

ABB i-bus ${ }^{\circledR}$ KNX

Fan Coil Actuators FCA/S
Product Manual
1 General 5
1.1 Using the product manual 5
1.1.1 Notes 6
1.2 Product and functional overview 7
1.2.1 Product overview 7
1.2.2 Functional overview 8
1.2.3 Integration in the i-bus ${ }^{\circledR}$ Tool 9
2 Device technology 11
2.1 Fan Coil Actuator FCA/S 1.1.1.2, PWM, MDRC 11
2.1.1 Technical data 11
2.1.2 Outputs, valve (thermoelectric, PWM) 13
2.1.3 Outputs, valve (motor-driven, 3-point) 13
2.1.4 Inputs 13
2.1.5 Resolution, accuracy and tolerances 14
2.1.6 Resistance signals 14
2.1.7 Fan, rated current 6 A 16
2.1.8 Fan, lamp load 6 A 17
2.1.9 Output, rated current 16 A 18
2.1.10 Output, lamp load 16 A 19
2.1.11 Connection schematic (thermoelectric, PWM) 20
2.1.12 Connection schematic (motor-driven, 3-point) 21
2.1.13 Dimension drawing 23
2.2 Fan Coil Actuator FCA/S 1.1.2.2, PWM, MDRC 24
2.2.1 Technical data 24
2.2.2 Outputs, valve (thermoelectric, PWM) 26
2.2.3 Outputs, valve (motor-driven, 3-point) 26
2.2.4 Inputs 26
2.2.5 Resolution, accuracy and tolerances 27
2.2.6 Resistance signals 27
2.2.7 Fan, rated current 6 A 29
2.2.8 Fan, lamp load 6 A 30
2.2.9 Output, rated current 20 AX 31
2.2.10 Output, lamp load 20 AX 32
2.2.11 Connection schematic (thermoelectric, PWM) 33
2.2.12 Connection schematic (motor-driven, 3-point) 34
2.2.13 Dimension drawing 36
2.3 Fan Coil Actuator FCA/S 1.2.1.2, 0-10V, MDRC 37
2.3.1 Technical data 37
2.3.2 Outputs, valve V1/2, analog 39
2.3.3 Inputs 39
2.3.4 Resolution, accuracy and tolerances 40
2.3.5 Resistance signals 40
2.3.6 Fan, rated current 6 A 42
2.3.7 Fan, lamp load 6 A 43
2.3.8 Output, rated current 16 A 44
2.3.9 Output, lamp load 16 A 45
2.3.10 Connection schematic 46
2.3.11 Dimension drawing 48
2.4 Fan Coil Actuator FCA/S 1.2.2.2, 0-10V, MDRC 49
2.4.1 Technical data 49
2.4.2 Outputs, valve V1/2, analog 51
2.4.3 Inputs 51
2.4.4 Resolution, accuracy and tolerances 52
2.4.5 Resistance signals 52
2.4.6 Fan, rated current 6 A 54
2.4.7 Fan, lamp load 6 A 55
2.4.8 Output, rated current 20 AX56
2.4.9 Output, lamp load 20 AX 57
2.4.10 Connection schematic 58
2.4.11 Dimension drawing 60
2.5 Mounting and installation 61
2.6 Manual operation 63
2.6.1 Display elements 64
2.6.2 Operating controls 65
3 Commissioning 67
3.1 Overview 67
3.1.1 Functions of the inputs 68
3.1.2 Output functions 69
3.2 Parameters 70
3.2.1 Parameter window General - Settings 71
3.2.2 Parameter window Manual operation - Settings. 74
3.2.3 Parameter window Outputs A...H 78
3.2.3.1 Parameter window Enable output A...D. 78
3.2.3.1.1 Description of the Fan Coil operating modes with valve drive, thermoelectric (PWM) 79
3.2.3.1.2 Description of the Fan Coil operation modes with valve drive, motor-driven (3-point) and analog85
3.2.3.2 Parameter window A: Output (Valve drive, thermoelectric (PWM)) 99
3.2.3.3 Parameter window $A B$: Output (valve drive, motor-driven (3-point)) 106
3.2.3.4 Parameter window A: Output (valve drive, analog ($0 . .10 \mathrm{~V}$)) 111
3.2.3.5 Parameter window Function 115
3.2.3.5.1 Parameter window Security 119
3.2.3.5.2 Parameter window Characteristic curve. 121
3.2.3.6 Parameter window Output B, C, D. 124
3.2.3.7 Parameter window Enable output E...H 125
3.2.3.8 Parameter window E, F, G: Fan (Multi-level) 126
3.2.3.9 Parameter window Status messages (Multi-level) 131
3.2.3.10 Parameter window Automatic control (Multi-level) 136
3.2.3.11 Parameter window Direct operation (Multi-level) 144
3.2.3.12 Parameter window Startup/Run-on 146
3.2.3.13 Parameter window E, F, G: Fan (Two-level) 149
3.2.3.14 Parameter window E, F, G: Fan (One-level) 150
3.2.3.15 Parameter window Status messages (single speed) 153
3.2.3.16 Parameter window Automatic control (One-level) 155
3.2.3.17 Parameter window E, F, G: Output (switch actuators) 162
3.2.3.18 Parameter window H: Output. 163
3.2.3.18.1 Parameter window Time 166
3.2.4 Parameter window Enable inputs a...c 170
3.2.4.1 Parameter window Enable inputs a... 170
3.2.4.2 Parameter window a: Switch sensor. 171
3.2.4.2.1 Parameter Distinction between long and short operation - No 173
3.2.4.2.2 Parameter Distinction between long and short operation - Yes 180
3.2.4.3 Parameter window a: Value/forced operation 181
3.2.4.3.1 Parameter Distinction between long and short operation - No 184
3.2.4.3.2 Parameter Distinction between long and short operation - Yes 190
3.2.4.4 Parameter window a: PT100, PT1000 and KTY 191
3.2.4.4.1 Parameter window a: PT100/PT1000 191
3.2.4.4.2 Parameter options for KTY 195
3.2.4.4.3 Line fault compensation Via cable length: 197
3.2.4.4.4 Line fault compensation Via cable resistance 198
3.2.4.4.5 Parameter window a: Threshold 1 199
3.2.4.4.6 Parameter window a: Threshold 1 Output. 202
3.3 Communication objects 203
3.3.1 Summary of communication objects 203
3.3.2 Communication objects General. 207
3.3.3 Communication objects Valve drive, thermoelectric (PWM) and motor-driven (3-point) 211
3.3.4 Communication objects Fan E, F, G 216
3.3.4.1 Communication objects Fan Multi-level 216
3.3.4.2 Communication objects Fan One-level. 222
3.3.4.3 Communication objects Switch actuators E, F, G 227
3.3.4.4 Communication objects Output H 228
3.3.5 Communication objects Inputs a...c 229
3.3.5.1 Communication objects Switch sensor 230
3.3.5.2 Communication objects Value/forced operation 232
3.3.5.3 Communication objects Temperature sensor 233
3.3.5.4 Communication objects Heating/Cooling 235
4 Planning and application 237
$4.1 \quad$ Fan output 238
4.1.1 Fan operation 238
4.1.1.1 Fan with changeover switch. 240
4.1.1.2 Fan with step switch 240
4.1.2 Automatic control 240
4.1.3 Direct operation 242
4.1.4 Switchover between automatic and direct operation 242
4.1.5 Speed switching logic 243
4.1.6 Fan operation functional diagram 244
4.2 Switch output 245
4.2.1 Function diagram 245
4.2.2 Time function 246
4.2.2.1 Staircase lighting 246
4.3 Valve drives, valves and controller 247
4.3.1 Electromotor Valve Drives 247
4.3.2 Electrothermal Valve Drives 247
4.3.3 Control types 248
4.3.3.1 Continuous control. 248
4.3.3.2 Pulse width modulation (PWM) 249
4.3.3.3 Pulse width modulation - calculation 25
4.4 Reaction on bus voltage failure, recovery, download and ETS reset 252
4.4.1 Bus voltage recovery 252
4.4.2 Bus voltage recovery 252
4.4.3 ETS reset 253
4.4.4 Download 253
4.5 Priorities 254
A Appendix 255
A. 1 Scope of delivery. 255
A. 2 Status byte General 256
A. 3 Status byte outputs A, B, C, D 257
A. 4 Status byte fan 258
A. 5 Order details 259
A. 6 Notes 260

1
General

Fans, also referred to as blower convectors or Fan Coil units, are used for distributed heating and cooling applications. They are installed in rooms and powered via central heating and cooling systems. Using fans, room temperature can be quickly adjusted to suit individual preferences.

Fan Coil Actuators switch multi-level fans with up to three fan speeds via floating contacts. Three inputs are available, for monitoring of a window contact and the dew point or for connecting temperature sensors. An additional contact is possible, for example, for control of an electric heater.
Fan Coil Actuators vary in the way they control the valves.
The Fan Coil Actuators FCA/S 1.1.x. 2 have two outputs for control of motor power operated or thermal heating and cooling valves.
The Fan Coil Actuators FCA/S 1.2.x. 2 have two outputs for control of analog heating and cooling valves.

1.1 Using the product manual

This manual provides detailed technical information on the function, installation and programming of the ABB i-bus ${ }^{\circledR}$ KNX device. The application is explained using examples.
This manual is divided into the following chapters:
Chapter 1 General
Chapter 2 Device technology
Chapter 3 Commissioning
Chapter 4 Planning and application
Chapter A Appendix

ABB i-bus ${ }^{\circledR}$ KNX
 General

1.1.1

Notes

Notes and safety instructions are represented as follows in this manual:

```
Note
Tips for usage and operation
```


Examples

Application examples, installation examples, programming examples

```
Important
These safety instructions are used as soon as there is danger of a malfunction without risk of damage
or injury.
```


Attention

These safety instructions are used as soon as there is danger of a malfunction without risk of damage or injury.

4. Danger

These safety instructions are used if there is a danger to life and limb with inappropriate use.

§ 4 Danger

These safety instructions are used if there is an extreme danger to life with inappropriate use.

1.2
 Product and functional overview

The Fan Coil Actuators FCA/S control a single-phase fan with up to three fan speeds via a step or changeover control. In the operation mode Changeover, the actuators ensure that no two fan speeds can be switched on simultaneously. An additional programmable switch-over delay is provided for this purpose. Three-phase drives are not supported. The output can be used for control of an electrical load. Manual operation of the device is possible in the variants FCA/S 1.1.2.2 and FCA/S 1.2.2.2.

Fan Coil Actuators control motor power operated, thermal or analog heating and cooling valves, as well as multi-level fans, via the outputs.

Three inputs are available, e.g. as signaling contacts for window contact and dew point monitoring or as temperature inputs. The scanning voltage for the inputs is provided by the device.

The devices are modular installation devices in Pro M design with 6-module widths for installation in a distribution board. Connection to the ABB i-bus ${ }^{\circledR} \mathrm{KNX}$ is via the front bus connection terminal. The devices require no auxiliary voltage. The assignment of the physical address, as well as the setting of parameters, is carried out with Engineering Tool Software ETS.

Product name description:

1.2.1

Product overview

	FCA/S 1.1.1.2	FCA/S 1.1.2.2	FCA/S 1.2.1.2	FCA/S 1.2.2.2
Operation				
Manual operation	-	x	-	x
Inputs				
Contact scanning or temperature sensor	x	x	x	x
Outputs			x	
Switching contact 6 A or fan	x	x	x	x
Switching contact 16 A (10 AX)	x	-	-	-
Switching contact 20 AX	-	x	x	
Electronic 0.5 A	x	x	r	x
Analog 0...10 V	-	-	x	x

With manual operation, the E button activates the device at fan speed 1. The speed can then be increased to fan speed 2 and fan speed 3 by pressing buttons F and G respectively. To decrease the speed, the buttons must be pressed in the reverse order. Only then can the device be deactivated by pressing button E

ABB i-bus ${ }^{\circledR}$ KNX

General

Functional overview

	FCA/S 1.1.1.2	FCA/S 1.1.2.2	FCA/S 1.2.1.2	FCA/S 1.2.2.2
Inputs	3	3	3	3
Switch sensor, e.g. window contact	1	1	1	1
Value/forced operation, e.g. operating mode	1	1	1	1
Temperature sensor, e.g. exhaust temperature	1	1	1	1
Outputs 6 A switch	3	3	3	3
3-speed fan or	1	1	1	1
2-speed fan or	1	1	1	1
1-speed fan or	1	1	1	1
3 individual outputs	3	3	3	3
Outputs 16 A (10 AX) switch	1	-	1	-
Electrical auxiliary heater	1	-	1	-
Outputs 20 AX switch	-	1	-	1
Electrical auxiliary heater	-	1	-	1
Outputs electronic 0.5 A	4	4	-	-
Thermoelectric Valve Drives (PWM)	4	4	-	-
Motor-Driven Valve Drives (3-point)	2	2	-	-
Outputs analog 0...10 V	-	-	2	2
Analogue Valve Drives	-	-	2	2

1.2.3

Integration in the i-bus ${ }^{\circledR}$ Tool
The device possesses an interface to the i-bus ${ }^{\circledR}$ Tool.
The i-bus ${ }^{\circledR}$ Tool can be used to read out data and test functions on the connected device.
In addition, sensor data can be simulated for test purposes. If there is no communication, no output values (measured values, thresholds) can be sent to the bus, even if they were simulated using the i-bus ${ }^{\circledR}$ Tool. The output values are still sent to the bus if cyclical sending is selected.
The i-bus ${ }^{\circledR}$ tool can be used to define temperature values via the communication object, so that the KNX system can be tested during commissioning without the need to connect a temperature sensor.

The i-bus ${ }^{\circledR}$ Tool can be downloaded for free from our website ($w w w . a b b . c o m / k n x$).
ETS is not required for the Software Tool. However, Falcon Runtime (version 1.6 or higher and version 1.8 or higher for Windows 7) must be installed to set up a connection between the PC and KNX.

A description of the functions can be found in the online help of the i-bus ${ }^{\circledR}$ Tool

2
 Device technology

2.1

Fan Coil Actuator FCA/S 1.1.1.2, PWM, MDRC

The device is a modular installation device (MDRC) in Pro M design. It is intended for installation in distribution 2CDC071001S0015 boards on 35 mm mounting rails. The assignment of the physical addresses as

The device is powered via the ABB i-bus ${ }^{\circledR} \mathrm{KNX}$ and requires no additional auxiliary voltage supply. The device is ready for operation after connecting the bus voltage. well as the parameterization is carried out with ETS.

2.1.1 Technical data

Supply	Bus voltage	21...32 V DC
	Current consumption, bus	< 12 mA
	Leakage loss, bus	Maximum 250 mW
	Leakage loss, device	Maximum 3.05 W*
*The maximum power consumption of the device results from the following specifications:	KNX connection	0.25 W
	Relay 16 A	1.0 W
	Relay 6 A	0.6 W
	Electronic outputs	1.2 W
Connections	KNX	Via bus connection terminal
	Inputs/Outputs	Via screw terminals
Connection terminals	Screw terminal	Screw terminal with universal head (PZ 1)
		$0.2 \ldots 4 \mathrm{~mm}^{2}$ stranded, $2 \times\left(0.2 \ldots .2 .5 \mathrm{~mm}^{2}\right)$
		$0.2 \ldots 6 \mathrm{~mm}^{2}$ single core, $2 \times\left(0.2 \ldots 4 \mathrm{~mm}^{2}\right)$
	Ferrules without/with plastic sleeves	Without: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$
		With: $0.25 \ldots 4 \mathrm{~mm}^{2}$
	TWIN ferrules	$0.5 \ldots 2.5 \mathrm{~mm}^{2}$
		Contact pin length min. 10 mm
	Tightening torque	Maximum 0.6 Nm
	Grid	6.35

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

Operating and display elements	Button/LED	For assignment of the physical address
	Button $/ /$ LED	For toggling between manual operation/ operation via ABB i-bus ${ }^{\circledR}$ KNX and displays
Protection	IP 20	To DIN EN 60529
Protection class	II	To DIN EN 61140
Isolation category	Overvoltage category	III to DIN EN $60664-1$
	Pollution degree	II to DIN EN $60664-1$

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

| Device type | Application | Maximum number of
 communication objects | Maximum number of
 group addresses | Maximum number of
 assignments |
| :--- | :--- | :--- | :--- | :--- | :--- |
| FCA/S 1.1.1.2 | Fan Coil Actuator PWM/...* | 70 | 254 | 255 |

* ... = Current version number of the application. Please refer to the software information on our website for this purpose.

Note

ETS and the current version of the device application are required for programming.
The current version of the application is available on the Internet for download at www.abb.com/knx. After import into ETS it appears in the Catalogs window under Manufacturers/ABB/Heating, Ventilation, Air Conditioning/Fan Coil Actuator PWM.
The device does not support the locking function of a KNX device in ETS. If you use a BCU code to inhibit access to all the project devices, this has no effect on this device. Data can still be read and programmed.

Rated values	Quantity	4, non-isolated, short-circuit proofed
	U_{n} rated voltage	$24 \ldots .230 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$
I_{n} rated current (per output pair)	0.5 A	
Continuous current	0.5 A resistive load at T_{u} up to $20^{\circ} \mathrm{C}$	
		0.3 A resistive load at T_{u} up to $60^{\circ} \mathrm{C}$
	Starting current	Maximum $1.6 \mathrm{~A}, 10 \mathrm{~s}$ at T_{u} up to $60^{\circ} \mathrm{C}$
	$\mathrm{T}_{u}=$ ambient temperature	

2.1.3 Outputs, valve (motor-driven, 3-point)

Rated values	Quantity	2, non-isolated, short-circuit proofed
U_{n} rated voltage	$24 \ldots 230 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$	
I_{n} rated current (per output pair)	0.5 A	
Continuous current	0.5 A resistive load at T_{u} up to $20^{\circ} \mathrm{C}$	
		0.3 A resistive load at T_{u} up to $60^{\circ} \mathrm{C}$
Starting current	Maximum $1.6 \mathrm{~A}, 10 \mathrm{~s}$ at T_{u} up to $60^{\circ} \mathrm{C}$	
		$\mathrm{T}_{u}=$ ambient temperature

2.1.4

Inputs

Rated values	Quantity	3
Contact scanning	Scanning current	Floating
	Scanning voltage	1 mA
Resistance		10 V
		PT 100 2-conductor technology,
		PT1000 2-conductor technology,
Cable length	Resolution, accuracy and tolerances	See next page
	Between sensor and device input	Maximum 30 m, simple

2.1.5

2.1.6

Resolution, accuracy and tolerances

Please note that the tolerances of the sensors which are used will need to be added to the listed values.
With sensors based on resistance measurement, it is also necessary to consider the cable error.
In the supplied state of the device, the stated accuracies will not be initially achieved. After initial commissioning, the device performs an autonomous calibration of the analogue measurement circuit. This calibration takes about an hour and is performed in the background. It is undertaken regardless of whether or not the device is parameterized and is independent of the connected sensors. The normal function of the device is not affected. After calibration has been completed, the calibration values which have been determined will be stored in the non-volatile memory. Thereafter, the device will achieve this level of accuracy every time it is switched on. If the calibration is interrupted by programming or bus voltage failure, it will recommence every time it is restarted. The ongoing calibration is displayed in the status byte by a 1 in bit 4.

Resistance signals

Sensor signal	Resolution	Accuracy at $25^{\circ} \mathrm{C} \mathrm{Tu}{ }^{* 3}$	Accuracy at $0 . . .50^{\circ} \mathrm{C} \mathrm{T}^{* 3}$	Accuracy at $-20 . . .70^{\circ} \mathrm{C} \mathrm{Tu}{ }^{* 3}$	Remark
PT100*4	0.01 ohm	± 0.15 ohm	± 0.2 ohm	± 0.25 ohm	0.1 ohm $=0.25^{\circ} \mathrm{C}$
PT1000*4	0.1 ohm	± 1.5 ohms	± 2.0 ohms	± 2.5 ohms	$1 \mathrm{ohm}=0.25^{\circ} \mathrm{C}$
KT/KTY 1,000*4	1 ohm	± 2.5 ohms	± 3.0 ohms	± 3.5 ohms	$1 \mathrm{ohm}=0.125^{\circ} \mathrm{C} /$ at $25^{\circ} \mathrm{C}$
KT/KTY 2,000*4	1 ohm	± 5 ohms	± 6.0 ohms	± 7.0 ohms	1 ohm $=0.064{ }^{\circ} \mathrm{C} /$ at $^{2} 5^{\circ} \mathrm{C}$

${ }^{* 3}$ in addition to current measured value at ambient temperature (T_{u})
*4 incl. cable and sensor errors

PT100

The PT100 is precise and exchangeable but subject to faults in the cables (cable resistance and heating of the cables). A terminal resistance of just 200 milliohms causes a temperature error of $0.5^{\circ} \mathrm{C}$.

PT1000

The PT1000 responds just like the PT100, but the influences of cable errors are lower by a factor of 10 . Use of this sensor is preferred

KT/KTY

The KT/KTY has a low level of accuracy, can only be exchanged under certain circumstances and can only be used for very simple applications.

Please note that there are different tolerance classes for the sensors in the versions PT100 and PT1000.
The table indicates the individual classes according to IEC 60751 (date: 2008):

Description	Tolerance
Class AA	$0.10^{\circ} \mathrm{C}+(0.0017 \times \mathrm{t})$
Class A	$0.15^{\circ} \mathrm{C}+(0.002 \times \mathrm{t})$
Class B	$0.30^{\circ} \mathrm{C}+(0.005 \times \mathrm{t})$
Class C	$0.60^{\circ} \mathrm{C}+(0.01 \times \mathrm{t})$

$t=$ Current temperature

Example for class B:
At $100^{\circ} \mathrm{C}$, the deviations of the measurement value are reliable up to $\pm 0.8^{\circ} \mathrm{C}$

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

Rated values	Number	3 contacts
	$\mathrm{U}_{\mathrm{n} 1}$ rated voltage	250/440 V AC ($50 / 60 \mathrm{~Hz}$)
	$\mathrm{In}_{\mathrm{n} 1}$ rated current (per output)	6 A
Switching currents	AC3* operation $(\cos \varphi=0.45)$ to DIN EN 60 947-4-1	6 A/230 V
	AC1* operation $(\cos \varphi=0.8)$ to DIN EN 60 947-4-1	6 A/230 V
	Fluorescent lighting load to DIN EN 60 669-1	$6 \mathrm{~A} / 250 \mathrm{~V}(35 \mu \mathrm{~F})^{1)}$
	Minimum switching capacity	$20 \mathrm{~mA} / 5 \mathrm{~V}$
		$10 \mathrm{~mA} / 12 \mathrm{~V}$
		$7 \mathrm{~mA} / 24 \mathrm{~V}$
	DC current switching capacity (resistive load)	$6 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical service life	> 10^{7}
	Electronic endurance of switching contacts to DIN IEC 60 947-4-1	
	AC1* (240 V/cos $\varphi=0.8$)	$>10^{5}$
	AC3* ($240 \mathrm{~V} / \cos \varphi=0.45$)	$>1.5 \times 10^{4}$
	AC5a* (240 V/cos $\varphi=0.45$)	$>1.5 \times 10^{4}$
Switching times ${ }^{2}$)	Maximum relay position change per output and minute if only one relay is switched.	2,683

1) The maximum inrush current peak may not be exceeded.
${ }^{2)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds Typical delay of the relay is approx. 20 ms .

