

This communication object is enabled if in parameter window A: Output (20 AX C-Load), the parameter Enable function Time has been selected with the option yes.
After bus voltage recovery, in parameter window - Time the communication object value with the parameter Object value "Disable function Time" can be determined.
With the blocked function Time, the output can only be switched ON or OFF, the function Staircase lighting is not triggered.
Telegram value 1 = staircase lighting disabled

$$
0=\text { staircase lighting enabled }
$$

The contact position at the time of disabling and enabling is retained and will only be changed with the next switch telegram to the communication object Switch.

13	Scene	Output A (20 AX C-Load)	1 byte DPT 18.001	C, W

This communication object is enabled if in parameter window A: Output (20 AX C-Load), the parameter Enable function Scene has been selected with the option yes.
Using this 8 bit communication object, a scene telegram can be sent using a coded telegram. The telegram contains the number of the respective scene as well as the information on whether the scene is to be retrieved, or if the current switch state is to be assigned to the scene.
Telegram format (1 byte): MXSSSSSS
(MSB) (LSB)
M : $\quad 0-$ Scene is recalled
1 - scene is stored (if allowed)
X: not used
S: Number of the scene (1...64: 00000000...00111111)

KNX 1 byte telegram value		Meaning
Decimal	Hexadecimal	
00 or 64	00h or 40h	Recall scene 1
01 or 65	01h or 41h	Recall scene 2
02 or 66	02h or 42h	Recall scene 3
\ldots	\ldots	\ldots
63 or 127	3Fh or 7Fh	Recall scene 64
128 or 192	80h or B0h	Store scene 1
129 or 193	81h or B1h	Store scene 2
130 or 194	82h or B2h	Store scene 3
\ldots	\ldots	\ldots
191 or 255	AFh or FFh	Store scene 64

For further information see: Function Scene, page 139, and Code table scene (8 bit), page 166

14	Forced operation	Output A (20 AX C-Load)	1 bit DPT 1.003	C, W

This communication object is enabled if in parameter window A: Output (20 AX C-Load), the parameter Enable function forced operation has been selected with the option yes and the parameter Type of object "Forced operation" has been selected with 1 bit.
If the object receives the value 1, the output is forcibly set to the parameterized switch position, which has been set in the parameter window Output A (20 AX C-Load). The forced positioning of the contact should remain until forced operation is ended. This is then the case when a 0 is received via the communication object Forced operation.
Please note that the function Forced operation and a bus failure have a higher priority on the switching state, see Function chart, page 132.

No.	Function	Object name	Data type	Flags
$\mathbf{1 4}$	Forced operation	Output A (20 AX C-Load)	$\mathbf{2}$ bit DPT 2.001	C, W

This communication object is enabled if in parameter window A: Output (20 AX C-Load), the parameter Enable function forced operation has been selected with the option yes and the parameter Type of object "Forced operation" has been selected with 2 bit.
The output can be forcibly operated via this communication object (e.g. by a higher-level control). The object value directly defines the forced position of the contact:

$$
\begin{aligned}
& 0 \text { or } 1=\text { The output is not forcibly operated. } \\
& 2=\text { The output is forcibly switched off } \\
& 3=\text { The output is forcibly switched on }
\end{aligned}
$$

15	Status switch	Output A (20 AX C-Load)	1 bit DPT 1.001	C, R, T

This communication object is enabled if in the parameter window A: Output (20 AX C-Load), the parameter Enable communication object "Switch status" 1 bit has been selected with yes.
You can parameterize whether the communication object value no, update only, after a change or after a change or request is sent on the bus. The communication object value directly indicates the current contact position of the switching relay.
The status value can be inverted.
Telegram value $\quad 1$ = relay ON or OFF depending on the parameterization
$0=$ Relay OFF or ON depending on the parameterization

16	Logical connection 1	Output A (20 AX C-Load)	1 bit DPT 1.002	C, W

This communication object is enabled if in the parameter window - Logic the parameters Logical connection 1 active has been selected with yes. The parameter window - Logic is enabled in the parameter window A: Output A (20 A C-Load).
Using this communication object, the output of the first of two logic communication objects can be assigned. The logical connection is defined in the parameter window - Logic.
Initially, the switch communication object is logically linked with the communication object Logical connection 1. The result of this is then logically linked with the communication object Logical connection 2.

Note

The values of the communication objects Logical connection $1 / 2$ are stored at bus voltage failure. The values are set again after a bus voltage recovery
If values are not assigned for communication objects Logical connection $1 / 2$, they will be deactivated.
At a reset via the bus, the values of the communication objects Logical connection 1/2 remain unchanged.

For further information see: Connection/logic, page 137

17	Logical connection 2	Output A (20 AX C-Load)	1 bit DPT 1.002	C, W

[^7]
ABB i-bus ${ }^{\circledR}$ KNX Commissioning

In the following, the communication objects of Output E, F (6 A) Blind and shutter are explained using the selection blind. If the blind selection has a special function or if the function is not available, e.g. slat adjustment, this is clearly indicated. Otherwise, the explanations apply for both operating modes.

No. \quad F	Function	Object name	Data type	Flags
105 U	UP/DOWN move	Blind output E, F (6 A) Shutter output E, F (6 A)	1 bit DPT 1.008	C, W
This communi (6 A) has been This communi If a telegram received, the elapsed. Telegram valu	nication object is enabled if in para en selected with Blind. ication object moves the blind or with the value 0 is received on the blind moves DOWN. The output ue $\begin{aligned} & 0=U P \\ & 1=\text { DOWN } \end{aligned}$	nable Outputs E...L (6 A), DOWN (1). bject, the blind moves UP he neutral middle position	e parameter If a telegra after the To	F (Blind) value 1 is me has
106	STOP/Slat adj. OPEN/CLOSE or STOP UP/DOWN	Blind output E, F (6 A) Shutter output E, F (6 A)	1 bit DPT 1.007	C, W

This communication object is enabled if in parameter window Enable Outputs E..L (6 A), the parameter Output E, F (Blind) (6 A) has been selected with Blind.
This communication object stops the blind or shutter during movement. When the blind is stopped, the communication object is used for slat adjustment, one step OPEN (0) or CLOSE (1).
If the blind is moving, the movement stops if a telegram is received on this communication object, regardless of if a 0 or a 1 is received.
Blind mode: If the blind is at a standstill, with the receipt of a telegram on this communication object, the blind is then moved for the duration of slat adjustment OPEN (0) or CLOSe (1) and then stops.
Shutter mode: When the blinds are at rest and a telegram is received on this communication object, no action is undertaken.
Telegram value $\quad 0=$ STOP/slat adjustment OPEN
1 = STOP/slat adjustment CLOSE

107	Move to position [0...255]	Blind output E, F (6 A) Shutter output E, F $(6 \mathrm{~A})$	1 byte DPT 5.001	C, W, T

This communication object is enabled if in parameter window Enable Outputs $E \ldots L$ (6 A), the parameter Output E, F (Blind) (6 A) has been selected with Blind.
This communication object is used for movement to and feedback of a determined position ($0=$ top, $255=$ bottom).
If a telegram is received on this communication object, the blind is moved to the corresponding position of this received value. After the target position is reached, the slats will assume the same position which they had before the movement started. If a Move slats $0 \ldots 255$ telegram is received during movement, the received target position is approached.

```
Telegram value: 0 = upper
    ll
```

No.	Function	Object name	Data type	Flags
$\mathbf{1 0 8}$	Move slat [0...255]	Blind output E, F (6 A) Shutter output E, F (6 A)	1 byte DPT 5.001	C, W, T

This communication object is enabled if in parameter window Enable Outputs $E \ldots L$ (6 A), the parameter Output E, F (Blind) (6 A) has been selected with Blind.

This communication object serves the movement and the feedback of a defined slat position and is therefore only available in blind mode.
If a telegram is received on this communications object, the slats are then positioned in accordance with the received value. If the blind is currently moving, the movement will continue to the target position and positioning of the slats is then undertaken.
Telegram value:

$$
\begin{array}{ll}
0 & =\text { slat fully UP } \\
\ldots & \text { = intermediate position } \\
255 & =\text { slat CLOSE }
\end{array}
$$

109	Reference movement	Blind output E, F (6 A) Shutter output E, F $(6 \mathrm{~A})$	1 bit DPT 1.008	C, W

This communication object is enabled if in parameter window Enable Outputs $E \ldots L$ (6 A), the parameter Output E, F (Blind) (6 A) has been selected with Blind.

This communication object is used for the compensation of deviations in the position, e.g. after frequent UP/DOWN in the intermediate positions. The blinds are moved to the end position ($0=$ upper, $1=$ lower) and back.
If a telegram is received on this communication object, the blind is moved fully upwards or downwards.
The current position is stored in order to move the blind later to the parameterised position after the reference movement. If the option move to saved position is set, and if the automatic function was set for the blind before the reference movement, then the function Automatic will be reactivated after the saved position is reached.
Telegram value: $\quad \begin{aligned} & 0=\text { reference movement fully upwards } \\ & 1=\text { reference movement fully downwards }\end{aligned}$

No.	Function	Object name	Data type	Flags
$\mathbf{1 1 0}$	Scene	Blind output E, F (6 A) Shutter output E, F (6 A)	1 byte DPT 18.001	C, W

This communication object is enabled if in parameter window E, F: Blind (6A), the parameter Enable function Scene has been selected with the option yes.
This communication object is used for calling or storing a scene (position blind and slat). The object number contains a scene number (1-64) as well as the instruction regarding whether a scene should be called or stored. The storing of the scene value is implemented on the device.
Using this 8 bit communication object, a scene telegram can be sent using a coded telegram. The telegram contains the number of the respective scene as well as the information on whether the scene is to be retrieved, or if the current switch state is to be assigned to the scene.
Telegram format (1 byte): MXSSSSSS
(MSB) (LSB)
M : $\quad 0$ - Scene is recalled
1 - scene is stored (if allowed)
X: not used
S: Number of the scene (1...64: 00000000...00111111)

KNX 1 byte telegram value		Meaning
Decimal	Hexadecimal	
00 or 64	00h or 40h	Recall scene 1
01 or 65	01h or 41h	Recall scene 2
02 or 66	02h or 42h	Recall scene 3
\ldots	\ldots	\ldots
63 or 127	3Fh or 7Fh	Recall scene 64
128 or 192	$80 h$ or B0h	Store scene 1
129 or 193	81h or B1h	Store scene 2
130 or 194	$82 h$ or B2h	Store scene 3
\ldots	\ldots	\ldots
191 or 255	AFh or FFh	Store scene 64

For further information see: Function Scene, page 139, and Code table scene (8 bit), page 166

111	Activation of aut. control	Blind output E, F (6 A) Shutter output E, F $(6 \mathrm{~A})$	1 bit DPT 1.003	C, W

This communication object is enabled if in parameter window E, F : Blind (6A), the parameter Enable function automatic has been selected with yes.
This communication object serves for the activation and deactivation of the automatic function.
If a telegram with the value 1 is received on this communication object, the automatic control is activated for the corresponding output and the blind moves to the automatic position. This can be defined via the communication objects Sun, Sun: Move to position $0 . . .255$ and Sun: Move slats $0 . . .255$.
If a telegram with the value 0 is received, the blind remains in the current position and no longer reacts to incoming telegrams on the Automatic communication objects. If the blind is currently in motion, it will not be interrupted.
Telegram value: $0=$ automatic control deactivated
1 = automatic control activated

No.	Function	Object name	Data type	Flags
$\mathbf{1 1 2}$	Sun	Blind output E, F (6 A) Shutter output E, F $(6 \mathrm{~A})$	1 bit DPT 1.001	C, W