*What do the terms AC1, AC3 and AC5a mean?

In intelligent installation systems, different switching capacities and performance specifications that are dependent on the special applications have become established in domestic and industrial installations. These performance specifications are rooted in the respective national and international standards. The tests are defined to simulate typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential).

Specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:
AC1 - Non-inductive or slightly inductive load, resistive furnaces (relates to switching of ohmic/resistive loads)

AC3 - Squirrel-cage motors: starting, switching off motors during running (relates to (inductive) motor load)
AC5a - Switching of electric discharge lamps
These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters Electromechanical contactors and motor-starters. The standard describes starters and/or contactors that were originally used primarily in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX

Device technology

2.1.8
 Fan, lamp load 6 A

Lamps	Incandescent lamp load	1,200 W
Fluorescent lamps T5/T8	Uncompensated	800 W
	Parallel compensated	300 W
	DUO circuit	350 W
Low-voltage halogen lamps	Inductive transformer	800 W
	Electronic transformer	1,000 W
	Halogen lamps 230 V	1,000 W
Dulux lamp	Uncompensated	800 W
	Parallel compensated	800 W
Mercury-vapor lamp	Uncompensated	1,000 W
	Parallel compensated	800 W
Switching capacity (switching contact)	Maximum peak inrush current $\mathrm{Ip}_{\mathrm{p}}(150 \mu \mathrm{~s})$	200 A
	Maximum peak inrush current $\mathrm{Ip}_{\mathrm{p}}(250 \mu \mathrm{~s})$	160 A
	Maximum peak inrush current $\mathrm{Ip}_{\mathrm{p}}(600 \mu \mathrm{~s})$	100 A
Number of electronic ballasts (T5/T8, single element) ${ }^{1)}$	18 W (ABB EVG $1 \times 18 \mathrm{SF}$)	10
	24 W (ABB EVG-T5 $1 \times 24 \mathrm{CY}$)	10
	36 W (ABB EVG $1 \times 36 \mathrm{CF}$)	7
	58 W (ABB EVG $1 \times 58 \mathrm{CF}$)	5
	80 W (Helvar EL 1×80 SC)	3

[^0]| Rated values | Quantity | 1 |
| :---: | :---: | :---: |
| | $\mathrm{U}_{\mathrm{n} 2}$ rated voltage | 250/440 V AC ($50 / 60 \mathrm{~Hz}$) |
| | $\mathrm{In} 2^{\text {rated current }}$ | 16 A |
| Switching currents | AC3* operation $(\cos \varphi=0.45)$ to DIN EN 60 947-4-1 | $8 \mathrm{~A} / 230 \mathrm{~V}$ |
| | AC1* operation $(\cos \varphi=0.8)$ to DIN EN 60 947-4-1 | $16 \mathrm{~A} / 230 \mathrm{~V}$ |
| | Fluorescent lighting load AX to EN 60 669-1 | $16 \mathrm{~A} / 250 \mathrm{~V}(70 \mu \mathrm{~F})^{1)}$ |
| | Minimum switching capacity | $100 \mathrm{~mA} / 12 \mathrm{~V}$ |
| | | $100 \mathrm{~mA} / 24 \mathrm{~V}$ |
| | DC current switching capacity (resistive load) | $16 \mathrm{~A} / 24 \mathrm{~V}=$ |
| Service life | Mechanical service life | $>3 \times 10^{6}$ |
| | Electronic endurance of switching contacts to DIN IEC 60 947-4-1 | |
| | AC1* (240 V/cos $\varphi=0.8$) | $>10^{5}$ |
| Switching times ${ }^{\text {2 }}$) | Maximum relay position change per output and minute if only one relay is switched. | 313 |

1) The maximum inrush current peak may not be exceeded.
${ }^{2)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms .

*What do the terms AC1, AC3 and AC5a mean?

In intelligent installation systems, different switching capacities and performance specifications that are dependent on the special applications have become established in domestic and industrial installations. These performance specifications are rooted in the respective national and international standards. The tests are defined to simulate typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential).
Specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:
AC1 - \quad Non-inductive or slightly inductive load, resistive furnaces (relates to switching of ohmic/resistive loads)

AC3 - Squirrel-cage motors: starting, switching off motors during running (relates to (inductive) motor load)

AC5a - \quad Switching of electric discharge lamps
These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters Electromechanical contactors and motor-starters. The standard describes starters and/or contactors that were originally used primarily in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX

Device technology

2.1.10
 Output, lamp load 16 A

Lamps	Incandescent lamp load	2,500 W
Fluorescent lamps T5/T8	Uncompensated	2,500 W
	Parallel compensated	1,500 W
	DUO circuit	1,500 W
Low-voltage halogen lamps	Inductive transformer	1,200 W
	Electronic transformer	1,500 W
	Halogen lamps 230 V	2,500 W
Dulux lamp	Uncompensated	1,100 W
	Parallel compensated	1,100 W
Mercury-vapor lamp	Uncompensated	2,000 W
	Parallel compensated	2,000 W
Switching capacity (switching contact)	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(150 \mu \mathrm{~s})$	400 A
	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$	320 A
	Maximum peak inrush current $I_{p}(600 \mu \mathrm{~s})$	200 A
Number of electronic ballasts (T5/T8, single element) ${ }^{\text {1) }}$	18 W (ABB EVG $1 \times 18 \mathrm{SF}$)	23
	24 W (ABB EVG-T5 $1 \times 24 \mathrm{CY}$)	23
	36 W (ABB EVG $1 \times 36 \mathrm{CF})$	14
	58 W (ABB EVG $1 \times 58 \mathrm{CF}$)	11
	80 W (Helvar EL 1×80 SC)	10

[^1]
ABB i-bus ${ }^{\circledR}$ KNX Device technology

Connection schematic (thermoelectric, PWM)

2CDC072014F0015

FCA/S 1.1.1.2

1 Label carrier
2 Programming button \Longrightarrow
3 Programming LED - (red)
4 Bus connection terminal
5 Inputs a, b, c

6 Valve V1 (e.g. heating)
7 Valve V2 (e.g. cooling)
8 Fan
9 Output H

ABB i-bus ${ }^{\circledR}$ KNX Device technology

Connection schematic (motor-driven, 3-point)

2CDC072017F0013

FCA/S 1.1.1.2

1 Label carrier
2 Programming button $\xlongequal[=0]{ }$
3 Programming LED (red)
4 Bus connection terminal
5 Inputs a, b, c

6 Valve V1 (e.g. heating)
7 Valve V2 (e.g. cooling)
8 Fan
9 Output H

ABB i-bus ${ }^{\circledR}$ KNX

Device technology

All outputs can be controlled independently.
The following table provides an overview of the functions possible with the outputs of the Fan Coil Actuator and the application:

Functions of the output	A	B	C	D
General				
- Overload				
- Parallel operation	■	free	-	free
Valve drives allocated to the Fan Coil unit				
- Thermoelectric (PWM)	■	■	-	\square
1 control value/1 valve	\square	free	free	free
2 control values/1 valve	\square	free	free	free
2 control values/2 valves	■	free	■	free
Setting facilities for valve drives				
- Thermoelectric (PWM)				
Separate heating/cooling	■	\square	-	-
Direction	OPEN/CLOSE	OPEN/CLOSE	OPEN/CLOSE	OPEN/CLOSE
- Motor-driven (3-point)				
- Separate heating/cooling				
- Direction	OPEN	CLOSE	OPEN	CLOSE

- = Function is supported
- = Function is not supported
free $=$ Is available and can be used separately

Functions of the output	E	F	G	H
Switch function				
Normally closed/Normally open contact	\square	\square	\square	\square
Time				
Staircase lighting	\square	\square	\square	\square
Fan				
Level	1	2	3	-

- = Function is supported
- = Function is not supported

2.1.13
 Dimension drawing

2CDC072016F0013

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

2.2
 Fan Coil Actuator FCA/S 1.1.2.2, PWM, MDRC

The device is a modular installation device (MDRC) in Pro M design. It is intended for installation in distribution 2CDC071002S0015 boards on 35 mm mounting rails. The assignment of the physical addresses as well as the parameterization is carried out with ETS.

The device is powered via the ABB i-bus ${ }^{\circledR}$ KNX and requires no additional auxiliary voltage supply. The device is ready for operation after connecting the bus voltage.
2.2.1 Technical data

Supply	Bus voltage	21...32 V DC
	Current consumption, bus	< 12 mA
	Leakage loss, bus	Maximum 250 mW
	Leakage loss, device	Maximum 3.05 W*
*The maximum power consumption of the device results from the following specifications:	KNX connection	0.25 W
	Relay 16 A	1.0 W
	Relay 6 A	0.6 W
	Electronic outputs	1.2 W
Connections	KNX	Via bus connection terminal
	Inputs/Outputs	Via screw terminals
Connection terminals	Screw terminal	Screw terminal with universal head (PZ 1)
		$0.2 \ldots 4 \mathrm{~mm}^{2}$ stranded, $2 \times\left(0.2 \ldots 2.5 \mathrm{~mm}^{2}\right)$
		$0.2 \ldots 6 \mathrm{~mm}^{2}$ single core, $2 \times\left(0.2 \ldots 4 \mathrm{~mm}^{2}\right)$
	Ferrules without/with plastic sleeves	Without: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$
		With: $0.25 \ldots 4 \mathrm{~mm}^{2}$
	TWIN ferrules	$0.5 \ldots 2.5 \mathrm{~mm}^{2}$
		Contact pin length min. 10 mm
	Tightening torque	Maximum 0.6 Nm
	Grid	6.35

ABB i-bus ${ }^{\circledR}$ KNX

 Device technology

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

| Device type | Application | Maximum number of
 communication objects | Maximum number of
 group addresses | Maximum number of
 assignments |
| :--- | :--- | :--- | :--- | :--- | :--- |
| FCA/S 1.1.2.2 | Fan Coil Actuator PWM M/...* | 70 | 254 | 255 |

* ... = Current version number of the application. Please refer to the software information on our website for this purpose.

Note

ETS and the current version of the device application are required for programming.
The current version of the application is available on the Internet for download at www.abb.com/knx. After import into ETS it appears in the Catalogs window under Manufacturers/ABB/Heating, Ventilation, Air Conditioning/Fan Coil Actuator PWM.
The device does not support the locking function of a KNX device in ETS. If you use a BCU code to inhibit access to all the project devices, this has no effect on this device. Data can still be read and programmed

2.2.2 Outputs, valve (thermoelectric, PWM)

Rated values	Quantity	4, non-isolated, short-circuit proofed
	U_{n} rated voltage	24... 230 V AC ($50 / 60 \mathrm{~Hz}$)
	I_{n} rated current (per output pair)	0.5 A
	Continuous current	0.5 A resistive load at T_{u} up to $20^{\circ} \mathrm{C}$
		0.3 A resistive load at T_{u} up to $60^{\circ} \mathrm{C}$
	Starting current	Maximum 1.6 A, 10 s at T_{u} up to $60^{\circ} \mathrm{C}$
		$\mathrm{T}_{u}=$ ambient temperature
	Minimum load	0.5 VA per PWM output

2.2.3 Outputs, valve (motor-driven, 3-point)

Rated values	Quantity	2, non-isolated, short-circuit proofed
	U_{n} rated voltage	24... 230 V AC ($50 / 60 \mathrm{~Hz}$)
	In rated current (per output pair)	0.5 A
	Continuous current	0.5 A resistive load at T_{u} up to $20^{\circ} \mathrm{C}$
		0.3 A resistive load at T_{u} up to $60^{\circ} \mathrm{C}$
	Starting current	Maximum $1.6 \mathrm{~A}, 10 \mathrm{~s}$ at T_{u} up to $60^{\circ} \mathrm{C}$
		$\mathrm{T}_{u}=$ ambient temperature
	Minimum load	0.5 VA per PWM output

2.2.4 Inputs

Rated values	Quantity	3
Contact scanning	Scanning current	Floating
	Scanning voltage	1 mA
Resistance		10 V
		$0 \ldots 1,000$ ohms,
		PT100 2-conductor technology,
	PT1000 2-conductor technology,	
Cable length	Resolution, accuracy and tolerances	A selection of KT/KTY $1,000 / 2,000$, user defined
	Between sensor and device input	Maximum 30 m, simple

2.2.5

Resolution, accuracy and tolerances

Please note that the tolerances of the sensors which are used will need to be added to the listed values. With sensors based on resistance measurement, it is also necessary to consider the cable error.

In the supplied state of the device, the stated accuracies will not be initially achieved. After initial commissioning, the device performs an autonomous calibration of the analogue measurement circuit. This calibration takes about an hour and is performed in the background. It is undertaken regardless of whether or not the device is parameterized and is independent of the connected sensors. The normal function of the device is not affected. After calibration has been completed, the calibration values which have been determined will be stored in the non-volatile memory. Thereafter, the device will achieve this level of accuracy every time it is switched on. If the calibration is interrupted by programming or bus voltage failure it will recommence every time it is restarted. The ongoing calibration is displayed in the status byte by a 1 in bit 4.

Resistance signals

Sensor signal	Resolution	Accuracy at $25^{\circ}{ }^{\circ} \mathrm{T}_{\mathrm{u}}{ }^{* 3}$	Accuracy at $0 . . .50^{\circ} \mathrm{C}_{\mathrm{u}}{ }^{* 3}$	Accuracy at $-20 . . .70^{\circ} \mathrm{C} \mathrm{Tu}{ }^{* 3}$	Remark
0...1,000 ohms	0.1 ohm	± 1.0 ohm	± 1.5 ohms	± 2 ohms	
PT100*4	0.01 ohm	± 0.15 ohm	± 0.2 ohm	± 0.25 ohm	0.1 ohm $=0.25^{\circ} \mathrm{C}$
PT1000*4	0.1 ohm	± 1.5 ohms	± 2.0 ohms	± 2.5 ohms	$1 \mathrm{ohm}=0.25^{\circ} \mathrm{C}$
KT/KTY 1000*4	1 ohm	± 2.5 ohms	± 3.0 ohms	± 3.5 ohms	$1 \mathrm{ohm}=0.125^{\circ} \mathrm{C} /$ at $25^{\circ} \mathrm{C}$
KT/KTY 2000*4	1 ohm	± 5 ohms	± 6.0 ohms	± 7.0 ohms	$1 \mathrm{ohm}=0.064{ }^{\circ} \mathrm{C} /$ at $25^{\circ} \mathrm{C}$

[^2]
PT100

The PT100 is precise and exchangeable but subject to faults in the cables (cable resistance and heating of the cables). A terminal resistance of just 200 milliohms causes a temperature error of $0.5^{\circ} \mathrm{C}$.

PT1000

The PT1000 responds just like the PT100, but the influences of cable errors are lower by a factor of 10. Use of this sensor is preferred.

KT/KTY

The KT/KTY has a low level of accuracy, can only be exchanged under certain circumstances and can only be used for very simple applications.

Please note that there are different tolerance classes for the sensors in the versions PT100 and PT1000.
The table indicates the individual classes according to IEC 60751 (date: 2008)

Description	Tolerance
Class AA	$0.10^{\circ} \mathrm{C}+(0.0017 \times \mathrm{t})$
Class A	$0.15^{\circ} \mathrm{C}+(0.002 \times \mathrm{t})$
Class B	$0.30^{\circ} \mathrm{C}+(0.005 \times \mathrm{t})$
Class C	$0.60^{\circ} \mathrm{C}+(0.01 \times \mathrm{t})$
$\mathrm{t}=$ Current temperature	

$\mathrm{t}=$ Current temperature

Example for class B:
At $100^{\circ} \mathrm{C}$, the deviations of the measurement value are reliable up to $\pm 0.8^{\circ} \mathrm{C}$

Rated values	Number	3 contacts
	$U_{n 1}$ rated voltage	250/440 V AC ($50 / 60 \mathrm{~Hz}$)
	$\mathrm{In}_{\mathrm{n} 1}$ rated current (per output)	6 A
Switching currents	AC3* operation $(\cos \varphi=0.45)$ to DIN EN 60 947-4-1	6 A/230 V
	AC1* operation $(\cos \varphi=0.8)$ to DIN EN 60 947-4-1	6 A/230 V
	Fluorescent lighting load to DIN EN 60 669-1	$6 \mathrm{~A} / 250 \mathrm{~V}(35 \mu \mathrm{~F})^{1)}$
	Minimum switching capacity	$20 \mathrm{~mA} / 5 \mathrm{~V}$
		$10 \mathrm{~mA} / 12 \mathrm{~V}$
		$7 \mathrm{~mA} / 24 \mathrm{~V}$
	DC current switching capacity (resistive load)	$6 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical service life	$>10^{7}$
	Electronic endurance of switching contacts to DIN IEC 60 947-4-1	
	AC1* (240 V/cos $\varphi=0.8$)	$>10^{5}$
	AC3* (240 V/cos $\varphi=0.45$)	$>1.5 \times 10^{4}$
	AC5a* (240 V/cos $\varphi=0.45$)	$>1.5 \times 10^{4}$
Switching times ${ }^{\text {2 }}$)	Maximum relay position change per output and minute if only one relay is switched.	2,683

[^3]
*What do the terms AC1, AC3 and AC5a mean?

In intelligent installation systems, different switching capacities and performance specifications that are dependent on the special applications have become established in domestic and industrial installations. These performance specifications are rooted in the respective national and international standards. The tests are defined to simulate typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential).

Specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:
AC1 - Non-inductive or slightly inductive load, resistive furnaces (relates to switching of ohmic/resistive loads)

AC3 - Squirrel-cage motors: starting, switching off motors during running (relates to (inductive) motor load)
AC5a - Switching of electric discharge lamps
These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters Electromechanical contactors and motor-starters. The standard describes starters and/or contactors that were originally used primarily in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

2.2.8

Fan, lamp load 6 A

Lamps	Incandescent lamp load	1,200 W
Fluorescent lamps T5/T8	Uncompensated	800 W
	Parallel compensated	300 W
	DUO circuit	350 W
Low-voltage halogen lamps	Inductive transformer	800 W
	Electronic transformer	1,000 W
	Halogen lamps 230 V	1,000 W
Dulux lamp	Uncompensated	800 W
	Parallel compensated	800 W
Mercury-vapor lamp	Uncompensated	1,000 W
	Parallel compensated	800 W
Switching capacity (switching contact)	Maximum peak inrush current $\mathrm{Ip}_{\mathrm{p}}(150 \mu \mathrm{~s})$	200 A
	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$	160 A
	Maximum peak inrush current $\mathrm{Im}_{\mathrm{p}}(600 \mu \mathrm{~s})$	100 A
Number of electronic ballasts (T5/T8, single element) ${ }^{1)}$	18 W (ABB EVG $1 \times 18 \mathrm{SF}$)	10
	24 W (ABB EVG-T5 $1 \times 24 \mathrm{CY}$)	10
	36 W (ABB EVG $1 \times 36 \mathrm{CF}$)	7
	58 W (ABB EVG $1 \times 58 \mathrm{CF}$)	5
	80 W (Helvar EL 1×80 SC)	3

${ }^{1)}$ For multiple element lamps or other types, the number of electronic ballasts must be determined using the peak inrush current of the ballasts.

Rated values	Quantity	1
	$\mathrm{U}_{\mathrm{n} 2}$ rated voltage	250/440 V AC ($50 / 60 \mathrm{~Hz}$)
	$\mathrm{In} 2^{\text {rated current }}$	20 A
Switching currents	AC3* operation $(\cos \varphi=0.45)$ to DIN EN 60 947-4-1	$16 \mathrm{~A} / 230 \mathrm{~V}$
	AC1* operation $(\cos \varphi=0.8)$ to DIN EN 60 947-4-1	$20 \mathrm{~A} / 230 \mathrm{~V}$
	Fluorescent lighting load AX to DIN EN 60 669-1	$20 \mathrm{~A} / 250 \mathrm{~V}(140 \mu \mathrm{~F})^{1)}$
	Minimum switching capacity	$100 \mathrm{~mA} / 12 \mathrm{~V}$
		$100 \mathrm{~mA} / 24 \mathrm{~V}$
	DC current switching capacity (resistive load)	$20 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical service life	$>10^{6}$
	Electronic endurance of switching contacts to DIN IEC 60 947-4-1	
	AC1* (240 V/cos $\varphi=0.8$)	$>10^{5}$
	AC3* ($240 \mathrm{~V} / \cos \varphi=0.45$)	$>3 \times 10^{4}$
	AC5a (240 V/cos $\varphi=0.45$)	$>3 \times 10^{4}$
Switching times ${ }^{\text {2 }}$)	Maximum relay position change per output and minute if only one relay is switched.	93

[^4]
*What do the terms AC1, AC3 and AC5a mean?