This communication object is enabled if in parameter window E, F: Blind (6A), the parameter Enable function automatic has been selected with yes.
This communication object serves for activation of the sun protection: The blind moves to the sun screening position.
Incoming telegrams on this communication object are only considered if the value is 1 for the communication object Activation of aut. control.
If a telegram with the value 1 is received on the communications object Sun, the blind moves to the parameterized position with Sun $=1$. If a telegram with the value 0 is received, the blind moves to the parameterized position with sun $=0$.
The reaction to incoming telegrams can be delayed in its execution via the parameter Delay time on sun = 1 and Delay time on sun $=0$, in order to avoid that the shutter/blinds continuously move up and down in changeable weather. If a telegram with the opposing value is received within the delay time, the Position if sun = 1 is not executed and the blind remains in the Position if sun $=0$ position or vice versa.
If the option Receive position via 8 bit values is set as Position if sun = 1 , the output will move to the position after the delay has timed out, that was last received on the communication objects Sun: Move to position [0..255] (blinds and shutters) as well as Sun: Move slats $0 . .255$ (only for blinds).
Telegram value: $0=$ no sun
1 = sun

113	Move to pos. for sun [0...255]	Blind output E, F (6 A) Shutter output E, F $(6 \mathrm{~A})$	1 byte DPT 5.001	C, W

This communication object is enabled if in parameter window E, F : Blind (6 A), the parameter Enable function automatic has been selected with yes.
This communication object serves for setting the position during active sun protection.
Incoming telegrams on this communication object are implemented immediately only if the automatic control is activated (Activation of aut. control $=1$) and the sun shines ($s u n=1$). The blind is then positioned in accordance with the received value.
Telegram value: 0 = upper
\ldots = intermediate position
255 = lower

114	Sun slat adjust [0...255]	Blind output E, F (6 A) Shutter output E, F $(6$ A)	1 byte DPT 5.001	C, W

This communication object is enabled if in parameter window E, F: Blind (6 A), the parameter Enable function automatic has been selected with yes.
This communication object serves for setting the slat position during active sun screening and is thus only available with blind operation.
Incoming telegrams on this communication object are implemented immediately only if the automatic control is activated (Activation of aut. control = 1) and the sun shines (sun = 1). The slats are then positioned to correspond with the received value.
The movement telegram Sun: Move to position [0..255] is always moved up to the target position before the positioning of the slats is executed.
Telegram value: 0 = slat fully UP
\ldots = intermediate position
255 = slat CLOSE

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

No.	Function	Object name	Data type	Flags
$\mathbf{1 1 5}$	Safety A	Blind output E, F (6 A) Shutter output E, F $(6 A)$	1 bit DPT 1.005	C, W

This communication object is enabled if in parameter window E, F: Blind (6A), the parameter Enable function Safety has been selected with the option yes.
Using this communication object, movement to a fixed position is possible and normal operation is inhibited.

| 116 | Safety B | Blind output E, F (6 A)
 Shutter output E, F
 $(6 \mathrm{~A})$ | 1 bit
 DPT 1.005 | C, W |
| :--- | :--- | :--- | :--- | :--- | :--- |
| See communication object 249. | | | | |
| 117 | Status of upper position | Blind output E, F (6 A)
 Shutter output E, F
 (6 A) | 1 bit
 DPT 1.002 | C, R, T |

This communication object is enabled if in parameter window E, F : Blind (6 A), the parameter Additional status response has been selected with the option Limit position.
This communication object defines whether the blind is or is not in the upper end position. The object value is sent about five seconds after completion of a movement action.
Telegram value: $0=$ blind in upper end position
1 = blind not in upper end position

No.	Function	Object name	Data type	Flags
$\mathbf{1 1 7}$	Status byte	Blind output E, F (6 A) Shutter output E, F $(6 \mathrm{~A})$	$\mathbf{1}$ byte	C, R, T

This communication object is enabled if in parameter window E, F: Blind (6A), the parameter Additional status response has been selected with the option Status byte.
This communication object provides information about the state of the output and the operation. The information is provided in coded format in a 1 byte value.
With this communication object, the Room Master sends the information concerning the mode in which the output is currently operating. Only one mode can be activated at any time
The status byte is sent after a change.

Bit sequence:	76543210
Bit 7:	not used
Always:	0
Bit 6:	not used
Always:	0
Bit 5:	Safety A
Telegram value:	0: inactive
	1: active
Bit 4:	Safety B
Telegram value:	0: inactive
	1: active
Bit 3:	Automatic
Telegram value:	0: inactive
	1: active
Bit 2:	Sun
Telegram value:	0: inactive
	1: active
Bit 1:	Upper limit position
Telegram value:	0: inactive
	1: active
Bit 0:	Lower limit position
Telegram value:	0: inactive
	1: active
it 0 and bit 1:	
Bit sequence 00:	Blind between upper and lower limit position
Bit sequence 01:	Lower limit position
Bit sequence 10:	Upper limit position
Bit sequence 11:	Undefined blind position

For further information see: Status byte blind/shutter, page 166

118	Status of lower position	Blind output E, F (6 A) Shutter output E, F $(6 \mathrm{~A})$	1 bit DPT 1.002	C, R, T

This communication object is enabled if in parameter window E, F: Blind (6A) or the parameter Additional status response has been selected with the option Limit position.
This communication object defines whether the blind is or is not in the lower end position. The communication object value is sent about five seconds after completion of a movement action.
Telegram value: $\quad 0=$ blind in lower end position.
1 = blind not in lower end position

ABB i-bus ${ }^{\circledR}$ KNX Planning and application

4 Planning and application

In this section you will find some tips and application examples for practical use of the device.

4.1 Output

In this chapter, the function charts and the application explanations for the outputs are explained.

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

4.1.1

Function chart

The following illustration indicates the sequence, in which the functions are processed. Communication objects, which lead to the same box, have the same priority and are processed in the sequence, in which the telegrams are received.

ABB i-bus ${ }^{\oplus}$ KNX Planning and application

Note

If a telegram is received via the communication object Switch, this is connected to both logical objects if they are activated. The result of this action serves as the input signal for the function Time. If this is not blocked, a corresponding switch signal is generated, e.g. delay or flashing. Before the switch telegram of the relay is reached, the forced operation is checked and executed as a priority if necessary. Subsequently, the switching action is only dependent on the state of the bus voltage. The relay is switched if a switching action allows it.

Function Time

The function Time can be enabled (value 0) and disabled (value 1) via the bus (1 bit communication object Disable function time). The output operates without a delay as long as the function Time is disabled.
Different functions can be realised using the function Time:

- Staircase lighting
- Delay for switching ON and OFF
- Flashing

You can switch, for example, between functions, e.g. function Staircase lighting (night time operation) and normal ON/OFF switch function (daytime operation).

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

4.1.2.1

Staircase lighting

After the staircase lighting time Ton the output switches off automatically. For every telegram with the value 1, the staircase lighting time restarts the retrigger function, unless the parameter Extending staircase lighting by multiple operation ("pumping up") Parameter window A: Output (20 AX C-Load) - Time, page 62 , is set to no, no pump up possible.

The response is the fundamental response of the staircase lighting function.
Via "pumping up" - actuation of the push button several times in succession - the user can adapt the staircase lighting to current needs. The maximum duration of the staircase lighting time can be set in the parameters.

If the device receives a further ON telegram when the staircase lighting is switched on, the staircase lighting time is added to the remaining period.

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

Delay for switching ON and OFF

The switching ON and OFF delay delays switch on or switch off of the output.

Example 1:

Example 2:

The delay time $T_{D 1}$ or $T_{D 0}$ starts after a switch telegram, and after it has timed out, the output executes the switch telegram.

If a new ON telegram with the value 1 is received during the switch on delay, the time of the switch on delay starts again. The same applies to switch off for the switch off delay. If a new OFF telegram with the value 0 is received during the switch off delay, the time of the switch off delay starts again.

Note

If the device receives an OFF telegram during the switch on delay $T_{D 1}$, an $O N$ telegram is disregarded.

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

The output can flash when the output is switched on and off periodically

The switch on time (TON) and switch off time (TofF) during flashing can be programmed.

Abstract

Note The contact life of the contacts should be considered and can be found in the technical data. A limitation of the number of switching operations with the parameter Number of impulses may be useful. Furthermore, a delay in the switching sequence may possibly be caused by the limited availability of switching energy with very frequent switching. The possible number of switching operations should be considered.

ABB i-bus ${ }^{\oplus}$ KNX
 Planning and application

4.1.3

Connection/logic

With the function Connection/Logic, it is possible to connect the switching of the output with certain conditions. Two connection communication objects are available:

At first, the communication object Logical connection 1 is evaluated with the communication object Switch. The result is then logically linked with the communication object Logical connection 2.

The following logic functions are possible:

Communication object values						Explanations
Logical function	Switch	Connection 1	Result	Connection 2	Output	
AND	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	The result is 1 if both input values are 1. The output is 1 if both input values are 1.
OR	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	The result is 1 if one of both input values is 1 .
XOR	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	The result is 1 when both input values have a different value.
GATE	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	closed open closed open	0 1	closed open closed open	0 1	The communication object Switch is only allowed through if the GATE (connection) is open. Otherwise the receipt of the communication object Switch is ignored.

ABB i-bus ${ }^{\circledR}$ KNX Planning and application

The logic function is always re-calculated when a communication object value is received.

Gate function example

- The GATE logic is programmed, so that a disable is implemented as soon as the communication object Logical connection x receives a 0 .
- The output of the logical connection is 0 .
- The communication object Logical connection 1 receives a 0 , i.e. the GATE blocks.
- The communication object Switch receives $0,1,0,1$. The output of the logic operation always remains 0 .
- The communication object Logical connection x receives a 1, i.e. the GATE is enabled if it is set in the parameters.
- The output of the logical connection is recalculated.

```
Note
The values of the communication objects Logical connection \(1 / 2\) are stored at bus voltage failure. The values are set again after a bus voltage recovery
If values are not assigned for communication objects Logical connection \(1 / 2\), they will be deactivated. At a reset via the bus, the values of the communication objects Logical connection \(1 / 2\) remain unchanged.
```

```
Note
If telegrams are received on the communication object Switch during the block, they will not be stored.
For this reason, the output or the event remain unchanged when the GATE is enabled.
The output switches if the GATE is enabled and a telegram is received on the communication object
Switch.
```


ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

Function Scene

With the scene using 8 bits, the push button issues the Room Master with the instruction to recall a scene. The scene is not stored in the push button, but rather in the Room Master.

A scene number is sent with the telegram value which must correspond with the scene number in the parameters of the Room Master

Up to 64 different scenes are managed via a single group address. The scene telegram contains the recall or store functions of a scene.

In the following, the scene function is described which controls multiple KNX devices.
With the scene it is possible to retrieve one of 64 scenes or to connect multiple KNX devices in a scene The scene can be retrieved or stored using a single telegram. It is a prerequisite that all the operating devices are parameterized with the same scene number.

Each KNX device involved receives the scene telegram and independently controls the scenes values. Using the Room Master, for example, the outputs are switched on or off, the blind moves to a determine position.

Up to 64 different scenes can be managed via a single KNX group address. The following information is contained in a scene telegram

- Number of the scene (1...64)
- Recall scene / store scene

For further information see: Code table scene (8 bit), page 167

Benefits

The function Scene with ABB i-bus ${ }^{\circledR}$ devices offers the following decisive advantage:
All settings to be undertaken in a scene are stored in the device. Therefore, they must not be sent via the KNX when a scene is recalled, and only a figure value, which has been assigned to this scene, is necessary. This considerably reduces the load on the bus and prevents unnecessary telegram traffic on the KNX.

```
Note
The scene numbering 1 to 64 is retrieved via the KNX with a telegram number 0 to 63 . For corresponding scene coding see Code table scene ( 8 bit), page 167.
```


ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

4.2
 Output E, F (6 A)

In this chapter, the drive types and the application explanations for output E, F (6A) are explained.
4.2.1

Drive types
Output E, F (6 A) can control two drive types, blinds or shutters:

1. Blind

The drive moves UP/DOWN, the blind moves UP/DOWN and the slat adjustment OPENs/CLOSEs.