In intelligent installation systems, different switching capacities and performance specifications that are dependent on the special applications have become established in domestic and industrial installations. These performance specifications are rooted in the respective national and international standards. The tests are defined to simulate typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential).
Specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:

AC1 -	Non-inductive or slightly inductive loads, resistive furnaces (relates to switching of ohmic/resistive loads)
AC3 -	Squirrel-cage motors: Starting, switching off motors during running (relates to (inductive) motor load)
AC5a -	Switching of electric discharge lamps

These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters Electromechanical contactors and motor-starters. The standard describes starters and/or contactors that were originally used primarily in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

2.2.10

Output, lamp load 20 AX

Lamps	Incandescent lamp load	3,680 W
Fluorescent lamps T5/T8	Uncompensated	3,680 W
	Parallel compensated	2,500 W
	DUO circuit	3,680 W
Low-voltage halogen lamps	Inductive transformer	2,000 W
	Electronic transformer	2,500 W
	Halogen lamps 230 V	3,680 W
Dulux lamp	Uncompensated	3,680 W
	Parallel compensated	3,000 W
Mercury-vapor lamp	Uncompensated	3,680 W
	Parallel compensated	3,680 W
Switching capacity (switching contact)	Maximum peak inrush current $\mathrm{Ip}_{\mathrm{p}}(150 \mu \mathrm{~s})$	600 A
	Maximum peak inrush current $\mathrm{Im}_{\mathrm{p}}(250 \mu \mathrm{~s})$	480 A
	Maximum peak inrush current $\mathrm{Ip}_{\mathrm{p}}(600 \mu \mathrm{~s})$	300 A
Number of electronic ballasts (T5/T8, single element) ${ }^{\text {1) }}$	18 W (ABB EVG $1 \times 18 \mathrm{SF}$)	$26^{2)}$
	24 W (ABB EVG-T5 $1 \times 24 \mathrm{CY}$)	$26^{2)}$
	36 W (ABB EVG $1 \times 36 \mathrm{CF}$)	22
	58 W (ABB EVG $1 \times 58 \mathrm{CF}$)	$12^{2)}$
	80 W (Helvar EL 1×80 SC)	$10^{2)}$

${ }^{1)}$ For multiple element lamps or other types, the number of electronic ballasts must be determined using the peak inrush current of the ballasts.
2) Limited by protection with B16 automatic circuit-breaker.

ABB i-bus ${ }^{\circledR}$ KNX Device technology

FCA/S 1.1.2.2

1	Label carrier
$\mathbf{2}$	Programming button
$\mathbf{3}$	Programming LED (red)
4	Bus connection terminal
5	Inputs a, b, c
$\mathbf{6}$	Valve output A/B (e.g. heating)
$\mathbf{7}$	Valve output C/D (e.g. cooling)
8	Fan

9 Output H
10 Manual operation button/LED 숭 (yellow)
11 Valve output A/B buttons/LEDs (e.g. heating) (yellow)

12 Valve output C/D buttons/LEDs (e.g. cooling) (yellow)

13 Output E, F, G button/LEDs fan speed 1, 2, 3 (yellow)

14 Output H button
15 Inputs a, b, c buttons/LEDs (yellow)
16 Output H display

2CDC072030F0011

FCA/S 1.1.1.2

1 Label carrier
2 Programming button $\xlongequal{\square}$
3 Programming LED (red)
4 Bus connection terminal
5 Inputs a, b, c

6 Valve V1 (e.g. heating)
7 Valve V2 (e.g. cooling)
8 Fan
9 Output H

All outputs can be controlled independently of one another.
The following table provides an overview of the functions possible with the outputs of the Fan Coil Actuator and the application:

Functions of the output	A	B	C	D
General				
- Overload	\square		\square	
- Parallel operation	\square	free	\square	free
Valve drives allocated to the Fan Coil unit				
- Thermoelectric (PWM)	\square	\square	\square	\square
- 1 control value/1 valve	\square	free	free	free
- 2 control values/1 valve	\square	free	free	free
- 2 control values/2 valves	\square	free	\square	free
Setting facilities for valve drives				
- Thermoelectric (PWM)				
- Separate heating/cooling	\square	\square	\square	\square
- Direction	OPEN/CLOSE	OPEN/CLOSE	OPEN/CLOSE	OPEN/CLOSE
- Motor-driven (3-point)				
- Separate heating/cooling	■		■	
- Direction	OPEN	CLOSE	OPEN	CLOSE

- = Function is supported
- $\quad=$ Function is not supported
free $=$ Is available and can be used separately

Functions of the output	E	F	G	H
Switch function				
Normally closed/ Normally open contact	\square	\square	\square	\square
Time				
Staircase lighting	\square	\square	\square	\square
Fan				
Level	1	2	3	-

- = Function is supported
- $\quad=$ Function is not supported

ABB i-bus ${ }^{\circledR}$ KNX Device technology

Dimension drawing

2CDC072031F0011

ABB i-bus ${ }^{\circledR}$ KNX

 Device technology
2.3

Fan Coil Actuator FCA/S 1.2.1.2, 0-10V, MDRC

The device is a modular installation device (MDRC) in Pro M design. It is intended for installation in distribution $\stackrel{n}{5}$ boards on 35 mm mounting rails. The assignment of the physical addresses as well as the parameterization is carried out with ETS.

The device is powered via the ABB i-bus ${ }^{\circledR}$ KNX and requires no additional auxiliary voltage supply. The device is ready for operation after connecting the bus voltage
2.3.1 Technical data

Supply	Bus voltage	21...32 V DC
	Current consumption, bus	< 12 mA
	Leakage loss, bus	Maximum 250 mW
	Leakage loss, device	Maximum 2 W*
*The maximum power consumption of the device results from the following specifications:	KNX connection	0.25 W
	Relay 16 A	1.0 W
	Relay 6 A	0.6 W
	Analog outputs	0.15W
Connections	KNX	Via bus connection terminal
	Inputs/Outputs	Via screw terminals
Connection terminals	Screw terminal	Screw terminal with universal head (PZ 1)
		$0.2 \ldots 4 \mathrm{~mm}^{2}$ stranded, $2 \times\left(0.2 \ldots 2.5 \mathrm{~mm}^{2}\right)$
		$0.2 \ldots 6 \mathrm{~mm}^{2}$ single core, $2 \times\left(0.2 \ldots 4 \mathrm{~mm}^{2}\right)$
	Ferrules without/with plastic sleeves	Without: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$
		With: $0.25 \ldots 4 \mathrm{~mm}^{2}$
	TWIN ferrules	0.5... $2.5 \mathrm{~mm}^{2}$
		Contact pin length min. 10 mm
	Tightening torque	Maximum 0.6 Nm
	Grid	6.35

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

Operating and display elements	Button/LED	For assignment of the physical address
	Button $2 /$ LED	For toggling between manual operation/ operation via ABB i-bus ${ }^{\circledR}$ KNX and displays
Protection	IP 20	To DIN EN 60529
Protection class	II	To DIN EN 61140
Isolation category	Overvoltage category	III to DIN EN $60664-1$
	Pollution degree	II to DIN EN $60664-1$

ABB i-bus ${ }^{\circledR}$ KNX

 Device technology| Device type | Application | Maximum number of communication objects | Maximum number of group addresses | Maximum number of assignments |
| :---: | :---: | :---: | :---: | :---: |
| FCA/S 1.2.1.2 | Fan Coil Actuator 0-10V/...* | 70 | 254 | 255 |
| * $\ldots=$ Current version number of the application. Please refer to the software information on our website for this purpose. | | | | |
| | Note | | | |
| | ETS and the current version of the device application are required for programming.
 The current version of the application is available on the Internet for download at www.abb.com/knx. After import into ETS it appears in the Catalogs window under Manufacturers/ABB/Heating, Ventilation, Air Conditioning/Fan Coil Actuator 0-10V.
 The device does not support the locking function of a KNX device in ETS. If you use a BCU code to inhibit access to all the project devices, this has no effect on this device. Data can still be read and programmed. | | | |

Rated values	Quantity	2, non-isolated, short-circuit proofed
Control signal	$0 \ldots 10 \mathrm{~V} \mathrm{DC}$	
Signal type	Analog	
Output load	$>10 \mathrm{kohms}$	
Output tolerance	$\pm 10 \%$	
	Current limitation	Up to 1.5 mA

2.3.3
 Inputs

Rated values	Quantity	3
Contact scanning	Scanning current	Floating
	Scanning voltage	1 mA
Resistance		PT100 2-conductor technology,
		PT1000 2-conductor technology,
		A selection of KT/KTY 1,000/2,000, user defined
Cable length	Resolution, accuracy and tolerances	See next page

2.3.4
2.3.5

Resolution, accuracy and tolerances

Please note that the tolerances of the sensors which are used will need to be added to the listed values.
With sensors based on resistance measurement, it is also necessary to consider the cable error.
In the supplied state of the device, the stated accuracies will not be initially achieved. After initial commissioning, the device performs an autonomous calibration of the analogue measurement circuit. This calibration takes about an hour and is performed in the background. It is undertaken regardless of whether or not the device is parameterized and is independent of the connected sensors. The normal function of the device is not affected. After calibration has been completed, the calibration values which have been determined will be stored in the non-volatile memory. Thereafter, the device will achieve this level of accuracy every time it is switched on. If the calibration is interrupted by programming or bus voltage failure, it will recommence every time it is restarted. The ongoing calibration is displayed in the status byte by a 1 in bit 4.

Resistance signals

Sensor signal	Resolution	Accuracy at $25^{\circ} \mathrm{CT} \mathrm{T}^{* 3}$	Accuracy at $0 . . .50^{\circ} \mathrm{C} \mathrm{T}^{* 3}$	Accuracy at $-20 \ldots 70^{\circ} \mathrm{C} \mathrm{Tu}{ }^{* 3}$	Remark
PT100*4	0.01 ohm	± 0.15 ohm	± 0.2 ohm	± 0.25 ohm	0.1 ohm $=0.25^{\circ} \mathrm{C}$
PT1000*4	0.1 ohm	± 1.5 ohms	± 2.0 ohms	± 2.5 ohms	$1 \mathrm{ohm}=0.25^{\circ} \mathrm{C}$
KT/KTY 1000*4	1 ohm	± 2.5 ohms	± 3.0 ohms	± 3.5 ohms	1 ohm $=0.125^{\circ} \mathrm{C} /$ at $25^{\circ} \mathrm{C}$
KT/KTY 2000*4	1 ohm	± 5 ohms	± 6.0 ohms	± 7.0 ohms	1 ohm $=0.064{ }^{\circ} \mathrm{C} /$ at $^{2} 5^{\circ} \mathrm{C}$

${ }^{* 3}$ in addition to current measured value at ambient temperature (Tu)
*4 incl. cable and sensor errors

PT100

The PT100 is precise and exchangeable but subject to faults in the cables (cable resistance and heating of the cables). A terminal resistance of just 200 milliohms causes a temperature error of $0.5^{\circ} \mathrm{C}$.

PT1000

The PT1000 responds just like the PT100, but the influences of cable errors are lower by a factor of 10 . Use of this sensor is preferred

KT/KTY

The KT/KTY has a low level of accuracy, can only be exchanged under certain circumstances and can only be used for very simple applications.

Please note that there are different tolerance classes for the sensors in the versions PT100 and PT1000.
The table indicates the individual classes according to IEC 60751 (date: 2008):

Description	Tolerance
Class AA	$0.10^{\circ} \mathrm{C}+(0.0017 \times \mathrm{t})$
Class A	$0.15^{\circ} \mathrm{C}+(0.002 \times \mathrm{t})$
Class B	$0.30^{\circ} \mathrm{C}+(0.005 \times \mathrm{t})$
Class C	$0.60^{\circ} \mathrm{C}+(0.01 \times \mathrm{t})$

$t=$ Current temperature

Example for class B:
At $100^{\circ} \mathrm{C}$, the deviations of the measurement value are reliable up to $\pm 0.8^{\circ} \mathrm{C}$

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

Rated values	Number	3 contacts
	$U_{n 1}$ rated voltage	250/440 V AC ($50 / 60 \mathrm{~Hz}$)
	$\mathrm{In}_{\mathrm{n} 1}$ rated current (per output)	6 A
Switching currents	AC3* operation $(\cos \varphi=0.45)$ to DIN EN 60 947-4-1	$6 \mathrm{~A} / 230 \mathrm{~V}$
	AC1* operation $(\cos \varphi=0.8)$ to DIN EN 60 947-4-1	6 A/230 V
	Fluorescent lighting load to DIN EN 60 669-1	$6 \mathrm{~A} / 250 \mathrm{~V}(35 \mu \mathrm{~F})^{1)}$
	Minimum switching capacity	$20 \mathrm{~mA} / 5 \mathrm{~V}$
		$10 \mathrm{~mA} / 12 \mathrm{~V}$
		$7 \mathrm{~mA} / 24 \mathrm{~V}$
	DC current switching capacity (resistive load)	$6 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical service life	> 10^{7}
	Electronic endurance of switching contacts to DIN IEC 60 947-4-1	
	AC1* (240 V/cos $\varphi=0.8$)	$>10^{5}$
	AC3* (240 V/cos $\varphi=0.45$)	$>1.5 \times 10^{4}$
	AC5a* (240 V/cos $\varphi=0.45$)	$>1.5 \times 10^{4}$
Switching times ${ }^{2}$)	Maximum relay position change per output and minute if only one relay is switched.	2,683

1) The maximum inrush current peak may not be exceeded.
${ }^{2)} \quad$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms .

*What do the terms AC1, AC3 and AC5a mean?

In intelligent installation systems, different switching capacities and performance specifications that are dependent on the special applications have become established in domestic and industrial installations. These performance specifications are rooted in the respective national and international standards. The tests are defined to simulate typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential).

Specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:
AC1 - Non-inductive or slightly inductive load, resistive furnaces (relates to switching of ohmic/resistive loads)

AC3 - Squirrel-cage motors: starting, switching off motors during running (relates to (inductive) motor load)
AC5a - Switching of electric discharge lamps
These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters Electromechanical contactors and motor-starters. The standard describes starters and/or contactors that were originally used primarily in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX

Device technology

2.3.7

Fan, lamp load 6 A

Lamps	Incandescent lamp load	$1,200 \mathrm{~W}$
Fluorescent lamps T5/T8	Uncompensated	800 W
	Parallel compensated	300 W
	DUO circuit	350 W
Low-voltage halogen lamps	Inductive transformer	800 W
	Electronic transformer	$1,000 \mathrm{~W}$
	Halogen lamps 230 V	$1,000 \mathrm{~W}$
Dulux lamp	Uncompensated	800 W
	Parallel compensated	800 W
Mercury-vapor lamp	Uncompensated	$1,000 \mathrm{~W}$
	Parallel compensated	800 W
Switching capacity (switching contact)	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(150 \mu \mathrm{~s})$	200 A
	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$	160 A
	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(600 \mu \mathrm{~s})$	100 A
	18 W (ABB EVG $1 \times 18 \mathrm{SF})$	10

1) For multiple element lamps or other types, the number of electronic ballasts must be determined using the peak inrush current of the ballasts.

Rated values	Quantity	1
	$\mathrm{U}_{\mathrm{n} 2}$ rated voltage	250/440 V AC ($50 / 60 \mathrm{~Hz}$)
	In2 rated current	16 A
Switching currents	AC3* operation $(\cos \varphi=0.45)$ to DIN EN 60 947-4-1	$8 \mathrm{~A} / 230 \mathrm{~V}$
	AC1* operation $(\cos \varphi=0.8)$ to DIN EN 60 947-4-1	$16 \mathrm{~A} / 230 \mathrm{~V}$
	Fluorescent lighting load AX to EN 60 669-1	$16 \mathrm{~A} / 250 \mathrm{~V}(70 \mu \mathrm{~F})^{1)}$
	Minimum switching capacity	$100 \mathrm{~mA} / 12 \mathrm{~V}$
		$100 \mathrm{~mA} / 24 \mathrm{~V}$
	DC current switching capacity (resistive load)	$16 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical service life	$>3 \times 10^{6}$
	Electronic endurance of switching contacts to DIN IEC 60 947-4-1	
	AC1* (240 V/cos $\varphi=0.8$)	$>10^{5}$
Switching times ${ }^{2}$)	Maximum relay position change per output and minute if only one relay is switched.	313

1) The maximum inrush current peak may not be exceeded.
${ }^{2)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms .

*What do the terms AC1, AC3 and AC5a mean?

In intelligent installation systems, different switching capacities and performance specifications that are dependent on the special applications have become established in domestic and industrial installations. These performance specifications are rooted in the respective national and international standards. The tests are defined to simulate typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential).
Specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:
AC1 - \quad Non-inductive or slightly inductive loads, resistive furnaces (relates to switching of ohmic/resistive loads)

AC3 - Squirrel-cage motors: Starting, switching off motors during running (relates to (inductive) motor load)

AC5a - \quad Switching of electric discharge lamps
These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters Electromechanical contactors and motor-starters. The standard describes starters and/or contactors that were originally used primarily in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX

Device technology

2.3.9 Output, lamp load 16 A

Lamps	Incandescent lamp load	$2,500 \mathrm{~W}$
Fluorescent lamps T5/T8	Uncompensated	$2,500 \mathrm{~W}$
	Parallel compensated	$1,500 \mathrm{~W}$
	DUO circuit	$1,500 \mathrm{~W}$
Low-voltage halogen lamps	Inductive transformer	$1,200 \mathrm{~W}$
	Electronic transformer	$1,500 \mathrm{~W}$
	Halogen lamps 230 V	$2,500 \mathrm{~W}$
Dulux lamp	Uncompensated	$1,100 \mathrm{~W}$
	Parallel compensated	$1,100 \mathrm{~W}$
Mercury-vapor lamp	Uncompensated	$2,000 \mathrm{~W}$
	Parallel compensated	$2,000 \mathrm{~W}$
Switching capacity (switching contact)	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(150 \mu \mathrm{~s})$	400 A
	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$	320 A
Number of electronic ballasts (T5/T8, single element) ${ }^{1)}$	18 W (ABB EVG $1 \times 18 \mathrm{SF})$	200 A
	24 W (ABB EVG-T5 $1 \times 24 \mathrm{CY})$	23

[^5]
ABB i-bus ${ }^{\circledR}$ KNX Device technology

Connection schematic

FCA/S 1.2.1.2

1 Label carrier
2 Programming button $\xlongequal{0}$
3 Programming LED - (red)
4 Bus connection terminal
5 Inputs a, b, c

6 Valve V1 (e.g. heating)
7 Valve V2 (e.g. cooling)
8 Fan
9 Output H

Note

Terminals 1 and 4 on the FCA/S 1.2.1.2 are not used internally.

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

All outputs can be controlled independently of one another.
The following table provides an overview of the functions possible with the outputs of the Fan Coil Actuator and the application:

- = Function is supported
= Function is not supported
free $=$ Is available and can be used separately

Functions of the output	E	F	G	H
Switch function				
Normally closed/Normally open contact	\square	■	■	■
Time				
Staircase lighting	■	\square	■	■
Fan				
Level	1	2	3	-

- = Function is supported
- = Function is not supported

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

Dimension drawing

2CDC072015F0013

ABB i-bus ${ }^{\circledR}$ KNX

 Device technology
2.4

Fan Coil Actuator FCA/S 1.2.2.2, 0-10V, MDRC

The device is a modular installation device (MDRC) in Pro M design. It is intended for installation in distribution boards on 35 mm mounting rails. The assignment of the physical addresses as well as the parameterization is carried out with ETS.

The device is powered via the ABB ibus ${ }^{\circledR}$ KNX and requires no additional auxiliary voltage supply. The device is ready for operation after connecting the bus voltage

2.4.1 Technical data

Supply	Bus voltage	21...32 V DC
	Current consumption, bus	< 12 mA
	Leakage loss, bus	Maximum 250 mW
	Leakage loss, device	Maximum 2 W*
*The maximum power consumption of the device results from the following specifications:	KNX connection	0.25 W
	Relay 16 A	1.0 W
	Relay 6 A	0.6 W
	Analog outputs	0.15W
Connections	KNX	Via bus connection terminal
	Inputs/Outputs	Via screw terminals
Connection terminals	Screw terminal	Screw terminal with universal head (PZ 1)
		$0.2 \ldots 4 \mathrm{~mm}^{2}$ stranded, $2 \times\left(0.2 \ldots 2.5 \mathrm{~mm}^{2}\right)$
		$0.2 \ldots 6 \mathrm{~mm}^{2}$ single core, $2 \times\left(0.2 \ldots 4 \mathrm{~mm}^{2}\right)$
	Ferrules without/with plastic sleeves	Without: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$
		With: $0.25 \ldots 4 \mathrm{~mm}^{2}$
	TWIN ferrules	$0.5 \ldots 2.5 \mathrm{~mm}^{2}$
		Contact pin length min. 10 mm
	Tightening torque	Maximum 0.6 Nm
	Grid	6.35

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

Operating and display elements	Button/LED $=0$	For assignment of the physical address
	Button $8 / L E D$ 윤	For toggling between manual operation/ operation via ABB i-bus ${ }^{\circledR} \mathrm{KNX}$ and displays
	Button output H/ switch H	For switching and display
	Fan speed button E, F, G	For switching the individual fan speeds
	LED E, F, G	For display of fan speed 1, 2, 3
	Buttons A, C	For opening/closing the valve
	LED A, C	For displaying the valve position
	Button 9/LED ${ }^{\text {a }}$	For switching and display
	Button B/LED ${ }^{\text {b }}$	For switching and display
	Button C/LED	For switching and display
Protection	IP 20	To DIN EN 60529
Protection class	II	To DIN EN 61140
Isolation category	Overvoltage category	III to DIN EN 60 664-1
	Pollution degree	II to DIN EN 60 664-1
KNX safety extra low voltage	SELV 24 V DC	
Temperature range	Operation	$-5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$
	Transport	$-25 . . .+70^{\circ} \mathrm{C}$
	Storage	$-25 . . .+55^{\circ} \mathrm{C}$
	Temperatures exceeding $+45^{\circ} \mathrm{C}$ reduce the service life!	
Ambient conditions	Maximum air humidity	93%, no condensation allowed
Design	Modular installation device (MDRC)	Modular installation device, ProM
	Dimensions	$108 \times 90 \times 64.5 \mathrm{~mm}(\mathrm{H} \times \mathrm{W} \times \mathrm{D})$
	Mounting width in space units	$6 \times 18 \mathrm{~mm}$ modules
	Mounting depth	64.5 mm
Mounting	On 35 mm mounting rail	To DIN EN 60715
Installation position	Any	
Weight	0.3 kg	
Housing/color	Plastic housing, gray	
Approvals	KNX to EN 50 090-1, -2	Certification
CE mark	In accordance with the EMC guidelin voltage guideline	

ABB i-bus ${ }^{\circledR}$ KNX

Device technology

| Device type | Application | Maximum number of
 communication objects | Maximum number of
 group addresses | Maximum number of
 assignments |
| :--- | :--- | :--- | :--- | :--- | :--- |
| FCA/S 1.2.2.2 | Fan Coil Actuator $0-10 \mathrm{~V}$ M/...* | 70 | 254 | 255 |

* ... = Current version number of the application. Please refer to the software information on our website for this purpose.