2. Shutter

The drive moves the shutter UP and DOWN. In contrast to the blind drive type, there are no communication objects available for control of the slats.

General functions
The general functions of the blind and shutter do not differentiate from one another. For this reason they are explained in the following based on the blind settings.

Travel times

Total travel time

The total travel time is the time that a blind requires for a movement from fully upwards to fully downwards. Should the Room Master receive an UP or DOWN movement telegram, the corresponding output is switched and the blind is moved in the appropriate direction.

The blind is moved in this direction until the Room Master receives a STOP telegram or the upper or lower limit positions are reached and the motor is switched off by the end limit switch.

When the motor is switched off by an end limit switch, the corresponding contact on the Room Master remains closed until the parameterised total travel time has timed out including any programmed "overflow time". Only then is there no longer a voltage applied to the output.

Note

With the assistance of the total travel time, the current position of the blind is determined in ongoing operation. For this reason, the total travel time should be measured and programmed as accurately as possible, particularly when the functions Move to position or Automatic control are used. Only so is it possible to exactly calculate the current position of the blind.

Duration of slat adjustment

After the blind moves upwards, the slats are open (horizontal slat position). If the blind is moved downwards, the slat is initially closed (slat position vertical) and the blind moves downwards. If the blind is now once again moved upwards, the slats will once again be opened (slat position horizontal) and will then be moved upwards.

Short movement action can be undertaken by the Room Master in order to purposely adjust the slat angle. Thus, the blind is moved for a brief programmed time - the so-called duration of slat adjustment - in the required direction and in this way undertakes a slat adjustment (STEP command). The smaller the duration of slat adjustment selected, the more accurate the adjustment of the slat angle.

Measurement of the total slat travel time

The total travel time of the slat from opened (horizontal slat position) to closed (vertical slat position) can simply be determined in this way: Then count how many slat adjustments are necessary to completely close the slats. The total slat adjustment travel time results from the number of slat adjustments multiplied by the switch-on duration. This value is entered as a parameter.

ABB i-bus ${ }^{\circledR}$ KNX Planning and application

Reversing time, pause between two movement actions

To ensure that the blind drive is not damaged by a sudden change in direction, the output contacts are electrically disconnected for the duration of the programmed reversing time and only then are the output contacts for the required direction of movement switched.

Important

The technical data of the drive manufacturer must be observed when programming the reversing time!

Note

The output contacts for the direction of movement UP and DOWN are configured to be electrically mutually exclusive, thus ensuring that voltage cannot be applied simultaneously to both contacts, which would damage or destroy the drive.

4.2.2.2

4.2.2.3

Determination of the current position

Reference movement

The Room Master permanently determines the current position of the blind as well as the position of the slat angle based on the duration of the individual movement actions. Over extended periods, slight inaccuracies can occur in the determination of the position for different reasons. For this reason, the Room Master uses the upper and lower end positions for unique determination of the current position of the blind. Every time when the blind is in the upper end position, the position is updated in the memory of the Room Master.
If the end positions are not reached in normal operation, a reference movement which is fully upwards or fully downwards can be performed via a telegram. After a reference movement, the blind remains in the reference position or moves back to the stored position as specified in the programming.

Direct and indirect movement to the position

Via the parameter Move to position, you can set if the blind moves with a telegram from its current position either directly to the target position, or if each movement should perform a reference movement indirectly via a start position (upper end position or lower end position) to the target position.

ABB i-bus ${ }^{\circledR}$ KNX Planning and application

The blind can be moved into any position via an 8 bit value. In the Blind operating mode, the slats can also be positioned into any angle via an 8 bit value.

In this way, it can be decided for each movement telegram which position the blind should move to. For example, it is possible to set the position from a display unit or a visualisation terminal directly using a value.

Automatic control

Using the automatic control, it is possible to realise a comfortable automatic sun screening system as well as to feedback the status of the blind.

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

Automatic sun protection

Function

Together with other KNX components, e.g. JSB/S, a very comfortable automatic sun protection control can be established with the RM/S.

For example, the blinds can be moved upwards if the sunshine is very weak or if the window concerned is in the shadows. As much light as possible is thereby let into the room without any disruptive direct sunlight being taken into account. If there is blazing sunshine on the window however, the blind is lowered and the slats are closed to the extent that direct sunlight cannot penetrate the room. The residual opening in the blinds lets in a sufficient level of diffuse light into the room.

When using special directional slats, the direct daylight into the room is guided so that the no disruptive direct light penetrates the room, but at the same time optimum use is made of the existing natural light.

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

Setting up a simple automatic sun protection system

Two further components are required in addition to the Room Master and touch sensor in order to set up a simple automatic sun protection system: An activation option for the user, e.g. a further switch sensor or the second rocker of the UP/DOWN touch sensor and a brightness sensor.

With the help of the second switch sensor, the user of the room can specify whether he wishes to use the automatic sun protection or whether he would rather control the blinds manually. If the automatic sun protection is activated via a switch sensor, the blind moves automatically until either the automatic sun protection is deactivated via the same switch sensor or the user issues a direct movement telegram, e.g. UP/DOWN or move into position and the automatic function is thus also deactivated.
The Room Master receives the information via the brightness sensor as to whether there is direct sunlight on the window or the facade. Once the adjustable delay period has elapsed, the Room Master positions the blind according to the set Position if sun $=1$ (sun) or Position if sun $=0$ (no sun).

ABB i-bus ${ }^{\oplus}$ KNX Planning and application

Planning a simple automatic sun protection system

To set up an automatic sun protection system with tracking of the sun's position, the following KNX components are required:

- Room Master
- KNX switch sensor or universal interface with push button or direct via the binary input of the Room Master
- Brightness sensor

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

Design of an automatic sun protection system with tracking of the sun's position

To set up an automatic sun protection system with tracking of the sun's position, an additional JSB/S 1.1 is required.