Note

ETS and the current version of the device application are required for programming.
The current version of the application is available on the Internet for download at www.abb.com/knx. After import into ETS it appears in the Catalogs window under Manufacturers/ABB/Heating, Ventilation, Air Conditioning/Fan Coil Actuator 0-10V.
The device does not support the locking function of a KNX device in ETS. If you use a BCU code to inhibit access to all the project devices, this has no effect on this device. Data can still be read and programmed.
2.4.2

Outputs, valve V1/2, analog

Rated values	Quantity	2, non-isolated, short-circuit proofed
	Control signal	$0 \ldots 10 \mathrm{~V}$ DC
	Signal type	Analog
	Output load	$>10 \mathrm{kohms}$
	Output tolerance	$\pm 10 \%$
	Current limitation	Up to 1.5 mA
$\mathbf{2 . 4 . 3}$	Inputs	

Rated values	Quantity	3
Contact scanning	Scanning current	Floating
	Scanning voltage	1 mA
Resistance		10 V
		$0 \ldots 1,000$ ohms,
		PT100 2-conductor technology,
Cable length	PT1000 2-conductor technology,	
	Resolution, accuracy and tolerances	See next page
	Between sensor and device input	Maximum 30 m, simple

Resolution, accuracy and tolerances

Please note that the tolerances of the sensors which are used will need to be added to the listed values.
With sensors based on resistance measurement, it is also necessary to consider the cable error.
In the supplied state of the device, the stated accuracies will not be initially achieved. After initial commissioning, the device performs an autonomous calibration of the analogue measurement circuit. This calibration takes about an hour and is performed in the background. It is undertaken regardless of whether or not the device is parameterized and is independent of the connected sensors. The normal function of the device is not affected. After calibration has been completed, the calibration values which have been determined will be stored in the non-volatile memory. Thereafter, the device will achieve this level of accuracy every time it is switched on. If the calibration is interrupted by programming or bus voltage failure, it will recommence every time it is restarted. The ongoing calibration is displayed in the status byte by a 1 in bit 4.

Resistance signals

Sensor signal	Resolution	Accuracy at $25^{\circ} \mathrm{C} \mathrm{Tu}{ }^{* 3}$	Accuracy at $0 . . .50^{\circ} \mathrm{C} \mathrm{Tu}{ }^{* 3}$	Accuracy at $-20 \ldots 70^{\circ} \mathrm{C} \mathrm{Tu}{ }^{* 3}$	Remark
0...1,000 ohms	0.1 ohm	± 1.0 ohm	± 1.5 ohms	± 2 ohms	
PT100*4	0.01 ohm	± 0.15 ohm	± 0.2 ohm	± 0.25 ohm	0.1 ohm $=0.25^{\circ} \mathrm{C}$
PT1000*4	0.1 ohm	± 1.5 ohms	± 2.0 ohms	± 2.5 ohms	$1 \mathrm{ohm}=0.25^{\circ} \mathrm{C}$
KT/KTY 1000*4	1 ohm	± 2.5 ohms	± 3.0 ohms	± 3.5 ohms	1 ohm $=0.125^{\circ} \mathrm{C} /$ at $^{2} 5^{\circ} \mathrm{C}$
KT/KTY 2000*4	1 ohm	± 5 ohms	± 6.0 ohms	± 7.0 ohms	1 ohm $=0.064{ }^{\circ} \mathrm{C} /$ at $^{2} 5^{\circ} \mathrm{C}$

*3 in addition to current measured value at ambient temperature (Tu_{u})
*4 incl. cable and sensor errors

PT100

The PT100 is precise and exchangeable but subject to faults in the cables (cable resistance and heating of the cables). A terminal resistance of just 200 milliohms causes a temperature error of $0.5^{\circ} \mathrm{C}$.

PT1000

The PT1000 responds just like the PT100, but the influences of cable errors are lower by a factor of 10 . Use of this sensor is preferred

KT/KTY

The KT/KTY has a low level of accuracy, can only be exchanged under certain circumstances and can only be used for very simple applications.

Please note that there are different tolerance classes for the sensors in the versions PT100 and PT1000.
The table indicates the individual classes according to IEC 60751 (date: 2008):

Description	Tolerance
Class AA	$0.10^{\circ} \mathrm{C}+(0.0017 \times \mathrm{t})$
Class A	$0.15^{\circ} \mathrm{C}+(0.002 \times \mathrm{t})$
Class B	$0.30^{\circ} \mathrm{C}+(0.005 \times \mathrm{t})$
Class C	$0.60^{\circ} \mathrm{C}+(0.01 \times \mathrm{t})$

t = Current temperature

Example for class B
At $100^{\circ} \mathrm{C}$, the deviations of the measurement value are reliable up to $\pm 0.8^{\circ} \mathrm{C}$

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

Rated values	Number	3 contacts
	$U_{n 1}$ rated voltage	250/440 V AC ($50 / 60 \mathrm{~Hz}$)
	$\mathrm{In}_{\mathrm{n} 1}$ rated current (per output)	6 A
Switching currents	AC3* operation $(\cos \varphi=0.45)$ to DIN EN 60 947-4-1	$6 \mathrm{~A} / 230 \mathrm{~V}$
	AC1* operation $(\cos \varphi=0.8)$ to DIN EN 60 947-4-1	6 A/230 V
	Fluorescent lighting load to DIN EN 60 669-1	$6 \mathrm{~A} / 250 \mathrm{~V}(35 \mu \mathrm{~F})^{1)}$
	Minimum switching capacity	$20 \mathrm{~mA} / 5 \mathrm{~V}$
		$10 \mathrm{~mA} / 12 \mathrm{~V}$
		$7 \mathrm{~mA} / 24 \mathrm{~V}$
	DC current switching capacity (resistive load)	$6 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical service life	> 10^{7}
	Electronic endurance of switching contacts to DIN IEC 60 947-4-1	
	AC1* (240 V/cos $\varphi=0.8$)	$>10^{5}$
	AC3* (240 V/cos $\varphi=0.45$)	$>1.5 \times 10^{4}$
	AC5a* (240 V/cos $\varphi=0.45$)	$>1.5 \times 10^{4}$
Switching times ${ }^{2}$)	Maximum relay position change per output and minute if only one relay is switched.	2,683

1) The maximum inrush current peak may not be exceeded.
${ }^{2)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms

*What do the terms AC1, AC3 and AC5a mean?

In intelligent installation systems, different switching capacities and performance specifications that are dependent on the special applications have become established in domestic and industrial installations. These performance specifications are rooted in the respective national and international standards. The tests are defined to simulate typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential).

Specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:
AC1 - Non-inductive or slightly inductive load, resistive furnaces (relates to switching of ohmic/resistive loads)

AC3 - Squirrel-cage motors: starting, switching off motors during running (relates to (inductive) motor load)
AC5a - Switching of electric discharge lamps
These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters Electromechanical contactors and motor-starters. The standard describes starters and/or contactors that were originally used primarily in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX

 Device technology
2.4.7

Fan, lamp load 6 A

Lamps	Incandescent lamp load	$1,200 \mathrm{~W}$
Fluorescent lamps T5/T8	Uncompensated	800 W
	Parallel compensated	300 W
	DUO circuit	350 W
Low-voltage halogen lamps	Inductive transformer	800 W
	Electronic transformer	$1,000 \mathrm{~W}$
	Halogen lamps 230 V	$1,000 \mathrm{~W}$
Dulux lamp	Uncompensated	800 W
	Parallel compensated	800 W
Mercury-vapor lamp	Uncompensated	$1,000 \mathrm{~W}$
	Parallel compensated	800 W
Switching capacity (switching contact)	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(150 \mu \mathrm{~s})$	200 A
	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$	160 A
	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(600 \mu \mathrm{~s})$	100 A
	18 W (ABB EVG $1 \times 18 \mathrm{SF})$	10

[^6]| Rated values | Quantity | 1 |
| :---: | :---: | :---: |
| | $\mathrm{U}_{\mathrm{n} 2}$ rated voltage | 250/440 V AC ($50 / 60 \mathrm{~Hz}$) |
| | $\mathrm{In} 2^{\text {rated current }}$ | 20 A |
| Switching currents | AC3* operation $(\cos \varphi=0.45)$ to DIN EN 60 947-4-1 | $16 \mathrm{~A} / 230 \mathrm{~V}$ |
| | AC1* operation $(\cos \varphi=0.8)$ to DIN EN 60 947-4-1 | $20 \mathrm{~A} / 230 \mathrm{~V}$ |
| | Fluorescent lighting load AX to DIN EN 60 669-1 | $20 \mathrm{~A} / 250 \mathrm{~V}(140 \mu \mathrm{~F})^{1)}$ |
| | Minimum switching capacity | $100 \mathrm{~mA} / 12 \mathrm{~V}$ |
| | | $100 \mathrm{~mA} / 24 \mathrm{~V}$ |
| | DC current switching capacity (resistive load) | $20 \mathrm{~A} / 24 \mathrm{~V}=$ |
| Service life | Mechanical service life | $>10^{6}$ |
| | Electronic endurance of switching contacts to DIN IEC 60 947-4-1 | |
| | AC1* (240 V/cos $\varphi=0.8$) | $>10^{5}$ |
| | AC3* (240 V/cos $\varphi=0.45$) | $>3 \times 10^{4}$ |
| | AC5a (240 V/cos $\varphi=0.45$) | $>3 \times 10^{4}$ |
| Switching times ${ }^{\text {2 }}$) | Maximum relay position change per output and minute if only one relay is switched. | 93 |

[^7]
*What do the terms AC1, AC3 and AC5a mean?

In intelligent installation systems, different switching capacities and performance specifications that are dependent on the special applications have become established in domestic and industrial installations. These performance specifications are rooted in the respective national and international standards. The tests are defined to simulate typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential).
Specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:
AC1 - \quad Non-inductive or slightly inductive load, resistive furnaces (relates to switching of ohmic/resistive loads)

AC3 - Squirrel-cage motors: starting, switching off motors during running (relates to (inductive) motor load)

AC5a - \quad Switching of electric discharge lamps
These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters Electromechanical contactors and motor-starters. The standard describes starters and/or contactors that were originally used primarily in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX

Device technology

2.4.9
 Output, lamp load 20 AX

Lamps	Incandescent lamp load	$3,680 \mathrm{~W}$
Fluorescent lamps T5/T8	Uncompensated	$3,680 \mathrm{~W}$
	Parallel compensated	$2,500 \mathrm{~W}$
	DUO circuit	$3,680 \mathrm{~W}$
Low-voltage halogen lamps	Inductive transformer	$2,000 \mathrm{~W}$
	Electronic transformer	$2,500 \mathrm{~W}$
	Halogen lamps 230 V	$3,680 \mathrm{~W}$
Dulux lamp	Uncompensated	$3,680 \mathrm{~W}$
	Parallel compensated	$3,000 \mathrm{~W}$
Mercury-vapor lamp	Uncompensated	$3,680 \mathrm{~W}$
	Parallel compensated	$3,680 \mathrm{~W}$
Switching capacity (switching contact)	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(150 \mu \mathrm{~s})$	600 A
	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$	480 A
Number of electronic ballasts (T5/T8, single element) ${ }^{1)}$	18 W (ABB EVG $1 \times 18 \mathrm{SF})$	300 A
	24 W (ABB EVG-T5 $1 \times 24 \mathrm{CY})$	$26^{2)}$

[^8]
ABB i-bus ${ }^{\circledR}$ KNX

Device technology

Connection schematic

2CDC072014F0012

FCA/S 1.2.2.2

1 Label carrier
2 Programming button $\xlongequal{\square}$
3 Programming LED (red)

4 Bus connection terminal

5 Inputs a, b, c
6 Valve output A (e.g. heating)
7 Valve output C (e.g. cooling)
8 Fan

9 Output H
10 Manual operation button/LED © () (yellow)
11 Valve output A buttons/LEDs (e.g. heating) (yellow)

12 Valve output C buttons/LEDs (e.g. cooling) (yellow)

13 Button/LEDs fan speed 1, 2, 3 (yellow)
14 Output H button
15 Inputs a, b, c buttons/LEDs (yellow)
16 Output H display

Note

Terminals 1 and 4 on the FCA/S 1.2.2.2 are not used internally.

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

All outputs can be controlled independently of one another.
The following table provides an overview of the functions possible with the outputs of the Fan Coil Actuator and the application:

- = Function is supported
= Function is not supported
free $=$ Is available and can be used separately

Functions of the output	E	F	G	H
Switch function				
Normally closed/Normally open contact	\square	■	■	■
Time				
Staircase lighting	■	\square	■	■
Fan				
Level	1	2	3	-

- = Function is supported
- = Function is not supported

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

2.4.11

Dimension drawing

2CDC072015F0012

2.5
 Mounting and installation

The device is a modular installation device for quick installation in distribution boards on 35 mm mounting rails to DIN EN 60715.

The installation position can be selected as required.
The electrical connection is implemented using screw terminals. The connection to the bus is implemented using the supplied bus connection terminal. The terminal assignment is located on the housing.

The device is ready for operation after connection to the bus voltage
Accessibility to the device for the purpose of operation, testing, visual inspection, maintenance and repair must be provided compliant to DIN VDE 0100-520.

Commissioning requirement

In order to commission the device, a PC with ETS as well as a connection to the ABB i-bus ${ }^{\circledR}$, e.g. via a KNX interface, is required.

The device is ready for operation after connection to the bus voltage. No additional auxiliary voltage is required.

Important

The maximum permissible current of a KNX line must not be exceeded.
During planning and installation ensure that the KNX line is correctly dimensioned.
The device features a maximum current consumption of 12 mA .

Mounting and commissioning may only be carried out by electrical specialists. The appropriate standards, directives, regulations and specifications for the appropriate country should be observed when planning and setting up electrical installations and security systems for intrusion and fire detection.

- Protect the device from damp, dirt and damage during transport, storage and operation.
- Only operate the device within the specified technical data!
- The device should only be operated in an enclosed housing (distribution board)!
- The voltage supply to the device must be switched off before mounting work is performed.

Danger

To avoid dangerous touch voltages which originate through feedback from differing phase conductors, all poles must be disconnected when extending or modifying the electrical connections.

Manual operation

The device incorporates manual operating features. Special device functions can be undertaken using the operating keys on the foil keypad.
The foil keypad may not be operated with pointed or sharp-edged objects, e.g. screwdrivers or pens. This may damage the keypad.

Supplied state

The device is supplied with the physical address 15.15.255. The application is pre-installed.
The complete application can be reloaded if required. Downloads may take longer after a change of application or a discharge

Assignment of the physical address

The assignment and programming of the physical address are carried out in ETS.
The device features a Programming button $\rightleftharpoons 0$ for assignment of the physical address. The red Programming LED - lights up after the button has been pressed. It switches off as soon as ETS has assigned the physical address or the $\rightleftharpoons 0$ button is pressed again.

Download reaction

Depending on the PC which is used, the progress bar for the download may take up to one and a half minutes before it appears due to the complexity of the device.

Cleaning

The voltage supply to the device must be switched off before cleaning. If devices become dirty, they can be cleaned using a dry cloth or a cloth dampened with a soapy solution. Corrosive agents or solutions should never be used.

Maintenance

The device is maintenance-free. In the event of damage, repairs should only be carried out by an authorized person (e.g. during transport or storage).

2.6 Manual operation

Function of manual operation

Manual operation facilitates on-site operation of the device. Manual operation is enabled as standard and can be switched on and off using the Manual operation button 2.

Switching on manual operation:
Press the ; button until the yellow LED 운 lights continuously.
Switching off manual operation:
Press the , button briefly. The yellow LED 운 continues to flash for 2 seconds.
After connection to the KNX, an ETS download or ETS reset, the device is in KNX operation. The LED ㅇ is off. All LEDs indicate the current state.

Note

If Manual operation is generally disabled or disabled via communication object Enable manual operation, the LED 은 flashes during the button push.
A switchover from KNX operation to the Manual operation mode does not occur.

Note

If manual operation is activated, the current fan speed remains set and can only be operated manually. Here any limitations, forced operations and programmed dwell times are not considered.
If manual operation is deactivated, the fan sets to a speed to which it would also be set without manual operation, e.g. via the value of the communication objects. The setting occurs with the parameterized dwell times.

ABB i-bus ${ }^{\circledR}$ KNX
 Device technology

2.6.1 Display elements

Indicator LEDs are located on the front of the device.
All LEDs Output X indicate the current state. In KNX operation the LED 운 is off.
The response of the display elements is described in the following table:

| LED | KNX operation | Manual operation |
| :--- | :--- | :--- | | Off: The device is in KNX operation |
| :--- |
| Flashing: Changeover to Manual operation. | | On: The device is in Manual operation |
| :--- |
| Flashing: Changeover to KNX operation. |

Operating controls

Buttons for manual operation are located on the front of the devices.
The reaction of the operating elements is described in the following table, according to the operating states, KNX operation and Manual operation:

Button	KNX operation	Manual operation
Manual operation	Long button push $\geq 1.5 \mathrm{sec}$.: Switch to Manual operation, provided that Manual operation is not blocked by a parameter setting. Short button push ≤ 1.5 sec.: LED 2 flashes and switches off again. The device is in KNX operation.	Long button push ≥ 1.5 sec.: Changeover to $K N X$ operation. The inputs are scanned again. In this way, the input states are updated. Resetting the Manual operation to KNX operation can also be completed within a parameterized time depending on the parameterization.
Output A...D	Valve drive, motor-driven (3-point) and valve drive, thermoelectric (PWM) A fault, e.g. due to an overload/short circuit, is indicated on the device by flashing (frequency 4.8 Hz) of the corresponding LED ($\mathrm{A}+\mathrm{B}$ or $\mathrm{C}+\mathrm{D}$).	Short button push $\leq 1.5 \mathrm{sec}$.: The reaction of the buttons depends on the mode of operation: Valve drive, motor-driven (3-point): Output: A and C: Open/STOP First operation point: Press: Valve from 0... 100%, then STOP => OPEN Release: No reaction Output: B and D: Close/STOP Next operation point: Press: Valve from 100...0\%, then STOP => CLOSED Release: No reaction Long button push $\geq 1.5 \mathrm{sec}$.: No function A characteristic curve adjustment is undertaken, if it is parameterized. Valve drive, thermoelectric (PWM): Output: A, B, C or D: Open/close First operation point: Press: Valve from 0... 100%, then STOP $=>$ OPEN Release: No reaction Next operation point: Press: Valve from 100...0\%, then STOP => CLOSED Release: No reaction Long button push $\geq 1.5 \mathrm{sec}$.: No function A characteristic curve adjustment is undertaken, if it is parameterized.
		Long button push (>2s) on one of the buttons B or D triggers a valve reference movement
Output A (Output C)	Valve drive, analog ($0 . . .10 \mathrm{~V}$): A fault, e.g. due to an overload/short circuit, is indicated on the device by flashing (frequency 4.8 Hz) of the corresponding LED.	Valve drive, analog (0... 10 V): Short button push $\leq 1.5 \mathrm{sec}$.: Press: Valve from $0 . . .100 \%$, then STOP $=>$ OPEN Release: No function Long button push $\geq 1.5 \mathrm{sec}$.: No function A characteristic curve adjustment is undertaken, if it is parameterized.
Output A (Output C)		Valve drive, analog (0... 10 V): Short button push $\leq 1.5 \mathrm{sec}$.: Press: Valve from 100... 0%, then STOP => CLOSED Release: No function Long button push $\geq 1.5 \mathrm{sec}$.: No function A characteristic curve adjustment is undertaken, if it is parameterized.

\(\left.$$
\begin{array}{c|l|l}\text { Button } & \text { KNX operation } & \text { Manual operation } \\
\hline & & \begin{array}{l}\text { Short button push } \leq 1.5 \text { sec.: } \\
\text { As switch actuator: }\end{array}
$$

Press: ON <-> OFF\end{array}\right]\)| As fan: |
| :--- |
| Press: ON |
| Switching can only be performed in the following order: |

3 Commissioning

3.1

Overview

The application Fan Coil Actuator PWM/2 is available for the Fan Coil Actuator FCA/S 1.1.1.2.
The application Fan Coil Actuator 0-10V/2 is available for the Fan Coil Actuator FCA/S 1.2.1.2.
The application Fan Coil Actuator PWM M/2 is available for the Fan Coil Actuator FCA/S 1.1.2.2.
The application Fan Coil Actuator 0-10V M2 is available for the Fan Coil Actuator FCA/S 1.2.2.2.
Programming requires the ETS.
For use of the i-bus ${ }^{\circledR}$ Tool, see: Integration in the i-bus ${ }^{\circledR}$ Tool, pg. 9.
The following functions are available:

Additional output	For control of auxiliary electrical heating, e.g. in the winter \Leftrightarrow summer transition phase.
Fan	A three-speed fan is controlled alternately with a two-way connection or with speed switching.
FCA/S 1.1.x.2: electronic	Valve drives are controlled. Control occurs via PWM or 3-point. The outputs are protected against short circuit.
FCA/S 1.2.x.2: analog	Valve drives are controlled. Control occurs via an analog control signal of 0...10 V. The outputs are protected against short circuit.
Inputs	There are four inputs available. These are used to monitor or connect the window contact, condensation (dew point), detectors or temperature sensors, for example.

The 6 A outputs are available for Fan Coil applications.

Attention

Improper switching will destroy the fan motors.
Follow the technical data for the fan, e.g. speed or switching function.
For further information see: Parameter window E, F, G: Fan (Multi-level), p. 126.

The Fan Coil Actuator features a relay in each output, which is mechanically independent of the other outputs. Switching noises cannot be avoided due to the mechanical nature of the design.
The installation location of the Fan Coil Actuator can either be centrally in an electrical distribution board, or distributed in a Fan Coil unit. Usually, the Fan Coil Actuator is used in conjunction with a room thermostat for an individual room temperature control system. The room thermostat sends a control variable which is used to control the fan stages via the Fan Coil Actuator.

Fan Coil controls

- Fan with three fan speeds
- With changeover or step control
- 1 control value/1 valve
- 2 control values/1 valve
- 2 control values/1 valve/ with switching object
- 2 control values/2 valves
- 2 control values/2 valves/ with switching object

For further information, see: Planning and application, page 237

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Configuration design types

A Fan Coil unit can be configured as a compact device or a modular installation device:

- Compact devices: These are supplied with enclosures and are available as self-contained units or for wall or ceiling mounting.
- Built-in devices: These have no enclosures and are mounted in the wall, in the ceiling or in the floor. The air is blown into the room through a grille.

Air supply

Fan Coil units are available as recirculation or as mixed air devices.

- Recirculation devices: The room air is directed past heat exchangers by the fans.
- Mixed air devices: The room air is mixed with fresh air. The mixing ratio between recirculated and fresh air can usually be adjusted.

3.1.1
 Functions of the inputs

The following table provides an overview of the functions possible with the inputs of the Fan Coil Actuator and the application:

Functions of the inputs	a	b	c
Switch sensor	■	■	\square
Value/forced operation	\square	\square	\square
PT100 temperature sensor	\square	■	\square
PT1000 temperature sensor	■	\square	\square
KT/KTY temperature sensor	\square	\square	\square
KT/KTY temperature sensor (user-defined)	\square	\square	\square

■ = Function is supported

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Output functions
The following table provides an overview of the functions possible with the outputs of the Fan Coil Actuator and the application:

Functions of the output	A	B	C	D
General				
- Overload	\square		■	
- Parallel operation	\square	free	\square	free
Valve drives allocated to the Fan Coil unit				
- Thermoelectric (PWM)	\square	\square	\square	\square
- 1 control value/1 valve	\square	free	free	free
- 2 control values/1 valve	\square	free	free	free
- 2 control values/2 valves	\square	free	\square	free
- Analog (0... 10 V)	\square	-	\square	-
- 1 control value/1 valve	\square	-	free	-
- 2 control values/1 valve	\square	-	free	-
- 2 control values/2 valves	\square	-	\square	-
Setting facilities for valve drives				
- Thermoelectric (PWM)				
- Separate heating/cooling	■	\square	\square	\square
- Direction	OPEN/CLOSE	OPEN/CLOSE	OPEN/CLOSE	OPEN/CLOSE
- Motor-driven (3-point)				
- Separate heating/cooling	\square		■	
- Direction	OPEN	CLOSE	OPEN	CLOSE
- Analog (0...10 V)				
- Separate heating/cooling	\square		\square	
- Direction	OPEN/CLOSE		OPEN/CLOSE	

- = Function is supported
= Function is not supported
free $=$ Is available and can be used separately

Functions of the output	E	F	G	H
Switch function				
Normally closed/Normally open contact	\square	\square	\square	\square
Time				
Staircase lighting	\square	\square	\square	\square
Fan				
Level	1	2	3	-

- = Function is supported
- = Function is not supported

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

3.2
 Parameters

The ETS Engineering Tool Software is used for parameterizing the device
The application appears in ETS in the Catalogs window under Manufacturers/ABB/Heating, Ventilation, Air Conditioning/Fan Coil Actuator 1-fold.

The following chapters describe the parameters of the device using the parameter windows. Parameter windows are structured dynamically so that further parameters may be enabled depending on the parameterization and function of the outputs

The default values of the parameters are underlined, e.g.:
Options: Yes
No

Note

For screen shots, the application of the FCA/S 1.1.2.2 (with PWM and manual operation) is used representatively for all devices.
3.2.1

Parameter window General - Settings
Settings of higher-level parameters:

4 General	Sending and switching delay after bus voltage recovery	2 seconds	-
Settings			
1. Manual operation			
1) Outputs A...H	Rate of telegrams	Do not limit	-
b Inputs a...c			
	Enable communication object "In operation", 1-bit	No	-
	Enable communication object "Request status values" 1 -bit	No	\checkmark

Sending and switching delay

 after bus voltage recoveryOptions: $\quad \underline{2} / 3 / 5 / 10 / 30 / 60$ seconds 2/3/4 minutes

During the sending and switching delay, telegrams are only received. The telegrams are not processed, however, and the outputs remain unchanged. No telegrams are sent via the bus.

After the sending and switching delay, telegrams are sent and the state of the outputs is set to correspond with the parameterization or the communication object values.

If communication objects are read out via the bus during the sending and switching delay, e.g. by a visualization system, these read requests are stored and a response is sent after the sending and switching delay has been completed.

An initialization time of about two seconds is included in the delay time. The initialization time is the time that the processor requires to be ready to function.

How does the device react on bus voltage recovery?

After bus voltage recovery, the device always waits for the sending delay time to elapse before sending telegrams via the bus.

Note

The set switching delay does not act on the valve outputs!

Rate of telegrams

Options: Do not limit
1/2/3/5/10/20 telegram(s)/second 0.05/0.1/0.2/0.3/0.5 seconds/telegram

Using this parameter, the bus load generated by the device can be limited

- 1/2/3/5/10/20 telegram(s)/second: X telegrams per second are sent.
- 0.05/0.1/0./0.3/0.5 seconds/telegram: A telegram is sent every x seconds.

Enable communication object
"In operation", 1-bit
Options: No
Send value 0 cyclically
Send value 1 cyclically
The communication object In operation indicates that the device on the bus is working properly. This cyclic telegram can be monitored by an external device.

- Send value 0/value 1 cyclically: The value 0 or 1 is sent cyclically and the 1 -bit communication object In operation is enabled.

Dependent parameter:

Telegram is repeated every

Options: Every second Every 2/3/5/10/30/60 seconds Every 2/3/5/10/30/60 minutes Every $2 / 3 / 5 / 10 / 12$ hours

Note

After bus voltage recovery, the communication object sends its value after the set sending and switching delay.

Enable communication object

"Request status values" 1-bit
Options:
$\frac{\mathrm{No}}{\mathrm{Yes}}$
Via this communication object, all status messages can be requested, provided that they have been parameterized with the option After a change or request.

- Yes: The 1-bit communication object Request status values is enabled.

Dependent parameter:

Request with object value

Options:

$$
\begin{aligned}
& \frac{0}{1} \\
& 0 \text { or } 1
\end{aligned}
$$

- 0 : Sending status messages is requested with the value 0 .
- 1: Sending status messages is requested with the value 1.
- 0 or 1: Sending status messages is requested with the values 0 or 1 .

Note
 If the option Yes has been selected for the parameter Enable communication object "Request status values" 1-bit, the communication objects no. 4, 18, 28, 38 and 48 are sent immediately. For all other status objects, e.g. for the fan, it is also possible to use parameters to set the time when each of them is to be sent to the bus.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

| Note |
| :--- | :--- |
| This parameter window is only visible for devices with manual operation. |

Settings for manual operation:

Manual operation

Options: Disabled
Enabled
Enable/disable via comm. object
This parameter defines if the switchover between the operating states Manual operation and KNX operation is possible via the button © on the device or via a communication object.

For further information see: Manual operation, p. 63

Note

The manual operation overwrites the input states.

- Enabled: The operating states Manual operation and KNX operation can be toggled via button ©.
- Enable/disable via communication object: The communication object Block manual operation General appears.

Telegram value: $0=$ Enable © button
1 = Block © button

- Blocked: Manual operation is generally disabled

Reset from manual operation to

KNX operation

Options:
$\frac{\mathrm{No}}{\mathrm{Yes}}$
This parameter determines whether, after pressing the button ©, the device will remain in Manual operation or will be reset back to KNX operation.

- Yes: The device is reset to KNX operation.

Dependent parameter:
Time for automatic reset to KNX operation in s [1...65,535]
Options: 1...30...65,535
This parameter determines how long, after pressing button ©, the device will remain in Manual operation.
The device remains in Manual operation after the last button push until either button © is pushed again or the programmed time has timed out.

Enable communication object
"Status Man. operation" (1-bit)
Options:
$\frac{\mathrm{No}}{\mathrm{Yes}}$

- Yes: The 1-bit communication object Status Man. operation is enabled.

Dependent parameter:

Send object value

Options: No, update only
On change
After request
After a change or request

- No, update only: The status is updated but not sent.
- On change: The status is sent when a change occurs.
- After request: The status is sent when a request occurs.
- After a change or request: The status is sent on a change or a request.

For further information see: Manual operation, p. 63

Function of the buttons:

Output A/B blocked
Output C/D blocked
Fan speed 1 output E blocked
Fan speed 2 output F blocked
Fan speed 3 output G blocked
Input a, b, c

$$
\begin{aligned}
& \text { Note } \\
& \hline \text { The functions Fan speed } x \text { output } x \text { blocked only appear if the option Enabled as fan has been selected } \\
& \text { for the parameter Outputs EFG in the parameter window Enable output E...H. }
\end{aligned}
$$

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Input \mathbf{a}, b and c
Options: Disabled
Switch
Button
With this parameter, the button can be disabled or programmed as a switch or push button.

- Disabled:

Button disabled
LEDs not functioning

- Switch: With every actuation, the states of the input and the LED are changed.
- Button:

Press button => input closed, LED on
Release button => input opened, LED off

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

3.2.3
3.2.3.1

Parameter window Outputs A...H

Parameter window Enable output A...D

In this parameter window, outputs A...D are enabled.

| General |
| :--- | :--- | :--- |
| Manual operation |
| Outputs A...H |\quad Fan coil operating mode \quad Operation mode output A and B

Fan coil operating mode

Options: $\quad 1$ control value/ 1 valve
2 control values/1 valve
2 control values/1 valve/ with switching object
2 control values/2 valves
2 control values/ 2 valves/ with switching object
This parameter determines how the control value is processed.

Note

In the option 2 control values/2 valves (with or without switching object), one valve must be parameterized as a heating valve and the other valve as a cooling valve, according to the installation conditions.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Control values overview

Functions of the output	A	B	C	D
General				
- Overload	■		■	
- Parallel operation	\square	free	\square	free
Valve drives allocated to the Fan Coil unit				
- Thermoelectric (PWM)	\square	\square	\square	\square
- 1 control value/1 valve	\square	free	free	free
- 2 control values/1 valve	\square	free	free	free
- 2 control values/2 valves	\square	free	\square	free
Setting facilities for valve drives				
- Thermoelectric (PWM)				
- Separate heating/cooling	\square	\square	\square	\square
- Direction	OPEN/CLOSE	OPEN/CLOSE	OPEN/CLOSE	OPEN/CLOSE

= Control value functions

- = Control value does not function

Valves independently usable

If the option Enabled as switch actuators is selected in the parameter window Enable output E...H, the outputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D can be used independently.
The individual communication objects appear. The control value is connected to the outputs via group addresses.

	Output A	Output B	Output C	Output D	Fan EFG
Valves					
Freely parameterizable	\square	\square	\square	\square	As switch actuators

= Control value functions

- = Control value does not function

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Fan Coil operating mode: 1 control value/1 valve
What does the option control value input "1 control value/1 valve" mean?
Example: Heating valve and three-speed fan

Control value processing in the device

	Output A	Output B	Output C	Output D
Control value input				
1 control value/1 valve	\square	-	-	-
$\square=$ Control value functions				

If the option 1 control value/1 valve is selected, the control value heating will operate on output A .
The control value fan EFG operates on the outputs E, F and G. To ensure perfect functioning of the Fan Coil, the control value fan EFG is connected with the control value heating.

Fan Coil operating mode: $\mathbf{2}$ control values/1 valve
What does the option control value input "2 control values/1 valve" mean?
Example: Valve and three-speed fan

Control value processing in the device

	Output A	Output B	Output C	Output D
Control value input				
2 control values/1 valve	$\boxed{ }$	-	-	-

= Control value functions

- = Control value does not function

If the option 2 control values/1 valve is selected, the control values will operate on output A.
The two control values, heating and cooling, are compared internally and the larger value operates on output A (valve).
The type of the two fans EFG control values A and B is set in the application. In this example, "Number of control value inputs" is parameterized to 2 and the reaction to "Largest value".
To ensure correct operation of the Fan Coil, the fan EFG control value A is connected with the control value cooling and the fan EFG control value B with the control value heating.

Fan Coil operating mode: 2 control values/1 valve / with switching object
What does the option control value input: "2 control values/1 valve / with switching object" mean?
Example: Valve and three-speed fan

Control value processing in the device

	Output A	Output B	Output C	Output D
Control value input				
2 control values/1 valve/ with switching object	\square	-	-	-

■ = Control value functions

- = Control value does not function

If the option 2 control values/1 valve / with switching object is selected, the control values will operate on output A.

Which of the two control values operates on outputs A and C is decided via the communication object "Toggle heating".

The type of the two fans EFG control values A and B is set in the application. In this example, "Number of control value inputs" is parameterized to 2 and the reaction to "Largest value".
To ensure correct operation of the Fan Coil, the fan EFG control value A is connected with the control value cooling and the fan EFG control value B with the control value heating.

Fan Coil operating mode: 2 control values / 2 valves
What does the option control value input " 2 control values / 2 valves" mean?
Example: 2 valves and three-speed fan

Control value processing in the device

	Output A	Output B	Output C	Output D
Control value input				
2 control values/2 valves	\square	-	\square	-

= Control value functions

- = Control value does not function

If the option 2 control values/2 valves is selected, the control values will operate directly on output C .
The type of the two fans EFG control values A and B is set in the application. In this example, "Number of control value inputs" is parameterized to 2 and the reaction to "Largest value".
To ensure correct operation of the Fan Coil, the fan EFG control value A is connected with the control value cooling and the fan EFG control value B with the control value heating.

Note

In the option 2 control values/2 valves (with or without switching object), one valve must be parameterized as a heating valve and the other valve as a cooling valve, according to the installation conditions.

Fan Coil operating mode: $\mathbf{2}$ control values/2 valves / with switching object
What does the option control value input: " 2 control values/2 valves / with switching object" mean?
Example: 2 valves and three-speed fan

Control value processing in the device

	Output A	Output B	Output C	Output D
Control value input				
2 control values/2 valves/ with switching object	\square	-	\square	-

■ Control value functions

- = Control value does not function

If the option 2 control values/2 valves / with switching object is selected, the control values will operate directly on output C.

Which of the two control values operates on outputs A and C is decided via the communication object "Toggle heating".

The type of the two fans EFG control values A and B is set in the application. In this example, "Number of control value inputs" is parameterized to 2 and the reaction to "Largest value".

To ensure correct operation of the Fan Coil, the fan EFG control value A is connected with the control value cooling and the fan EFG control value B with the control value heating.

Note

In the option 2 control values/2 valves (with or without switching object), one valve must be parameterized as a heating valve and the other valve as a cooling valve, according to the installation conditions.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Description of the Fan Coil operation modes with valve drive, motor-driven (3-point) and analog

Control values overview

Functions of the output	A	B	C	D
General				
- Overload	\square		\square	
- Parallel operation	■	free	■	free
Valve drives allocated to the Fan Coil unit				
- Analog (0... 10 V)	■	-	■	-
- 1 control value/1 valve	\square	-	free	-
- 2 control values/1 valve	\square	-	free	-
- 2 control values/2 valves	\square	-	\square	-
Setting facilities for valve drives				
- Motor-driven (3-point)				
- Separate heating/cooling	■		\square	
- Direction	OPEN	CLOSE	OPEN	CLOSE
- Analog (0... 10 V)				
- Separate heating/cooling	\square		\square	
- Direction	OPEN/CLOSE		OPEN/CLOSE	

■ = Control value functions

- = Control value does not function

Valves independently usable

If the option Enabled as switch actuators is selected in the parameter window Enable output E...H, the outputs A, B, C and D can be used independently.
The individual communication objects appear. The control value is connected to the outputs via group addresses.

	Output A	Output B	Output C	Output D	Fan EFG
Valves					
Freely parameterizable	\square	\square	\square	\square	As switch actuators
$\square=$ Control value functions					
$-=$ Control value does not function					

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Fan Coil operating mode: 1 control value/1 valve
What does the option control value input "1 control value/1 valve" mean?
Example: Heating valve and three-speed fan

Control value processing in the device
Analog:

	Output A	Output C
Control value input		
1 control value/1 valve	\square	-

Motor-driven (3-point):

	Output A/B	Output C/D
Control value input		
1 control value/1 valve	\square	-

■ Control value functions

- = Control value does not function

If the option 1 control value/1 valve is selected, the control value heating will operate on output A (B).
The control value fan EFG operates on the outputs E, F and G. To ensure perfect functioning of the Fan Coil, the control value fan EFG is connected with the control value heating.

Fan Coil operating mode: $\mathbf{2}$ control values/1 valve
What does the option control value input " 2 control values/1 valve" mean?
Example: Valve and three-speed fan

Control value processing in the device

Analog:

	Output A	Output C
Control value input		
2 control values/1 valve	\square	-

Motor-driven (3-point):

	Output A/B	Output C/D
Control value input		
2 control values/1 valve	\square	-
$\square=$ Control value functions		
$-=$ Control value does not function		

If the option 2 control values/1 valve is selected, the control values will operate on output $A(B)$.
The two control values, heating and cooling, are compared internally and the larger value operates on output A or B (valve).

The type of the two fans EFG control values A and B is set in the application. In this example, "Number of control value inputs" is parameterized to 2 and the reaction to "Largest value".

To ensure correct operation of the Fan Coil, the fan EFG control value A is connected with the control value cooling and the fan EFG control value B with the control value heating.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Fan Coil operating mode: 2 control values/1 valve / with switching object
What does the option control value input: "2 control values/1 valve / with switching object" mean?
Example: Valve and three-speed fan

Control value processing in the device
Analog:

	Output A	Output C
Control value input		
2 control values/ 1 valve/ with switching object	\square	-

Motor-driven (3-point):

	Output A/B	Output C/D
Control value input		
2 control values/ 1 valve/ with switching object	\square	-

= Control value functions

- = Control value does not function

If the option 2 control values/1 valve / with switching object is selected, the control values will operate on output A (B)

Which of the two control values operates on outputs A and C is decided via the communication object "Toggle heating".

The type of the two fans EFG control values A and B is set in the application. In this example, "Number of control value inputs" is parameterized to 2 and the reaction to "Largest value".
To ensure correct operation of the Fan Coil, the fan EFG control value A is connected with the control value cooling and the fan EFG control value B with the control value heating.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Fan Coil operating mode: $\mathbf{2}$ control values / 2 valves
What does the option control value input " 2 control values / 2 valves" mean?
Example: 2 valves and three-speed fan

Control value processing in the device

Analog:

	Output A	Output C
Control value input		\square
2 control values/2 valves	\square	\square

Motor-driven (3-point):

	Output A/B	Output C/D
Control value input		
2 control values/2 valves	\square	\square

If the option 2 control values/2 valves is selected, the control values will operate directly on output A (B) and output C (D)

Which of the two control values operates on outputs A and C is decided via the communication object "Toggle heating".

The type of the two fans EFG control values A and B is set in the application. In this example, "Number of control value inputs" is parameterized to 2 and the reaction to "Largest value".
To ensure correct operation of the Fan Coil, the fan EFG control value A is connected with the control value cooling and the fan EFG control value B with the control value heating.

Note

In the option 2 control values/2 valves (with or without switching object), one valve must be parameterized as a heating valve and the other valve as a cooling valve, according to the installation conditions.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Fan Coil operating mode: $\mathbf{2}$ control values/2 valves / with switching object
What does the option control value input: " 2 control values/2 valves / with switching object" mean?
Example: 2 valves and three-speed fan

Control value processing in the device

Analog:

	Output A	Output C
Control value input		
2 control values/ 2 valves/ with switching object	\square	\square

Motor-driven (3-point):

	Output A/B	Output C/D
Control value input	\square	\square
2 control values/ 2 valves/ with switching object	\square	\square

= Control value functions

- = Control value does not function

If the option 2 control values/2 valves / with switching object is selected, the control values will operate directly on output $A(B)$ and output C (D)

Which of the two control values operates on outputs A and C is decided via the communication object "Toggle heating".

The type of the two fans EFG control values A and B is set in the application. In this example, "Number of control value inputs" is parameterized to 2 and the reaction to "Largest value".
To ensure correct operation of the Fan Coil, the fan EFG control value A is connected with the control value cooling and the fan EFG control value B with the control value heating.

Note

In the option 2 control values/2 valves (with or without switching object), one valve must be parameterized as a heating valve and the other valve as a cooling valve, according to the installation conditions.

Note

If the options with 2 valves are selected, parallel mode can be enabled via the communication object Valve control values parallel mode.

Communication object "Valve control values parallel mode" 1-bit
Options:

- Yes: The 1-bit communication object Valve control values parallel operation is enabled.

Note

Communication object "Valve control values parallel mode" only operates on Fan Coil valves.

```
Note
If an operation mode with 2 control values and 1 valve is selected for the Fan Coil, an additional communication object (no.9) is enabled that is set for cooling and is as follows, depending on the operation mode of the outputs:
2nd control value, cooling, continuous (PWM)
2nd control value, cooling, continuous (3-point)
2nd control value, cooling, analog ( \(0 . . .10 \mathrm{~V}\) )
```

Note			
If the options with switching object are selected, an additional parameter Toggle to heating with will appear			
1. General Manual operation Fan coil operating mode 2 control values/2 valves/with switching object			
4 Outputs A...H	Communication object "Valve control values parallel mode" 1 -bit	No	
Enable output A...D			
A/B: Output Function C/D: Output	Comm. object "Valve control values parallel mode" only acts on f.c. valve	<-- NOTE	
Function	Operation mode output A and B	Valve drive, motor-driven (3-point)	\checkmark
Enable output E...H E, F, G: Fan	Output A	Open	
Status messages	Output B	Close	
Automatic control		<--- NOTE	
1. Inputs a...c	Valve is assigned to fan coil		
	Operation mode output C and D	Valve drive, motor-driven (3-point)	\checkmark
	Output C	Open	
	Output D	Close	
	Valve is assigned to fan coil	<-- NOTE	
	Toggle to heating with	1	\checkmark

Toggle to heating with

Options: 0
1

- $0: A$ telegram with the value 0 switches.
- 1: A telegram with the value 1 switches.