The current position of the sun is continually calculated in the JSB/S. The blind is moved via an 8 bit value into the optimum position to deflect direct sunshine but to let through as much diffuse light as possible. The influence of shadows e.g. the buildings opposite, can also be taken into account in the JSB/S.

ABB i-bus ${ }^{\circledR}$ KNX Planning and application

Planning a simple automatic sun protection system with tracking of the sun's position

The following KNX components are required for setting up an automatic sun protection system including automatic sun protection with tracking of the sun's position:

- Room Master
- KNX switch sensor or universal interface with push button or direct via the binary input of the Room Master brightness sensor
- JSB/S

The current position of the sun is calculated based on the time of day. The JSB/S can be operated as an independent clock, as a master clock or as a slave clock on the KNX. Several JSB/S can also be synchronised together. If the JSB/S is operated as an independent clock or as a master clock, no further time switches are required.

The JSB/S can likewise be operated as a slave clock, if for example, a master clock is present in the installation. A time switch which can send the time and date on the KNX must be used as a master clock.

Position in [0...100]
The Room Master can feedback the position of the blind on the bus as an 8 bit value via the same communication object used to call the position. The corresponding group address should be defined in the ETS as the "sending group address".

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

4.3 Behaviour with, ...

Bus voltage recovery

General

- At bus voltage recovery, the communication object values can be parameterized; if not they are set to the value 0 .
- Timers are out of operation and should be restarted.
- Status communication objects are sent as long as the option after a change has been set.
- The contact position is not known with 100% certainty after bus voltage recovery. It is assumed that the contact position has not changed during the bus failure (no manual operation possibilities occur). Only after a new switch event is the contact position known to the Room Master.
- The send delay is only active at bus voltage recovery!

Switch contact output

- The communication object value Staircase lighting time remains unchanged as before bus voltage failure.
- The communication object value Disable function time is independent of the selected option.
- The communication object value Permanent ON remains unchanged as before bus voltage failure.
- The switch contact output switches as follows:
o After the set communication object value Switch with bus voltage recovery.
o If the parameter Object value "Switch" at bus voltage recovery is not parameterized, the behaviour at bus voltage failure is decisive.
o If none of the two above options are selected, the last position is retained as with bus voltage failure.

Note

If a staircase lighting time was active at bus voltage failure, it will restart.

```
Note
The values of the communication objects Logical connection \(1 / 2\) are stored at bus voltage failure. The values are set again after a bus voltage recovery
If values are not assigned for communication objects Logical connection \(1 / 2\), they will be deactivated.
At a reset via the bus, the values of the communication objects Logical connection \(1 / 2\) remain unchanged.
```


ABB i-bus ${ }^{\circledR}$ KNX Planning and application

Inputs

- The inactive waiting time is only active at bus voltage recovery.

Blind
The behaviour of the blind/shutter output is programmable. The output can assume any state or remain unchanged.

Note

The position of the blind or the shutter is also stored at bus voltage failure, if the function Automatic is activated. The blind or shutter remains in the same position.
On bus voltage recovery, the position is retained and the value of the communication object is undefined. The value is updated only after a renewed movement telegram.
If the communication object Activation of aut. control has not been assigned a group address, the function Automatic is deactivated with a download.

ABB i-bus ${ }^{\oplus}$ KNX
 Planning and application

What is an ETS reset?

Generally an ETS reset is defined as a reset of the device via the ETS. The ETS reset is initiated in the ETS3 under the menu item Commissioning with the function Reset device. This stops the application program and it is restarted.

Note

For all resets after delivery including the first download, the response will comply with that of a reset via the bus. A send and switch delay is not executed. All states are reset.

Switch contact output

- The communication object value Staircase lighting time receives its parameterized value.
- The communication object value Disable function time is 0 , i.e., function Time is not blocked.
- The object value Permanent $O N$ is 0 , i.e., permanent on is not active
- The switch contact output goes to the safely opened state.

Note

The values of the communication objects Logical connection 1/2 are stored at bus voltage failure. The values are set again after a bus voltage recovery
If values are not assigned for communication objects Logical connection $1 / 2$, they will be deactivated.
At a reset via the bus, the values of the communication objects Logical connection 1/2 remain unchanged.

Blind/shutter

Note

The position of the blind or the shutter is also stored at bus voltage failure, if the function Automatic is activated. The blind or shutter remains in the same position.
On bus voltage recovery, the position is retained and the value of the communication object is undefined. The value is updated only after a renewed movement telegram.
If the communication object Activation of aut.control has not been assigned a group address, the function Automatic is deactivated with a download.

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

4.3.3

Download (DL)

Note
 After a download with a change, the application complies in behaviour to a reset of the device in the

 ETS.
Switch contact output

The communication object value Staircase lighting time remains unchanged.
The communication object value Disable function time remains unchanged.
Exception: The communication object value is set to 0 if there is no assignment to the communication object.

Note
Otherwise, the block for the function Time is removed, if the communication object Disable function time is not available.
The switch contact output will otherwise use the new parameters.

The communication object value Permanent $O N$ remains unchanged.
The switch contact output remains unchanged.

Blind/shutter

Note

If the communication object Activation of aut. control has not been assigned a group address, the function Automatic is deactivated with a download.

ABB i-bus ${ }^{\oplus}$ KNX
 Planning and application

Reaction on bus voltage failure

After the contact positions have set with bus voltage recovery, the device remains functional until the bus voltage recovers.

Abstract

Note The values of the communication objects Logical connection $1 / 2$ are stored at bus voltage failure. The values are set again after a bus voltage recovery If values are not assigned for communication objects Logical connection $1 / 2$, they will be deactivated. At a reset via the bus, the values of the communication objects Logical connection $1 / 2$ remain unchanged.

Only the energy for a non-delayed switching action for each output is available should the bus voltage fail.

Blind

The behaviour of the blind/shutter output is programmable. The output can assume any state or remain unchanged.

Note

The position of the blind or the shutter is also stored at bus voltage failure, if the function Automatic is activated. The blind or shutter remains in the same position.
On bus voltage recovery, the position is retained and the value of the communication object is undefined. The value is updated only after a renewed movement telegram.
If the communication object Activation of aut. control has not been assigned a group address, the function Automatic is deactivated with a download.