Parameter window Enable output A...D - Fan Coil Actuator, PWM

D General D Manual operation	Fan coil operating mode	1 control value/1 valve	\checkmark
4 Outputs A...H	Operation mode output A and B	Valve drive, motor-driven (3-point)	\checkmark
Enable output A...D			
A/B: Output	Output A	Open	
Function			
C/D: Output	Output B	Close	
Function	Valve is assigned to fan coil	<-- NOTE	
Enable output E... H			
E, F, G: Fan			
Status messages	Free output C/D		
Inputs a...c	Operation mode output C and D	Valve drive, motor-driven (3-point)	\checkmark
	Output C	Open	
	Output D	Close	

Operation mode output A and B

Options:
Individual
Valve drive, motor-driven (3-point)
This parameter determines whether the operation modes of outputs A and B can be parameterized individually or whether the outputs are operated in operation mode Valve drive, motor-driven (3-point). The outputs are linked to one another in pairs in this operation mode. Outputs A and B control the contacts Open/Close of the valve drive for opening/closing the valve.

- Individual: With this setting, the operation modes of outputs A and B are set individually from one another.

Dependent parameters:

Output A

Output B
Options: Disabled
Valve drive, thermoelectric (PWM)
This parameter defines the individual operation mode of the output.

- Disabled: No operation mode selected.
- Valve drive, thermoelectric (PWM): The parameter (window) and communication objects for the operation mode Valve drive, thermoelectric (PWM) are enabled.
- Valve drive, motor-driven (3-point): The parameter (window) and communication objects for the operation mode Valve drive, motor-driven (3-point) are enabled.

Output A

Open

Output B

Close

Operation mode output C and D

Options: Individual
Valve drive, motor-driven (3-point)

- This parameter determines whether the operation modes of outputs C and D can be parameterized individually or whether the outputs are operated in operation mode Valve drive, motor-driven (3-point). The outputs are linked to one another in pairs in this operation mode. Outputs C and D control the contacts Open/Close of the valve drive for opening/closing the valve.
- Individual: With this setting, the operation modes of outputs C and D are set individually from one another

Dependent parameters:

Output C

Output D

Options: Disabled
Valve drive, thermoelectric (PWM)
This parameter defines the individual operation mode of the output.

- Disabled: No operation mode selected.
- Valve drive, thermoelectric (PWM): The parameter (window) and communication objects for the operation mode Valve drive, thermoelectric (PWM) are enabled.
- Valve drive, motor-driven (3-point): The parameter (window) and communication objects for the operation mode Valve drive, motor-driven (3-point) are enabled.

Output C

Open
Output D
Close

Assignment of the valves

Note

Outputs A and C are automatically assigned via the selection in the parameter Fan Coil operating mode.

Parameter window Enable output A...D - Fan Coil Actuator, $0 . . .10 \mathrm{~V}$

D. General p. Manual operation	Fan coil operating mode	1 control value/ 1 valve	\checkmark
4 Outputs A... H	Output A	Valve drive, analog ($0 . .10 \mathrm{~V}$)	-
Enable output A...C			
A: Output	Valve control output A	$0 . . .10 \mathrm{~V}$	
Function			
Enable output E...H	Valve voltage on bus voltage failure	0 V	
E, F, G: Fan	Valve is assigned to fan coil	<-- NOTE	
Status messages			
Automatic control			
D Inputs a...c	Free output C		
	Output C	Disabled	\checkmark

Output A

Options:
Disabled
Valve drive, analog (0... 10 V)
This parameter defines the individual operation mode of the output.

- Disabled: No operation mode selected.
- Valve drive, analog ($0 \ldots 10 \mathrm{~V}$): The parameter (window) and communication objects for the operation mode Valve drive, analog (0... 10 V) are enabled.

Valve control output A

$0 . .10 \mathrm{~V}$
Valve voltage on bus voltage failure
0 volts

This also applies for output C.

Assignment of the valves

[^9]Parameter window A: Output (Valve drive, thermoelectric (PWM))
All settings for the output A / B as valve drive, thermoelectric (PWM) are made in this parameter window.

| Note |
| :--- | :--- |
| This parameter window is visible for the products FCA/S 1.1.1.2 and FCA/S 1.1.2.2. |

These parameters appear if the option Valve drive, thermoelectric (PWM) has been selected for the output.
For further information see: Pulse width modulation (PWM), p. 249.

1. General 1. Manual operation	Type of valve drive, de-energized	Closed	\checkmark
4 Outputs A...H	Reaction after bus voltage recovery	Unchanged	-
Enable output A...D			
A: Output	Valve is	Heating valve	\checkmark
Function			
C/D: Output	Control value is received as	Byte	\checkmark
Function			
Enable output E...H	Convert control value to	PWM (pulse width modulation)	-
E, F, G: Fan	Cycle time of PWM	180	\square
Status messages	in $s[10 . .6,000]$		\square
Automatic control			
1) Inputs a...c	Opening time of valve drive in 5 [10...6,000]	180	-
	Closing time of valve drive in $5[10 . . .6,000]$	180	\square
	Monitoring control values e.g. thermostat	No	\checkmark

Type of valve drive, de-energized
Options: $\frac{\text { Closed }}{\text { Open }}$
This parameter determines the function of the valve drive.

```
Note
De-energized closed valve drives (N.C.)
If no current flows in the valve drive, the valve is closed. If current flows in the valve drive, the valve opens.
De-energized opened valve drives (N.O.)
If no current flows in the valve drive, the valve opens. If current flows in the valve drive, the valve then closes.
```


Reaction after bus voltage recovery

Options: Unchanged
Select

This parameter determines the reaction of the output at bus voltage recovery.

- Unchanged: The last valve control is restored.
- Select: A value is determined. Active priorities override the parameterized control.

Dependent parameter:
Control value in \% [0...100]
Options: $\quad \underline{\ldots} . .100$
This parameter determines the control of the output after bus voltage recovery in \%.

Note

If the control value is received via a 1 bit value, a value must be entered in the parameter Cycle time of PWM in s [10...6,000]. This value is used as the basis for calculation of the output control at bus voltage recovery in \%.

Note

Control value in \%

The actual valve setting in \% may diverge from the set value for control in \% depending on the ambient conditions, e.g. room temperature, valve drive used, water pressure in the heating/cooling system, valve, etc
The set value in the parameter Control value in \% is based on the parameter Cycle time of $P W M$. The output is controlled accordingly depending on the setting.

Example parameter settings:
Control value in \% [0...100]: 70\%
Cycle time of PWM in s [10...6,000]: 60 s
With these settings, the output switches ON for 42 s and OFF for 18 s ($60 \mathrm{~s} \times 0.7=42 \mathrm{~s}$).

Quick heat up/cool down

An additional time is determined that is dependent on the change in the control value and the closing and opening times of the valve drive. This additional time extends the switch on and off duration after a change in the control value. Accordingly, the new control value is achieved quickly.

Valve is

Options: $\quad \frac{\text { Heating valve }}{\text { Cooling valve }}$

This parameter determines whether the valve is defined as a heating valve or cooling valve.

Note
 In the option 2 control values/2 valves (with or without switching object), one valve must be parameterized as a heating valve and the other valve as a cooling valve, according to the installation conditions.

Control value is received as

Options:
Byte

Bit
This parameter defines how the sent control value is received by the room thermostat. Depending on the selection, the communication object for the Control value, page 211 (1 bit or 1 byte) is displayed.

- 1-bit: The control value is sent by the room thermostat as a PWM signal or a two-step signal (ON/OFF). The parameter for setting the PWM cycle time is displayed (PWM = pulse width modulation).
The following message appears:
Set cycle time PWM, open/closing time for contr. value of valve drive in \%

At recovery, controller fault, forced oper. and characteristic curve
\leftarrow Note

Note

Pulse width modulation

With pulse width modulation, the valve is operated as with 2-point control exclusively in the positions fully opened and fully closed. In contrast to a 2-point control, the position is not controlled via limit values, but rather by the calculated control value, similar to continuous control.
The control value is fixed for a timed cycle and recalculated for the switch on duration of the output. The control value 20% at a cycle time of 15 minutes, for example, will be recalculated for a switch on duration of three minutes.
The control value 50% results in a switch on duration of 7.5 minutes.
Using pulse width modulation, a relatively exact control of the temperature is achieved without high levels of overshoot. Simple thermoelectric valve drives can be used.

- 1-byte: The control value is sent by the room thermostat as a continuous positioning telegram (0...255).

Note

1 byte control

For 1 byte control, a value of $0 \ldots 255$ (corresponds to $0 \% \ldots 100 \%$) is preset by the room thermostat. This process is also known as continuous control. At 0\%, the output switches OFF (the valve is closed); at 100%, the output switches ON (the valve is fully opened).

Selection of option 1-byte:
Dependent parameter:

Convert control value to

Options: \quad PWM (pulse width modulation) OPEN/CLOSE-Signal

This parameter determines how the received control value ($0 . . .255$) can be processed. The control value can be converted to a PWM signal or an ON/OFF signal.

- PWM (pulse width modulated): With this option, the continuous control value is converted to a PWM signal. The parameter for entering the PWM cycle time is displayed.
- OPEN/CLOSE-Signal: With this option, the continuous control value is converted to an OPEN or CLOSE signal from a defined parameterized value. The parameter for entering the threshold value is displayed.

OPEN at control value
 greater or equal in \% [1...100]

Options: 1... 100
The output switches ON continuously if the value parameterized here is greater than or equal to the received control value. If a control value that is less than the parameterized value is received, the output switches OFF.

Cycle time of PWM
in s [10...6,000]
Options: 10...180...6,000
For setting the cycle time for the pulse width modulation.
If the control value is received via a 1 bit value, this parameter serves as the basis for calculation of the control of the output with

- Bus voltage failure/recovery
- Forced operation
- Fault of the control value (control fault)
- Characteristic adjustment

Opening time of valve drive

in s [10...6,000]
Options: 10...180...6,000
With this parameter, a time is set in seconds that the connected valve requires to move from position 0\% (valve closed) to position 100\% (valve fully open).

Note

The time should be taken from the technical data of the valve, and it corresponds with the total runtime.

Closing time of valve drive
in s [10...6,000]
Options: $10 \ldots 180 \ldots 6,000$
With this parameter, a time is set in seconds that the connected valve requires to move from position 100% (valve open) to position 0% (valve fully closed).

Note

The time should be taken from the technical data of the valve, and it corresponds with the total runtime.

Monitoring control values

e.g. thermostat

Options: \quad No Yes

This parameter is activated for monitoring cyclic sending of the control value, e.g. of the room thermostat. The reaction to the absence of a control value is defined in monitoring of the control value. This ensures emergency operation.

- Yes: The communication object Control value, page 211, is enabled.

Dependent parameters:
Monitoring time
in s [30...65,535]
Options: $\quad 30 \ldots$ 120...65,535
This parameter sets the time used to monitor the telegrams on the input control values:
Communication objects Control value, ON/OFF, if the option Bit has been selected for the parameter Control value is received as, or Control value, continuous (PWM) 1, if the option Byte has been selected for the parameter Control value is received as.

If a control value is not received within the parameterized time, a malfunction or a defective room thermostat is the cause.

The reaction of the output to a control value not received can be defined in the following parameters.

Send object value

"Control value fault"
Options: No, update only
On change
After request
After a change or request

- No, update only: The object value is updated but not sent.
- On change: The object value is sent when a change occurs.
- After request: The object value is sent when a request occurs.
- After a change or request: The object value is sent when a change or request occurs.

Control value after control fault

Options:
No
Yes
This parameter defines the control value with a control fault.

- No: No control value is set.
- Yes: A value is set.

Dependent parameter:

Control value in \% [0...100]
Options: $\quad \underline{0} . .100$
This parameter determines the control value in percent used to control the output in the event of a control fault.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window AB: Output (valve drive, motor-driven (3-point))
All settings for the output A / B as valve drive, motor-driven (3-point) are made in this parameter window.

```
Note
This parameter window is visible for the products FCA/S 1.1.1.2 and FCA/S 1.1.2.2.
```

These parameters appear if the option Valve drive, motor-driven (3-point) has been selected for the outputs.

1. General \| Manual operation	Reversing time	500 ms	\checkmark
4 Outputs A...H	Reaction after bus voltage recovery	Unchanged	\checkmark
Enable output A....D			
A/B: Output	Valve is	Heating valve	-
Function			
C/D: Output	Switch on time for valve drive from 0 to 100% in s [$10 \ldots, 6,000]$	180	$\stackrel{\square}{\square}$
Function			
Enable output E...H	Automatic adjustment of the valve drive	No	\checkmark
E, F, G: Fan			
Status messages	Monitoring control values e.g. thermostat	No	-
Automatic control			
1) Inputs a...c			

Reversing time

Options: $\quad 100,300, \underline{500}, 700,1,000 \mathrm{~ms}$
This parameter defines the reversing delay time of the valve drive

```
Note
The technical data of the valve drive must be observed!
```


Reaction after bus voltage recovery

Options: Unchanged
Select

This parameter determines the reaction of the output at bus voltage recovery. After bus voltage recovery, a Reference adjustment of the valve drive is always carried out. After this, the current control value is controlled.

- Unchanged: The last valve control is restored.
- Select: A value is determined. Active priorities override the parameterized control.

Dependent parameter:
Control value in \% [0...100]
Options: $\underline{0}$.. 100
This parameter determines the control of the output after bus voltage recovery in \%.

Valve is

Options: $\quad \frac{\text { Heating valve }}{\text { Cooling valve }}$
This parameter determines whether the valve is defined as a heating valve or cooling valve.

Switch on time for valve drive
 from 0 to 100% in s [10...6,000]
 Options: 10...180...6,000

This parameter sets the time that the output switches on to move the valve drive or the valve from 0% (closed) to position 100\% (fully opened).
The time required should be taken from the technical data of the valve

Automatic adjustment of the valve drive

Options:
$\frac{\mathrm{No}}{\mathrm{Yes}}$
If the control value 0% is only rarely achieved in ongoing operation, this can lead to inaccuracies in positioning control. This parameter activates automatic adjustment to move the valve drive in a defined manner to the 0% position. This serves as the basis for position adjustment.

Selection of option Yes:
Dependent parameter:

Number of changes until adjustment

Options: 30...500...65,535
This parameter determines the number of valve controls that are to be triggered after automatic adjustment.

Note

Automatic adjustment/reference adjustment

The adjustment counter is incremented by 1 at the end of a drive adjustment.
If the parameterized number of valve controls is reached, the reference adjustment is started. The closed position (independent of the characteristic curve) is then exceeded by 5% of the parameterized switch on time for the control value, based on the last control value (at least 1 second, no more than 60 seconds). This function cannot be interrupted! Thereafter, the currently calculated valve position is approached, and the adjustment counter is set to zero.
The following events trigger a reference adjustment.

- Bus voltage recovery
- ETS rese
- Download
- Reset of a remedied fault (via button or via communication object Reset fault)
- Long button push (>2s) on one of the buttons B or D triggers a valve reference movement for the valves

Reaction on control value 0\%

With a control value of 0%, the valve drive (independent of the characteristic curve) is fully closed.
The closed position (independent of the characteristic curve) is then exceeded by 5% of the parameterized switch on time for the control value, but not for longer than 1 minute.

Monitoring control values

e.g. thermostat

Options:
$\frac{\mathrm{No}}{\mathrm{Yes}}$
This parameter is activated for monitoring cyclic sending of the control value, e.g. of the room thermostat. The reaction to the absence of a control value is defined in monitoring of the control value. This ensures emergency operation.

- Yes: The communication object Control value, page 211, is enabled.

Dependent parameters:

Monitoring time

in s [30...65,535]
Options: $30 \ldots 120 \ldots 65,535$
This parameter sets the time used to monitor the telegrams on the input control values: Communication objects Control value, cont. (3-point).

If a control value is not received within the parameterized time, a malfunction or a defective room thermostat is the cause.

The reaction of the output to a control value not received can be defined in the following parameters.

Send object value

"Control value fault"
Options: No, update only
On change
After request
After a change or request

- No, update only: The object value is updated but not sent.
- On change: The object value is sent when a change occurs.
- After request: The object value is sent when a request occurs.
- After a change or request: The object value is sent when a change or request occurs.

Control value after control fault

Options:
$\frac{\text { No }}{\text { Yes }}$

This parameter defines the control value with a control fault.

- No: No control value is set.
- Yes: A value is set.

Dependent parameter:

Control value in \% [0...100]
Options: \quad 0... 100
This parameter determines the control value in percent used to control the output in the event of a control fault.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Parameter window A: Output (valve drive, analog (0... 10 V))
All settings for Valve drive analog ($0 . . .10 \mathrm{~V}$) are made in this window.

| Note |
| :--- | :--- |
| This parameter window is visible for the products FCA/S 1.2.1.2 and FCA/S 1.2.2.2. |

Control voltage with closed valve

Options: $\quad \underline{0} \mathbf{v o l t s}$
10 volts
This parameter determines the function of the valve drive.

Note

De-energized closed valve drives (N.C.)
If no current flows in the valve drive, the valve is closed. If current flows in the valve drive, the valve opens.

De-energized opened valve drives (N.O.)
If no current flows in the valve drive, the valve opens. If current flows in the valve drive, the valve then closes.

Reaction after bus voltage recovery

Options: Unchanged
Select
This parameter determines the reaction of the output at bus voltage recovery.

- Unchanged: The last valve control is restored.
- Select: A value is determined. Active priorities override the parameterized control

Dependent parameter:
Control value in \% [0...100]
Options: $\quad \underline{\ldots} . .100$
This parameter determines the control of the output after bus voltage recovery in \%.

Valve is

Options: Heating valve
 Cooling valve

This parameter determines whether the valve is defined as a heating valve or cooling valve.

Monitoring control values

e.g. thermosta

Options: $\quad \frac{\mathrm{No}}{\mathrm{Yes}}$
This parameter is activated for monitoring cyclic sending of the control value, e.g. of the thermostat. The reaction to the absence of a control value is defined in monitoring of the control value. This ensures emergency operation.

- Yes: The communication object Control value, page 211, is enabled.

Dependent parameters:

Monitoring time

in s [30...65,535]
Options: $30 \ldots$ 120...65,535
This parameter sets the time used to monitor the telegrams on the input control values: Communication objects Control value, ON/OFF, if the option Bit has been selected for the parameter Control value is received as, or Control value, continuous (PWM) 1, if the option Byte has been selected for the parameter Control value is received as.

If a control value is not received within the parameterized time, a malfunction or a defective room thermostat is the cause.

The reaction of the output to a control value not received can be defined in the following parameters

Send object value

"Control value fault"
Options: No, update only
On change
After request
After a change or request

- No, update only: The object value is updated but not sent.
- On change: The object value is sent when a change occurs.
- After request: The object value is sent when a request occurs
- After a change or request: The object value is sent when a change or request occurs.

Control value after control fault

Options:
$\frac{\text { No }}{\text { Yes }}$

This parameter defines the control value with a control fault.

- No: No control value is set.
- Yes: A value is set.

Dependent parameter:

Control value in \% [0...100]
Options: \quad 0... 100
This parameter determines the control value in percent used to control the output in the event of a control fault.

Parameter window Function

In this parameter window, various functions for each output can be activated. The functions are identical for the operation modes Valve drive, thermoelectric (PWM), Valve drive, motor-driven (3-point) and Valve drive, analog (0... 10 V).

Enable function "Priority and safety operation"

Options:

$\frac{\mathrm{No}}{\mathrm{Yes}}$

- Yes: The Parameter window Security, page 119, is enabled.

Enable communication object
"Status Control value" 1-bit/byte
Options:
$\frac{\mathrm{No}}{\text { Yes }}$
This parameter enables the communication object Status Control value. The control status of the output is sent via this communication object.

- Yes: The communication object Status Control value, page. 212, is enabled

Dependent parameters:

Send object value

Options: No, update only On change After request After a change or request

- No, update only: The object value is updated but not sent.
- On change: The object value is sent when a change occurs.
- After request: The object value is sent when a request occurs.
- After a change or request: The object value is sent when a change or request occurs.

Data type 1-bit/byte

Options: Bit
Byte
This parameter defines the data type of the communication object Status Control value.

- 1 bit: The following parameter appears:

Object value with control > 0
Options:

If the object value at control is greater than 0, a 1-bit telegram is sent using the value defined here.

- 1-byte: The status of the control is sent via a 1-byte telegram.

Enable valve purge

Options: $\quad \frac{\mathrm{No}}{\mathrm{Y}}$

Yes

- Yes: The 1-bit communication object Activate purge, page 213, is enabled.

Note
If purging is interrupted by higher priorities, e.g. forced operation, the higher priority action is carried out. If the interruption duration is longer than the period of valve purge, the valve purge will no longer be executed, after the higher priority has been rescinded.
The control for valve purging is always the control value 100%. A correspondingly matched correction curve is taken into consideration.

Selection of option Yes:

Dependent parameters:

Enable communication object

"Status valve purge" 1-bit
Options
$\frac{\text { No }}{\text { Yes }}$
The status of the valve purge is displayed via this communication object.

- Yes: The 1-bit communication object Status Valve purge, page 214, is enabled.

Dependent parameter:

Send object value

Options: \quad No, update only
On change
After request
After a change or request

- No, update only: The object value is updated but not sent.
- On change: The object value is sent when a change occurs.
- After request: The object value is sent when a request occurs.
- After a change or request: The object value is sent when a change or request occurs.

Duration of valve purge

in min. [1...255]
Options: 1...10... 255
This parameter defines the time duration for the valve purge. During this time, the valve is fully opened. When the time has elapsed, the state before the purge is re-established.

Note

The opening time of the valve drive must be considered when entering the purge time.

Automatic valve purge

Options:
$\frac{\mathrm{No}}{\mathrm{Yes}}$

Selection of option Yes.
Dependent parameters:

Purge cycle in weeks

[1...12]
Options: $\quad 1 \ldots \underline{6} \ldots 12$
The internal automatic purge timer starts directly after a download. The time is reset each time it is downloaded.

The time is reset as soon as purging is completed. This can occur either through automatic purging or via the communication object Trigger purge.

Note

Purging can also be triggered via the bus with the communication object Trigger valve purge.

After bus voltage recovery and download, the automatic purging cycle is restarted. The time before bus voltage failure is not considered.
The automatic purging cycle will be restarted if Purge cycle in weeks [1...12] is changed after the download.

Reset purge cycle from

control value in \% [1...99]
Options: 1... 99
Hereby, the purge cycle is reset to the set control value if it is exceeded.

> | Note |
| :--- |
| The purging cycle time is restarted if automatic valve purge has been activated at start-up |
| of the device. |
| The purging cycle time will be restarted at the end of the actual purging period. The |
| parameterized period of valve purging is included here. |
| The entry of the opening time for the valve drive must be considered when entering the |
| period for valve purge. |
| The purging cycle with an active automatic valve purge is reset and restarted if: |
| - A manual valve purge is triggered via the communication object Activate purge. |
| - The parameterized value (under Reset purge cycle from...) is exceeded. The purging |
| cycle is only restarted once the parameterized value is reached or exceeded. |

Enable characteristic curve

Options: No
Yes

- Yes: The Parameter window Characteristic curve, page 121, is enabled.