$5 \quad$ Pre-configuration

In this chapter, the method of function of the Room Scenarios is described.

$5.1 \quad$ Triggering Room Scenarios

A Room Scenario consists of two events. Thereby, one event will trigger up to seven telegrams immediately, and the other event can trigger the same seven telegrams via a delay set with a timer.

Each of these events can be parameterized individually:

- Sending of two 1 bit values,
- Activation of the automatic function of a blind,
- Triggering a KNX scene, internally or via the bus,
- Deactivation/activation of the internal block of the binary inputs,
- Switching on/off the thermostat, e.g. RDF/A,
- Activation of the thermostat, e.g. RDF/A, with a defined operating mode.

ABB i-bus ${ }^{\circledR}$ KNX
 Pre-configuration

5.1.1 Room Scenario internal triggering

Every binary input can be triggered by two Room Scenarios linked to one another. The binary value 0 always triggers a room scenario with odd numbering, i.e. $1,3,5,7,9,11,13$ or 15 , and binary value 1 triggers a room scenario with even numbering, i.e. $2,4,6,8,10,12,14$ or 16 .

General Enable inputs a...f	Debounce time	50 ms	\checkmark
a: Switch sensor	Distinction between short and long operation	no	-
b: Switch sensor			
c: Switch sensor			
d: Switch sensor	Opening the contacts $=>$ Event 0 Closing the contacts => Event 1	<--- NOTE	
e: Blind sensor			
f: Blind sensor	Activate minimum signal duration	no	-
Enable inputs g...I			
g: Blind sensor	Scan input after download, ETS reset and bus voltage recovery	yes	-
h: Blind sensor			
i: Blind sensor	Inactive wait state after bus voltage recovery in $s[0 . . .30,000]$	0	θ
j : Blind sensor			
k: Blind sensor			
l: Blind sensor	Enable communication objects:		
Enable outputs A...D			
A: Output (20 AX C-Load)	"Block" 1 bit	no	\checkmark
B: Output (20 AX C-Load)	"Start event 0/1" 1 bit	yes	
C: Output (20 AX C-Load)			-
D: Output (20 AX C-Load)			
Enable outputs E...L			
EF: Blind (6 A)	"Switch 1" (cyclic sending possible)	yes	\checkmark
- Drive			
GH: Blind (6A)	Reaction on event 0	OFF	\checkmark
- Drive			
I): Blind (6 A)	Reaction on event 1	ON	\checkmark
- Drive	Internal connection	Room Scenario 7/8	\checkmark
KL: Blind (6 A)			
- Drive	Cyclic sending	no	-
Enable Room Scenarios 1...16			
	"Switch 2"	no	-
	"Switch 3"	no	\checkmark

However, only one Room Scenario can be active at a time. An activated Room Scenario can however trigger two events, one of them immediately and the other delayed via a timer. Through the connection in pairs of the Room Scenarios, the binary value triggers one of both connected Room Scenarios and overwrites the previous Room Scenario.

ABB i-bus ${ }^{\circledR}$ KNX

Pre-configuration

The following overview shows the method of function based on Room Scenarios 5 and 6:

ABB i-bus ${ }^{\circledR}$ KNX
 Pre-configuration

A Room Scenario can also be triggered externally via the bus by the receipt of a 1 byte value on the communication object no. 2. The 1 byte values are divided as follows:

0 = Room Scenario 1
1 = Room Scenario 2
2 = Room Scenario 3
3 = Room Scenario 4
4 = Room Scenario 5
5 = Room Scenario 6
$6=$ Room Scenario 7
7 = Room Scenario 8

8 = Room Scenario 9
9 = Room Scenario 10
10 = Room Scenario 11
11 = Room Scenario 12
12 = Room Scenario 13
13 = Room Scenario 14
14 = Room Scenario 15
15 = Room Scenario 16

The 1 byte values $16 \ldots 255$ are not occupied.

ABB i-bus ${ }^{\circledR}$ KNX

Pre-configuration

The following overview shows the method of function based on Room Scenarios 1 and 2:
Trigger room scenario internally via binary input

$\mathrm{S}^{*}=$ set
$\mathrm{R}^{*}=$ reset

ABB i-bus ${ }^{\circledR}$ KNX

Pre-configuration

5.2
 Special feature Switch sensor

Note

This block diagram is only valid if a binary input is parameterized as a switch sensor with the TOGGLE switch function.

Parameterization of the binary input a:

Switch sensor
Switch 1: not used
Switch 2: switches directly on output A TOGGLE
Switch 3: activates a Room Scenario
Parameterization of the output A (20 AX C-Load):
N/O
Enable communication object no. 35: "Status Switch" 1 bit = yes
Send object value $=$ no, update only
Object value of contact position: $1=$ closed, $0=$ open
Enable function scene = yes

Note
The parametric programming as a N/O contact and the contact position must be matched to one another to ensure that the status of the output is correctly fed back to communication object Switch 2. In this way, pressing a button twice for ON/OFF switching is prevented.

ABB i-bus ${ }^{\circledR}$ KNX

Pre-configuration

5.3 Special feature Blind sensor

Parameterization of the binary input e:
2 button operation
Short operation = STOP/slat OPEN
Long operation = move UP
Parameterization of the binary input f:
2 button operation
Short operation $=$ STOP/slat CLOSE
Long operation = move DOWN
Parameterization of the output E, F (6 A):
Enable function automatic $=$ yes
Enable function scene = yes

ABB i-bus ${ }^{\circledR}$ KNX

Pre-configuration

5.3.1

Special feature Blind sensor with external blind actuator

Parameterization of the binary input x :
2 button operation
Short operation = STOP/slat OPEN
Long operation = move UP
Parameterization of the binary input y :
2 button operation
Short operation $=$ STOP/slat CLOSE
Long operation = move DOWN

A
 Appendix

A. 1

Scope of delivery
The Room Master is supplied together with the following components. The delivered items should be checked according to the following list.

- 1 pc. RM/S 3.1, Room Master Standard, MDRC
- 1 pc. Installation and operating instructions
- 1 pc. Bus connection terminal (red/black)

ABB i-bus ${ }^{\circledR}$ KNX Appendix

A. 2
 Status byte blind/shutter

Bit No.		7	6	5	4	3	2	1	0
			$\begin{aligned} & \text { ㅎ } \\ & \text { N } \\ & \text { O} \\ & \text { N } \\ & \widetilde{0} \\ & 0 \end{aligned}$				\cong		
0	00								
1	01								n
2	02							n	
3	03							n	n
4	04						n		
5	05						n		n
6	06						n	n	
7	07						n	n	n
8	08					n			
9	09					n			n
10	OA					n		n	
11	OB					n		n	n
12	0 C					n	n		
13	0D					n	n		n
14	OE					n	n	n	
15	OF					n	n	n	n
16	10				n				
17	11				n				n
18	12				n			n	
19	13				n			n	n
20	14				n		n		
21	15				n		n		n
22	16				n		n	n	
23	17				n		n	n	n
24	18				n	n			
25	19				n	n			n
26	1A				n	n		n	
27	1B				n	n		n	n
28	1 C				n	n	n		
29	1D				n	n	n		n
30	1E				n	n	n	n	
31	1F				n	n	n	n	n
32	20			n					
33	21			n					n
34	22			n				n	
35	23			n				n	n
36	24			n			n		
37	25			n			n		n
38	26			n			n	n	
39	27			n			n	n	n
40	28			n		n			
41	29			n		n			n
42	2A			n		n		n	
43	2B			n		n		n	n
44	2 C			n		n	n		
45	2D			n		n	n		n
46	2 E			n		n	n	n	
47	2 F			n		n	n	n	n
48	30			n	n				
49	31			n	n				n
50	32			n	n			n	
51	33			n	n			n	n
52	34			n	n		n		
53	35			n	n		n		n
54	36			n	n		n	n	
55	37			n	n		n	n	n
56	38			n	n	n			
57	39			n	n	n			n
58	3A			n	n	n		,	
59	3B			n	n	n		n	n
60	3 C			n	n	n	n		
61	3D			n	n	n	n		n
62	3E			n	n	n	n	n	
63	3F			n	n	n	n	n	n
empty = value 0									
n = value 1, applicable									

Note

All combinations not listed or indicated are invalid.

ABB i-bus ${ }^{\circledR}$ KNX
 Appendix

A. $3 \quad$ Code table scene (8 bit)

empty = value 0
n = value 1, applicable

Note

All combinations not listed or indicated are invalid.

ABB i-bus ${ }^{\circledR}$ KNX
 Appendix

A. 4 Input 4 bit dimming telegram

The following table describes the 4 bit dim telegram:

Dec.	Hex.	Binary	Dim telegram
0	0	0000	STOP
1	1	0001	100 \% DARKER
2	2	0010	50 \% DARKER
3	3	0011	25 \% DARKER
4	4	0100	12.5 \% DARKER
5	5	0101	6.25 \% DARKER
6	6	0110	3.13 \% DARKER
7	7	0111	1.56 \% DARKER
8	8	1000	STOP
9	9	1001	100 \% BRIGHTER
10	R	1010	50% BRIGHTER
11	B	1011	25% BRIGHTER
12	C	1100	12.5 \% BRIGHTER
13	D	1101	6.25 \% BRIGHTER
14	E	1110	3.13 \% BRIGHTER
15	F	1111	1.56 \% BRIGHTER

ABB i-bus ${ }^{\circledR}$ KNX
 Appendix

A. 5	Ordering information					
Short description	Description	Order No.	bbn 40 16779 EAN	Price group	Weight 1 pc. [kg]	Pack unit [pc.]
RM/S 3.1	Room Master, MDRC	2CDG 110165 R0011	881067	P2	0.55	1

ABB i-bus ${ }^{\circledR}$ KNX Appendix

Notes

ABB i-bus ${ }^{\circledR}$ KNX
Appendix

Notes

ABB i-bus ${ }^{\circledR}$ KNX Appendix

Notes

ABB STOTZ-KONTAKT GmbH
Eppelheimer Straße 82
69123 Heidelberg, Germany
Phone: $\quad+49(0) 6221701607$
Fax: $\quad+49(0) 6221701724$
E-mail: \quad knx.marketing@de.abb.com
Further information and local contacts:
www.abb.com/knx

Note:

We reserve the right to make technical changes to
the products as well as amendments to the content of this document at any time without advance notice. The agreed properties are definitive for any orders placed. ABB AG shall not be liable for any consequences arising from errors or incomplete information in this document.

We reserve the rights to this document
and all the items and illustrations contained therein. Reproduction, transfer to third parties or processing of the content - including sections thereof - is not permitted without prior expressed written permission from ABB AG.

Copyright ${ }^{\bullet} 2012$ ABB
All rights reserved

[^0]: 1) All binary inputs are internally connected to the same potential
[^1]: ${ }^{1)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx 20 ms .
 ${ }^{2)}$ The maximum inrush-current peak may not be exceeded, see Chapter 2.1.3

[^2]: 1) The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms .
 2) The maximum inrush-current peak may not be exceeded.
[^3]: Note
 If the option Only dimming is selected in the Function Dimming, only the parameter On operation: Dimming direction is visible.

[^4]: * If the actuator indicates the limit position, in 1 button operation the communication object Blind UP/DOWN can be synchronized. If the actuator signals the upper limit position (see communication object Upper limit position or Lower limit position), the direction of movement is defined. In 1 push button/switch operation, the last direction of movement is determined via the last update of the communication object Blind UP/DOWN.

[^5]: Note
 If the relay has been switched immediately before a bus voltage failure, it may not be possible to implement the options UP and DOWN.
 The energy stored in the Room Master is not sufficient for this purpose.

[^6]: Note
 The following parameters and their descriptions do not differ from those with the description Start event 1 immediately, page 104.

[^7]: See communication object 141.