Parameter window Security

The function Security is identical for operation modes Valve drive, thermoelectric (PWM), Valve drive, motor-driven (3-point) and Valve drive, analog ($0 . .10 \mathrm{~V}$). The parameter window is enabled if the parameter Enable function "Priority and safety operation" is selected with the option Yes in the Parameter window Function, page 115.

| General |
| :--- | :--- |
| Manual operation |
| Outputs A...H |
| Enable output A...D |
| A: Output |
| Function |\quad Safety priority 1

Safety priority 1

Safety priority 2

Safety priority 3

Options:	$\frac{\text { Inactive }}{\text { Block }}$
	Forced operation

For each of the three priority stages ($1=$ highest; $3=$ lowest priority), the output can be forcibly operated or disabled with activated function Security.

- Forced operation: The communication object Priority*, Forced operation is enabled. Using forced operation, the operation of the output is blocked and the output assumes a defined state. An operation is not possible until after forced operation is rescinded.
- Block: The communication object Priority ${ }^{*}$, Block is enabled. During blocking, the output remains in its present state and is blocked. A higher priority interrupts the block. When the higher priority is rescinded, the value of the higher priority is retained on the output. An operation is not possible until after the block is rescinded.
* Priority = Priority 1,2 or 3.

Dependent parameters:

Control value on forced operation

in \% [0...100]

Options: $\underline{0} \ldots 100$
With active forced operation, the output is controlled with the control value defined here and the operation is blocked

Note

This parameter is only enabled with forced operation. All the following parameters are enabled and identical for the function Forced operation as well as Block.

Trigger with object value

Options:
$\frac{0}{1}$

- $0 / 1$: Forced operation or blocking is triggered when a telegram with the value set here is received.

Control period in seconds

[1...65,535], 0 = inactive
Options: $\underline{0}$...65,535
This parameter defines the cyclic monitoring time of the function Security. Here the receipt of a telegram from a device that sends cyclically is monitored. If a telegram is not received within the parameterized time, the output - depending on the function Security set beforehand - is forcibly operated or blocked. If the communication object Priority*, Forced operation or Priority*, Block receives a telegram that does not correspond with the value set under Trigger with object value, the monitoring time is reset and restarted.

- 0 : Cyclical monitoring is deactivated.

Note

The monitoring time should be at least twice as large as the cyclic transmission time of the sensor. So that absence of a signal, e.g. due to a high bus load, the function Safety (Alarm) is not immediately triggered.

Object value "Priority*,
Forced operation" after download

Object value "Priority*,Block"

after download

Options: Unchanged
0
1

- Unchanged: After a download, the communication object has the same value as before a download.
- 1/0: After a download, the parameterized function (Forced operation or Block) is activated (value $=1$) or deactivated (value $=0$).
* Priority $=$ Priority 1, 2 or 3 .

The characteristic curve is identical for operation modes Valve drive, thermoelectric (PWM), Valve drive, motor-driven (3-point) and Valve drive, analog ($0 . . .10 \mathrm{~V}$). The parameter window is enabled if the parameter Enable characteristic curve has been selected with the option Yes in the Parameter window Function, page 115.

1) General	Value pair 1 Control value in \% [0...100]	0	
1) Manual			\pm
4 - H			
4 Outputs A...H			
Enable output A...D	Control value in \% [0...100]	0	\pm
A: Output			
Function	Value pair 2	100	\pm
Characteristic curve	Control value in \% [0...100]		
C/D: Output	Control value in \% [0...100]	100	\pm
Enable output E...H	Enable value pair 3	No	-
E, F, G: Fan			
Status messages			
Automatic control			
1) Inputs a...c			

In this parameter window, an adaptation of the valve drive to the valve that is employed can be undertaken using the characteristic curve adjustment. A characteristic curve adjustment optimizes the control behavior of the system if required.

Important

A characteristic curve adjustment should only be undertaken in exceptional cases, and extensive knowledge in heating, air-conditioning and ventilation systems is a prerequisite.

The following must be considered with the characteristic curve adjustment:

- The value pairs can be entered in any sequence. They are sorted in ascending order of the control value in the device, and intermediate values are interpolated.
- If no value pair has been entered for the control value 0%, the valve position of the first value pair applies for all control from 0 to the first value pair.
- If no value pair has been entered for the control value 100%, the control values from the last value pair up to 100% applies for the last value pair.
- The parameter Cycle time of the PWM, see Parameter window A: Output (Valve drive, thermoelectric (PWM)), page 99ff., serves as the basis for calculation of controlling the output for characteristic curve adjustment, even if the characteristic curve is processed via a 1 -bit value. This parameter is only available in operation mode Valve drive, thermoelectric (PWM).

Note

Value pairs with the same control value can cause a non-defined characteristic curve. This fact must be considered during parameterization.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

For example

Value pair 1 (VP1)			Value pair 2 (VP2)	
Control value in \% [0...100]	10		Control value in \% [0...100]	80
Control value in \% [0...100]	40		Control value in \% [0...100]	20

Implemented characteristic curve:

Control value	Control
$0 \ldots 10 \%$	40%
20%	
30%	37%
40%	34%
50%	31%
60%	29%
70%	26%
	23%
$80 \ldots 100 \%$	20%

Value pair x
Control value in \% [0...100]
Options: $\underline{0} . .100$

Control value in \% [0...100]
Options: $\underline{0} . .100$
The possibility of activating other value pairs allows different curve characteristics to be realized.
A total of four value pairs can be set.

Attention

A parameterization of the value pair with the same control value leads to an undefined state and should be strictly avoided. Otherwise it can lead to destruction of the HVAC system.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

The setting options of valve outputs B, C and D or C / D do not differentiate from those of output A or A / B
The descriptions of the parameter setting options and the adjustable communication objects for outputs B C and D or C/D are described in Parameter window A: Output (Valve drive, thermoelectric (PWM)), page 99 ff., Parameter window AB: Output (valve drive, motor-driven (3-point)), page 106 ff . and Parameter window A: Output (valve drive, analog ($0 . .10 \mathrm{~V}$), , page 111 ff

Parameter window Enable output E...H

1. General 1) Manual operation	Outputs E F G	Enabled as fan	\checkmark
4 Outputs A...H	Output H	Block	\checkmark
Enable output A...D			
A/B: Output			
Function			
C/D: Output			
Function			
Enable output E...H			
E, F, G: Fan			
Status messages			
Automatic control			
1) Inputs a...c			

Outputs E F G

Options: Enabled as switch actuators Enabled as fan

Outputs E, F and G can be programmed as switch actuators and as fans.

- Enabled as switch actuators: Outputs E, F and G appear as individual parameters and can be enabled individually.

Output E

Output F

Output G

Options: Block
Enabled

- Block: Output E, F, G is blocked/hidden. No communication objects are visible.
- Enabled: The parameter window E, F, G: Output appears. Dependent communication objects become visible.

All parameters and their settings for the outputs E, F, G do not differentiate from those of output H, see Parameter window H: Output, page 163.

- Enable as fan: The parameter window E, F, G Fan appears.

Output H

Options: Block Enabled

- Block: Output H is blocked/hidden. No communication objects are visible.
- Enabled: The parameter window H: Output appears. Dependent communication objects become visible.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window E, F, G: Fan (Multi-level)
All settings for the Multi-level fan are made in this parameter window.

1. General 1 Manual operation	Fan type	Multi-level	-
4 Outputs A...H	Limit fan speeds to 2	No	-
Enable output A...D			
A/B: Output	Fan operating mode (note technical data of fan!)	Changeover	\checkmark
Function			
C/D: Output	Delay between speed switchover in ms [50...5,000]	500	\square
Function			\square
Enable output E...H			
E, F, G: Fan	Fan speed on bus voltage failure	Unchanged	\checkmark
Status messages	Fan speed on bus voltage recovery	Unchanged	-
Automatic control		Unchanged	\checkmark
1. Inputs a...c	Enable communication object	No	-
	"Forced operation" 1-bit		
	Enable automatic operation	Yes	-
	Enable direct operation	No	-
	Set startup/run-on	No	-

Fan type

Options:
Multi-level
One-level
This parameter defines the fan type which is to be controlled.

- Multi-level: Controls a fan with up to three speeds
- One-level: Controls a fan with one speed.

Limit fan speeds to 2

Options:
$\frac{\text { No }}{Y}$
Yes
The fan speeds can be limited to two here. The following settings are the same as those for a three-speed fan, except that they apply only to two speeds

- No: A three-speed fan is controlled.
- Yes: A two-speed fan is controlled via fan speeds 1 and 2 . Fan speed 3 is non-functional.

Fan operating mode

 (note technical data of fan!)Options: $\quad \frac{\text { Changeover }}{\text { Step switch }}$

Control of the fan is set with this parameter. The mode of fan control should be taken from the technical data of the fan.

How does changeover switching work?

With changeover switch control, only the corresponding output of the assigned fan speed is switched on.

The delay time between the speed switchover and a minimum dwell time can be parameterized. The latter is only active in automatic operation.

How does step switching work?

With step switch control, it is impossible for the fan to switch on erratically or suddenly. The individual fan speeds are activated consecutively (outputs switched on) until the required fan speed is reached.

The parameterized delay time between two fan speeds has the effect that the current fan speed must be switched on for at least this time before the next speed is switched on. The parameterized minimum dwell time has the same effect as a changeover switch, i.e. it is only active in automatic mode and is added to the switchover delay.

- Changeover: Selection of option Changeover:

Dependent parameter:
Delay between speed switchover in ms [50...5,000]
Options: $50 \ldots 500 \ldots 5,000$
A switchover delay can be programmed with this parameter. This time is a fan-specific factor and it is always taken into account.

Fan speed on bus voltage failure

Options: $\frac{\text { Unchanged }}{\text { OFF }}$

- Unchanged: The fan's speeds remain unchanged.
- OFF: The fan is switched off.

Fan speed on bus voltage recovery

Options: Unchanged
OFF
1
2
3

- Unchanged: The fan's speeds remain unchanged.
- OFF: The fan is switched off.
- 1, 2 or 3: The fan switches to fan speed 1, 2 or 3.

Attention

The device is supplied ex-works with a default setting (factory default). This ensures that the fan setting is switched off when the bus voltage is applied to the relay for the first time. Thus, damage to the device due to unintentional switch on during transport, e.g. due to vibration, is avoided.
It is advisable to apply a bus voltage before connecting the fan in order to assign it a defined switch state. This eliminates the possibility of an incorrect contact setting destroying the fan.

Enable communication object

"Forced operation" 1-bit
Options: \quad No $\frac{\mathrm{No}}{\mathrm{Yes}}$

Through forced operation, for example, recirculation, valve OFF and fan ON can be implemented.

- Yes: The 1-bit Forced operation communication object is enabled.

Dependent parameters:

Forced operation on object value

Options: $\quad \underline{0}$
$\frac{0}{1}$

- 0 : Forced operation is activated by a telegram with value 0 .
- 1: Forced operation is activated by a telegram with value 1.

Note

During forced operation the settings set in Automatic control are ignored. Automatic control is updated after forced operation has been rescinded.

Important

Forced operation remains active until:

- the complementary set values are sent.
- the assignment is changed;
- the fan type is changed.

Forced operation is not deactivated by a download of the application, in which the fan type and the respective group addresses are retained.
Forced operation is reset if an ETS reset has occurred.

Limitation on forced operation

Options: $\frac{3,2,1, \text { OFF }}{\text { Unchanged }}$
Unchanged
OFF
1
1, OFF
2
2, 1
2, 1, OFF
3
3, 2
3, 2, 1
This parameter sets which fan speed is set, or may not be over/undershot, when forced operation is active.

- No limitation active: Everything is possible
- Unchanged: The state is retained.
- OFF: Off
- 1: Limited to speed 1.*
- 1, OFF: limited to speed 1 and off
- 2: Limited to speed 2.*
- 2, 1: limited to speeds 2 and 1.
- 1, OFF: limited to speed 1 and off.
- 3: Limited to speed 3.*
- 3, 2: limited to speeds 3 and 2 .
- 3, 2, 1: limited to speeds 3,2 and 1
* The control value is ignored.

Enable automatic operation

Options: No Yes

- Yes: Automatic operation is enabled. Furthermore the Parameter window Automatic control, page 135 appears.

Enable direct operation
Options:
$\frac{\mathrm{No}}{\mathrm{Y}}$
Yes

- Yes: Direct operation is enabled. Furthermore the Parameter window Direct operation, page 144 appears.

Set startup/run-on

Options:

- Yes: The function Set startup/run-on is enabled and the Parameter window Startup/Run-on, page 146 appears.

This is the parameter window where status messages are defined.

Enable communication objects
 "Status Fan speed x" 1-bit

Options:

The setting of a fan speed is displayed via these communication objects. You can parameterize whether or not the status of a current or required fan speed is displayed.

- Yes: Three 1 bit communication objects, Status Fan speed $x(x=1 \ldots 3)$ are enabled

Dependent parameters:

Meaning

Options: Current fan speed
Required fan speed
This parameter defines which status - Current fan speed or Required fan speed - is displayed.

What is current fan speed?

The Current fan speed is the speed at which the fan is actually operating.

What is required fan speed?

The Required fan speed is the fan speed which has to be reached, e.g. when the transition and dwell times have elapsed.

Note

The limitations are included in this observation, i.e. if a limitation allows only fan speed 2 , the fan is operating at fan speed 2, and, for example, a telegram to switch up is received, the required fan speed remains at 2 , as fan speed 3 cannot be reached due to the limitation.

Send object values

Options: No, update only
On change
After request
After a change or request

- No, update only: The status is updated but not sent.
- On change: The status is sent when a change occurs.
- After request: The status is sent when a request occurs.
- After a change or request: The status is sent on a change or a request.

Enable communication object
"Status Fan speed" 1-byte
Options:
$\frac{\mathrm{No}}{\mathrm{Yes}}$
This status byte defines the figure value of the fan speed.
This display can be differentiated from Required fan speed by selecting Current fan speed. Initially, the switchover times, dwell times and start-up phase must be completed before the required fan speed is reached.

- Yes: The communication object Status Fan speed is enabled.

Dependent parameters:

Meaning 1 byte

Options: Current fan speed
Required fan speed
This parameter defines which status - Current fan speed or Required fan speed - is displayed.

What is current fan speed?

The Current fan speed is the speed at which the fan is actually operating.

What is required fan speed?

The Required fan speed is the fan speed which has to be reached, e.g. when the transition and dwell times have elapsed.

Note

The limitations are included in this observation, i.e. if a limitation allows only fan speed 2, the fan is operating at fan speed 2 , and, for example, a telegram to switch up is received, the required fan speed remains at 2 , as fan speed 3 cannot be reached due to the limitation.

Send object value

Options: No, update only
On change
After request
After a change or request

- No, update only: The status is updated but not sent.
- On change: The status is sent when a change occurs.
- After request: The status is sent when a request occurs.
- After a change or request: The status is sent on a change or a request.

Enable communication object

"Status byte fan" 1-byte
Options: No Yes

From this status byte, the states heating, cooling, automatic, forced operation and the four limitations are indicated directly via a 1 bit coding.
For further information see: Status byte fan, p. 258

- Yes: The communication object Status byte fan is enabled.

Dependent parameter:

Send object value

Options: No, update only
On change
After request
After a change or request

- No, update only: The status is updated but not sent.
- On change: The status is sent when a change occurs.
- After request: The status is sent when a request occurs
- After a change or request: The status is sent on a change or a request.

Enable communication object
"Status Fan On/Off" 1-bit
Options: $\quad \frac{\mathrm{No}}{\mathrm{Yes}}$
This parameter enables the communication object Status Fan ON/OFF.
Some fans initially need an ON telegram before they are set to a fan speed from the OFF state. This ON telegram has effect on a main switch which has to be switched on. This requirement can be implemented with any switch output controlled via the Status Fan communication object. The corresponding communication object Switch of the switch actuator should be connected with the Status Fan communication object.

Selection of option Yes:
Dependent parameter:

Send object value

Options: No, update only
On change
After request
After a change or request

- No, update only: The status is updated but not sent.
- On change: The status is sent when a change occurs.
- After request: The status is sent when a request occurs.
- After a change or request: The status is sent on a change or a request.

The following parameter only becomes visible if the option Yes has been selected in the Enable automatic operation parameter in the Fan parameter window.

Enable communication object

"Status Automatic" 1-bit
Options:
$\frac{\mathrm{No}}{\mathrm{Y}}$

This parameter enables the communication object Status Automatic.
Telegram $\quad 1=$ Automatic operation active
value:
0 = Automatic operation inactive
Selection of option Yes.
Dependent parameter:

Send object value

Options: No, update only
On change
After request
After a change or request

- No, update only: The status is updated but not sent.
- On change: The status is sent when a change occurs.
- After request: The status is sent when a request occurs.
- After a change or request: The status is sent on a change or a request.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window Automatic control (Multi-level)

This parameter window is visible if the option Yes has been selected for the parameter Enable automatic operation in the Parameter window E, F, G: Fan (Multi-level), page 126.

This is the parameter window where you define the threshold values for switchover of the fan speed. You can also enable limitations here.

Important

The device evaluates threshold values in ascending order, i.e. first it checks the threshold value for Off -> Fan speed 1, then Fan speed 1 -> Fan speed 2, and so on.
Proper functionality is only assured if the threshold value for OFF -> Fan speed 1 is less than that for Fan speed 1 -> Fan speed 2 and this is less than Fan speed 2 -> Fan speed 3, etc.

Object value "Automatic On/Off" switch on to the automatic
Options:
$\frac{1}{0}$
This parameter defines how the device should react to a telegram.

- 1: Automatic is activated by a telegram with value 1.
- 0 : Automatic is activated by a telegram with value 0 .

Threshold value 0 <-> 1
in \% [1...100]
Options: 1...10... 100
Here the threshold value, at which switch on of fan speed 1 occurs, is set. If the value in the communication object Control value is greater than or equal to the parameterized threshold value, fan speed 1 is switched on. If the value is smaller, then it is switched off.

Threshold value 1 <-> 2
in \% [1...100]
Options: 1...30... 100
This sets the threshold value at which switchover to fan speed 2 occurs. If the value in the communication object Control value is greater than or equal to the parameterized threshold value, switchover to fan speed 3 occurs.

Threshold value 2 <-> 3
in \% [1...100]
Options: 1...ㅡ… 100
This sets the threshold value at which switchover to fan speed 3 occurs. If the value in the communication object Control value Heating or Control value Cooling is greater than or equal to the parameterized threshold value, switchover to fan speed 3 occurs.

Hysteresis threshold
value in \% +/- [0... 20 \%]
Options: $\quad 0 .$. 5... 20
This sets a hysteresis at which switchover to the next fan speed occurs. The hysteresis applies for all three threshold values.

The setting 0 causes immediate switching without hysteresis.
The entered percentage value is directly added to or subtracted from the percentage value of Threshold value speed x. The result is a new upper or lower threshold value.
Switch threshold top (switch on) $=$ threshold value + hysteresis
Switch threshold bottom (switch off) = threshold value - hysteresis

Example: Three-speed fan, fan control with hysteresis

Using hysteresis avoids continual switching between the fan speeds caused by fluctuating input signals around the threshold value.

Important

How does the fan react if the switch thresholds overlap as a result of using hysteresis?

1) Hysteresis defines the speed at which the speed change occurs.
2) If the speed transition occurs, the new speed is determined using the control value and the set switch thresholds. The hysteresis is not taken into account.
Control values are rounded to whole percentages by the device.
3) A control variable with the value 0 always results in speed 0 .

An example:
Parameterized: Threshold value OFF <-> speed $1=10 \%$
Threshold value speed $1<->$ speed $2=20 \%$
Threshold value speed 2 <-> speed $3=30 \%$
Hysteresis 15 \%
Behavior when ascending from speed 0 :

- Speed 0 transition at 25% ($\geq 10 \%$ + hysteresis).
- The new speed is 2 (25% is between 20% and 30%).
- Accordingly, speed 1 is omitted.

Behavior when descending from speed 3 :

- Speed 3 transition at 14% (<30 \% - hysteresis).
- The new speed is 1 (15% is between 10% and 20%).
- Accordingly, speed 2 is omitted.

Minimum dwell period in fan speed
 in s [0...65,535]

Options: $\underline{0}$...65,535
This parameter defines the dwell time for a fan speed of the fan until it switches to the next higher or lower fan speed. The input is made in seconds.

A setting of 0 means instant switching. Minimum relay switching times can be found in Technical data, page 11 ff .

The dwell time is only taken into account in automatic operation.

Number of control value inputs

Options:
$\frac{1}{2}$
This parameter defines the number of control value inputs (communication objects) for automatic operation.

- 1: There is only one Control value communication object.
- 2: There are two communication objects - Control value A and Control value B.

Dependent parameter:

Select by...

Options: Communication object "Toggle control value A/B" Largest value

This parameter sets how the blower actuator selects which control value (A or B) to use.

- Communication object "Toggle control value A / B ": The control value to use is selected via the communication object.
- Largest value: The largest control value is always selected. If the values are equal (but not zero), the input which was the latest to receive a value is selected.

Activate monitoring control values

Options:

$$
\frac{\text { No }}{\text { Yes }}
$$

This parameter sets the monitoring for the control value input(s). Any remaining telegrams on the communication object(s) are detected.

- No: Control value monitoring is deactivated.
- Yes: Control value monitoring is activated.

Dependent parameters:

Monitoring time

in s [30...65,535]
Options: $30 \ldots \underline{120 \ldots 65,535}$
This parameter sets the maximum time allowed between two control value telegrams. An error is reported if this time is exceeded.

Note

The monitoring time should be at least twice as long as the cyclical transmission time of the control value, so that the absence of a signal, e.g. due to a high bus load, does not immediately trigger an error.

Where there are two control value inputs, the following additional parameter appears:

Function of monitoring

Options: Monitoring current control values
Monitoring active and inactive control values
This parameter determines the scope of monitoring.

- Monitoring current control values: Only the currently selected control value input is monitored for incoming telegram continuity. After a switchover (via Communication object "Toggle control value $A / B^{\prime \prime}$ or Largest value), monitoring restarts.
- Monitoring active and inactive control values: Both control value inputs are always monitored independently of each other. An error is reported if an object's time is exceeded.

Note

The fault is reset if both control values are received within the monitoring time.

Send object value

Options: No, update only
On change
After request
After a change or request

- No, update only: The status is updated but not sent.
- On change: The status is sent when a change occurs.
- After request: The status is sent when a request occurs.
- After a change or request: The status is sent on a change or a request.

Set control value during fault

Options:
$\frac{\mathrm{No}}{\mathrm{Yes}}$
Yes
This parameter sets the reaction in the event of an error.
Selection of option Yes:
Dependent parameter:
Control value in \% [0...100]
Options: 0...30... 100
This parameter sets what percentage to use for the control value in the event of an error.

Reset time for automatic operation
in s [1...65,535], $0=$ inactive
Options:
\bigcirc
1...65,535

This parameter determines after which time the automatic operation is reset.

- 0 : If 0 is selected, automatic operation is not reset.
- $1 \ldots 65,535$: If a time from a value of 1 is set, automatic operation is reset after the given time.

Note

A change of the parameter value will only become active after the next deactivation of automatic operation by a direct communication object.

Enable limitations

Options:

$\frac{\text { No }}{\text { Yes }}$

Selection of option Yes:
Dependent parameter

Limitation 1

Limitation 2

Limitation 3

Limitation 4

Options: 3, 2, 1, OFF
Unchanged
OFF
1
1, OFF
2
2, 1
2, 1, OFF
3
3, 2
3, 2, 1
This parameter sets which fan speed is set, or may not be over/undershot, when forced operation is active.

- No limitation active: Everything is possible
- Unchanged: The state is retained.
- OFF: Off
- 1: Limited to speed 1.*
- 1, OFF: limited to speed 1 and off.
- 2: Limited to speed 2.*
- 2, 1 : limited to speeds 2 and 1.
- 1, OFF: limited to speed 1 and off.
- 3: Limited to speed 3 .*
- 3, 2: limited to speeds 3 and 2.
- 3, 2, 1: limited to speeds 3,2 and 1 .
* The control value is ignored.

This function defines fan speed ranges (limitations) which may not be over/undershot.

Four limitations are available. They can be used, for example, for the control of various operating modes, e.g. frost/heat protection, comfort, night shut down and standby. In normal cases, the room thermostat takes these operating modes into account in its control variable for the actuator.

Important

The parameterized start-up behavior which is a technical characteristic of the fan has a higher priority than a limitation, i.e. if a limitation is activated in fan speed 2 and start-up behavior is parameterized with fan speed 3 , the following behavior will result: The fan is in the OFF state and receives a control signal for fan speed 1 . First it goes to speed 3 (start-up speed), then 2, which is specified via the limitation. Due to the limitation, the actual required fan speed 1 will not be reached.

- The sequence of the displayed parameters corresponds with their priorities, i.e. the parameter with the highest priority has limitation 1 followed by limitations 2, 3 and 4.

Note

The fault operation, e.g. with a malfunction of the room thermostat, has a lower priority than the fan limitation, i.e. if fan speed is limited during a thermostat malfunction, only the upper or the lower limit of the fan limitation can be set at maximum.

When you exit automatic control, e.g. by a manual action, limitations 1 to 4 are inactive.
The set limitations are reactivated when automatic mode is reactivated.
The following points apply for limitations:

- The fan speed and valve position can be parameterized independently.
- The limitation need not necessarily apply to one fan speed only. It can also encompass another range of the fan speeds, i.e. only certain fan speeds can be set if the limitation is active. In this way, a limited control is also possible.
- The limitation is activated if a telegram with the value 1 is received on the communication object Limitation. The limitation is deactivated if a telegram with the value 0 is received on the communication object Limitation. A manual action ends automatic operation.
- If a limitation is activated, the product switches to the parameterized fan speed regardless of the control value. If another fan speed or a speed outside the "limitation range" is set when the limitation is activated, then the required speed or the limit speed of the range is set.
- After switch off of the limitations, the fan speed and the communication objects for valve control are recalculated and executed. This means that during limitation, the product operates normally in the background, the outputs are not changed and implementation only occurs once limitation ends.
Each of the four limitations used to limit the fan speeds has the same parameters.

```
Important
```

They are prioritized according to the listed sequence. The highest priority is assigned to limitation 1, e.g. Frost/Heat protection; the lowest priority is assigned to limitation 4, e.g. standby operation.

This parameter window is visible if the option Yes has been selected for the parameter Enable direct operation in the Parameter window E, F, G: Fan (Multi-level), page 126.

Enable communication objects
"Switch speed x" 1-bit
Options:

$\frac{\text { Yes }}{\text { No }}$

- Yes: Three 1-bit communication objects Speed 1, Speed 2 and Speed 3 are enabled.

The product receives a setting telegram via these communication objects.
Telegram value: $\quad 1=$ Fan speed x is switched on
$0=$ Fan speed x is switched off
If several ON/OFF telegrams are received consecutively in a short period of time at various Fan speed $1 . . .3$ communication objects, the value last received will be the one used to control the fan. An OFF telegram to one of the three communication objects Fan speed $1 \ldots 3$ switches the fan off.

Important

Forced operation remains valid and is taken into account.
The parameterized minimum fan speed dwell time for automatic control is ignored during manual operation. Accordingly, an immediate reaction to manual operation is detected.
The delay time with speed switchover remains active to protect the fan.

Enable communication object

"Fan speed up/down" 1-bit
Options:
Yes
No

- Yes: A 1 bit Fan speed up/down communication object is enabled.

Telegram value: $1=A$ fan speed is switched UP
$0=A$ fan speed is switched DOWN
If the maximum fan speed is reached and a further telegram with the value 1 is received, the speed will remain as it is.

Important

Forced operation remains valid and is taken into account.
The parameterized minimum fan speed dwell time for automatic control is ignored during manual operation. Accordingly, an immediate reaction to manual operation is detected.
The delay time with speed switchover remains active to protect the fan.

With multiple manual UP or DOWN switching, the required speed will be increased or reduced by a speed step. This is feasible until the maximum or minimum possible speed is reached. Further UP or DOWN telegrams are ignored and not executed. Each new switching telegram initiates a new calculation of the target speed. This means that the target speed can be changed by switching telegrams until the target speed is achieved.

This parameter window is visible if the option Yes has been selected in the parameter Set startup/run-on in Parameter window E, F, G: Fan (Multi-level), page 126.

Start-up behavior

Options:

$\frac{\text { No }}{\text { Yes }}$

This parameter enables the fan to start from the OFF state with a defined fan speed. This fan speed is immediately applied.

In order to guarantee a safe start of the fan motor, it can be useful to start the fan motor first with a higher fan speed. Thus a higher torque for the startup phase of the fan is achieved.

Note

However, with a step switch, the previous fan speeds are switched on consecutively. With the changeover switch the fan speed is switched on right away.

The delay between the switchover of two fan speeds (contact change) is taken into account.
The dwell times, which are taken into account in automatic operation, are inactive and will only be taken into account after the start-up phase.
The start-up behavior is a technical characteristic of the fan. For this reason, this behavior has a higher priority than an active limitation or forced operation.

Selection of option Yes:
Dependent parameters:
Switch on over fan speed
Options: $\quad 1 / 2 / \underline{3}$
Here you set which speed the fan uses to start from the OFF state.
Minimum dwell period in switch on
fan stage in s [1...65,535]
Options: 1...5...65,535
This parameter defines the minimum dwell time for one of the switch on speeds.

Example: Start-up behavior of a three-speed fan

The illustration shows the reaction in automatic operation with the option Switch on over fan speed 3, if the fan receives the telegram from the OFF state to set Fan speed 1.

* The parameter Minimum dwell period in fan speed in s[0...65,535] in the parameter window Automatic operation is only active and programmable, if the option Yes has been selected in the Enable automatic operation parameter. In the parameter window Fan, you can find the parameter Enable automatic operation.

Important

Forced operation remains valid and is taken into account.
The parameterized minimum fan speed dwell time for automatic control is ignored during manual operation. Accordingly, an immediate reaction to manual operation is detected.
The delay time with speed switchover remains active to protect the fan.

Run-on behavior

Options:
$\frac{\mathrm{No}}{\mathrm{Yes}}$
This parameter activates a run-on for the fan. If the fan changes to a lower speed, it remains in the previous speed for the parameterized run-on time and only then reduces the speed by one level.

If the fan goes through several speed changes, run-on times are executed successively, adding on those times.

A run-on time of 0 seconds means that run-on is deactivated.
Run-on is executed regardless of where the speed change originates (automatic operation, direct operation, manual procedure, fan switch off).

Selection of option Yes:
Dependent parameters:

```
Run-on times speed 3
in \(\mathbf{s}\) [0...65,535]
Options: 0...20...65,535
```

Run-on times speed 2
in s [0...65,535]
Options: $0 . . . \underline{20} \ldots 65,535$

Run-on times speed 1
in s [0...65,535]
Options: $\quad 0 . . \underline{20} \ldots 65,535$

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Parameter window E, F, G: Fan (Two-level)
All settings for the two-level fan are made in this parameter window.

D General 1. Manual operation	Fan type	Multi-level	-
4 Outputs A...H	Limit fan speeds to 2	Yes	-
Enable output A...D		No	
A/B: Output	Fan operating mode (note technical data of fan!)	Yes	
Function			
C/D: Output	Delay between speed switchover in ms [50 ...5,000]	500	4
Function			\square
Enable output E...H	Fan speed on bus voltage failure	Unchanged	
E, F, G: Fan			-
Status messages	Fan speed on bus voltage recovery	Unchanged	-
Automatic control			
D Inputs a...c	Enable communication object "Forced operation" 1-bit	No	-
	Enable automatic operation	Yes	-
	Enable direct operation	No	-
	Set startup/run-on	No	-

If you wish to use the device for controlling a two-level fan, set the parameters as follows:

- In the parameter window E, F, G: Fan, select the Multi-level option in the Fan type parameter.
- Select Yes in the Limit fan speeds to 2 parameter.

Now a two-speed fan is controlled via fan speeds 1 and 2.
Fan speed 3 with all its parameters and options is now non-functional.
Note
Further parameters and their settings options are described in Parameter window E, F, G: Fan (Multi-
level), page 126.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window E, F, G: Fan (One-level)

All settings for the one-level fan are made in this parameter window.

1) General 1. Manual operation	Fan type	One-level	-
4 Outputs A... H	Fan speed on bus voltage failure	Unchanged	\checkmark
Enable output A...D			
A/B: Output	Fan on bus voltage recovery	Unchanged	\checkmark
Function			
C/D: Output	Enable automatic operation	Yes	-
Function			
Enable output E...H	Function Time on ON	None	\checkmark
E, F, G: Fan	Function Time on OFF	None	-
Status messages			
Automatic control	Enable communication object	No	\checkmark
1) Inputs a...c	"Forced operation" 1-bit		

Fan type

Options: Multi-level
One-level

This parameter sets which type of fan is to be controlled.
To control a fan with up to three speeds select the Multi-level option.
To control a single-speed fan, select the One-level option

Fan speed on bus voltage failure

Options: Unchanged OFF

The reaction of the fan on bus voltage failure is defined here.

- Unchanged: The fan speed remains the same.
- OFF: The fan is switched off.

Fan speed on bus voltage recovery

Options: Unchanged
OFF
ON
The reaction of the fan on bus voltage recovery is defined here.

- Unchanged: The fan speed remains the same.
- OFF: The fan is switched off.
- ON: The fan is switched on.

Attention

The device is supplied ex-works with a default setting (factory default). This ensures that the fan setting is switched off when the bus voltage is applied to the relay for the first time. Thus, damage to the device due to unintentional switch on during transport, e.g. due to vibration, is avoided.
It is advisable to apply a bus voltage before connecting the fan in order to assign it a defined switch state. This eliminates the possibility of an incorrect contact setting destroying the fan.

Enable automatic operation

Options: No

Yes

- Yes: The Automatic operation is enabled. Furthermore the Parameter window Automatic control (Onelevel), page 155 appears.

Function Time on ON

Options:
None
Switching delay
Minimum time
This defines the Time function on Fan ON.

- None: No Time function is executed.
- Switching delay: The fan is switched on after this delay.
- Minimum time: The fan remains ON for at least this time.

Selection of option Switching delay:
Dependent parameter:
Time in s [1...65,535 x 0.1]
Options: 1...20...65,535
The fan is switched on after this delay.
Selection of option Minimum time:
Dependent parameter:
Time in s [1...65,535]
Options: 1...20...65,535
The fan remains ON for at least this time.

Function Time on OFF
Options: None
Switching delay
Minimum time
This defines the Time function on Fan OFF.

- None: No Time function is executed.
- Switching delay: The fan is switched off after this delay.
- Minimum time: The fan remains OFF for at least this time.

Selection of option Switching delay:
Dependent parameter
Time in s [1...65,535 x 0.1]
Options: 1...20...65,535
The fan is switched off after this delay.
Selection of option Minimum time:
Dependent parameter:
Time in s [1...65,535]
Options: 1...20...65,535
The fan remains OFF for at least this time

Enable communication object
 "Forced operation" 1-bit
 Options

- Yes: A 1 bit Forced operation communication object is enabled

Dependent parameters:

Forced operation on object value

Options:
$\frac{0}{1}$

- 0 : Forced operation is activated by a telegram with value 0 .
- 1: Forced operation is activated by a telegram with value 1.

Reaction on forced operation

Options:
Unchanged
OFF
ON
This parameter defines how the fan should respond to a forced operation

Parameter window Status messages (single speed)

This is the parameter window where status messages are defined.
This parameter window is visible when the option Enable as fan is selected for the parameter Outputs E, F, G in Parameter window Enable output E...H, page 125.

Enable communication object

"Status byte fan" 1-byte
Options: $\frac{\mathrm{No}}{\mathrm{Yes}}$

From this status byte the states control values A or C, automatic, forced operation and the four limitations are indicated directly via a 1-bit coding.

For further information see: Status byte fan, page 258

- Yes: The communication object Status byte fan is enabled.

Dependent parameter:

Send object value

Options: No, update only
On change
After request
After a change or request

- No, update only: The status is updated but not sent.
- On change: The status is sent when a change occurs.
- After request: The status is sent when a request occurs.
- After a change or request: The status is sent on a change or a request.

Enable communication object
 "Status Fan On/Off" 1-bit

Options:

$\frac{\text { No }}{\text { Yes }}$

This parameter enables the communication object Status Fan ON/OFF.
Some fans initially require an ON telegram before they are set to a fan speed from the OFF state. This ON telegram has effect on a main switch which has to be switched on. This requirement can be implemented with any switch output controlled via the Status Fan communication object. The corresponding communication object Switch of the switch actuator should be connected with the Status Fan communication object.

Selection of option Yes:
Dependent parameter:

Send object value

Options:	No, update only On change
	After request After a change or request

- No, update only: The status is updated but not sent.
- On change: The status is sent when a change occurs.
- After request: The status is sent when a request occurs
- After a change or request: The status is sent on a change or a request.

The following parameter is only visible if the option Yes has been selected in the Enable automatic operation parameter in the Fan parameter window.

Enable communication object

"Status Automatic" 1-bit
Options:
$\frac{\mathrm{No}}{\mathrm{Y}}$
Yes
This parameter enables the communication object Status Automatic.
Telegram $\quad 1$ = Automatic operation active
value:
$0=$ Automatic operation inactive
Selection of option Yes:
Dependent parameter:

Send object value

Options: No, update only
On change
After request
After a change or request

- No, update only: The status is updated but not sent.
- On change: The status is sent when a change occurs.
- After request: The status is sent when a request occurs.
- After a change or request: The status is sent on a change or a request.

This parameter window is visible if the option Yes has been selected for the parameter Enable automatic operation in the Parameter window E, F, G: Fan (One-level), page 150.

This is the parameter window where you define the threshold values for switchover of the fan speed. You can also enable limitations here.

Object value "Automatic On/Off" switch on to the automatic

Options: $\frac{1}{0}$

This parameter defines how the device should react to a telegram.

- 1: Automatic is activated by a telegram with value 1.
- 0 : Automatic is activated by a telegram with value 0 .

Threshold value OFF <-> ON

in \% [1...100]

Options: 1...10... 100
This defines the threshold value at which switch on occurs. If the value in the control value communication object is greater than or equal to the parameterized threshold value, it is switched on. If the value is less, it is switched off.

Hysteresis threshold
value in \% +/- [0... 20 \%]
Options: 0... $\underline{5} . .20$
This sets a hysteresis at which switchover to the next fan speed occurs.
The setting 0 causes immediate switching without hysteresis.
The entered percentage value is directly added to or subtracted from the percentage value of Threshold value speed x. The result is a new upper or lower threshold value.

Switch threshold top (switch on) = threshold value + hysteresis
Switch threshold bottom (switch off) = threshold value - hysteresis

Example, a three speed fan, hysteresis with fan control

Using hysteresis, a continuous switching between the fan speeds around the threshold value with deviating input signals can be avoided.

Number of control value inputs

Options: $\quad \frac{1}{2}$

This parameter defines the number of control value inputs (communication objects) for automatic operation.

- 1: There is only one Control value communication object.
- 2: There are two communication objects - Control value A and Control value B.

Dependent parameter:

Select by...

Options: Communication object "Toggle control value A/B" Largest value

This parameter sets how the blower actuator selects which control value (A or B) to use.

- Communication object "Toggle control value A / B ": The control value to use is selected via the communication object.
- Largest value: The largest control value is always selected. If the values are equal (but not zero), the input which was the latest to receive a value is selected.

Activate monitoring control values

Options:
$\frac{\mathrm{No}}{\mathrm{Yes}}$
This parameter sets the monitoring for the control value input(s). Any remaining telegrams on the communication object(s) are detected.

- No: Control value monitoring is deactivated.
- Yes: Control value monitoring is activated.

Dependent parameters:

Monitoring time

in s [30...65,535]
Options: $\quad 30 \ldots \underline{120} \ldots . .65,535$
This parameter sets the maximum time allowed between two control value telegrams. An error is reported if this time is exceeded.

Note

The monitoring time should be at least twice as long as the cyclical transmission time of the control value, so that the absence of a signal, e.g. due to a high bus load, does not immediately trigger an error.

Where there are two control value inputs, the following additional parameter appears:

Function of monitoring

Options: Monitoring current control values
Monitoring active and inactive control values
This parameter determines the scope of monitoring.

- Monitoring current control values: Only the currently selected control value input is monitored for incoming telegram continuity. After a switchover (via Communication object "Toggle control value $A / B^{\prime \prime}$ or Largest value), monitoring restarts.
- Monitoring active and inactive control values: Both control value inputs are always monitored independently of each other. An error is reported if an object's time is exceeded.

Note

The fault is reset if both control values are received within the monitoring time.

Send object value

Options: No, update only
On change
After request
After a change or request

- No, update only: The status is updated but not sent.
- On change: The status is sent when a change occurs.
- After request: The status is sent when a request occurs.
- After a change or request: The status is sent on a change or a request.

Set control value during fault

Options:
$\frac{\text { No }}{\text { Yes }}$

This parameter sets the reaction in the event of an error.
Selection of option Yes:
Dependent parameter:
Control value in \% [0...100]
Options: 0...30... 100
This parameter sets what percentage to use for the control value in the event of an error.

Reset time for automatic operation

in s [1...65,535], $0=$ inactive
Options:
$\frac{0}{1}$
1...65,535

This parameter determines after which time the automatic operation is reset.

- 0 : If 0 is selected, automatic operation is not reset.
- $1 . .65,535$: If a time from a value of 1 is set, automatic operation is reset after the given time.

Note

A change of the parameter value will only become active after the next deactivation of automatic operation by a direct communication object.

Enable limitations

Options:

$\frac{\text { No }}{\text { Yes }}$

Selection of option Yes:
Dependent parameter

Limitation 1

Limitation 2

Limitation 3

Limitation 4

Options: 3, 2, 1, OFF
Unchanged
OFF
1
1, OFF
2
2, 1
2, 1, OFF
3
3, 2
3, 2, 1
This parameter sets which fan speed is set, or may not be over/undershot, when forced operation is active.

- No limitation active: Everything is possible
- Unchanged: The state is retained.
- OFF: Off
- 1: Limited to speed 1.*
- 1, OFF: limited to speed 1 and off.
- 2: Limited to speed 2.*
- 2, 1 : limited to speeds 2 and 1.
- 1, OFF: limited to speed 1 and off.
- 3: Limited to speed 3 .*
- 3, 2: limited to speeds 3 and 2.
- 3, 2, 1: limited to speeds 3,2 and 1 .
* The control value is ignored.

This function defines fan speed ranges (limitations) which may not be over/undershot.

Four limitations are available. They can be used, for example, for the control of various operating modes, e.g. frost/heat protection, comfort, night shut down and standby. In normal cases, the room thermostat takes these operating modes into account in its control variable for the actuator.

Important

The parameterized start-up behavior which is a technical characteristic of the fan has a higher priority than a limitation, i.e. if a limitation is activated in fan speed 2 and start-up behavior is parameterized with fan speed 3 , the following behavior will result: The fan is in the OFF state and receives a control signal for fan speed 1 . First it goes to speed 3 (start-up speed), then 2, which is specified via the limitation. Due to the limitation, the actual required fan speed 1 will not be reached.

- The sequence of the displayed parameters corresponds with their priorities, i.e. the parameter with the highest priority has limitation 1 followed by limitations 2, 3 and 4.

Note

The fault operation, e.g. with a malfunction of the room thermostat, has a lower priority than the fan limitation, i.e. if fan speed is limited during a thermostat malfunction, only the upper or the lower limit of the fan limitation can be set at maximum.

When you exit automatic control, e.g. by a manual action, limitations 1 to 4 are inactive.
The set limitations are reactivated when automatic mode is reactivated.
The following points apply for limitations:

- The fan speed and valve position can be parameterized independently.
- The limitation need not necessarily apply to one fan speed only. It can also encompass another range of the fan speeds, i.e. only certain fan speeds can be set if the limitation is active. In this way, a limited control is also possible.
- The limitation is activated if a telegram with the value 1 is received on the communication object Limitation. The limitation is deactivated if a telegram with the value 0 is received on the communication object Limitation. A manual action ends automatic operation.
- If a limitation is activated, the product switches to the parameterized fan speed regardless of the control value. If another fan speed or a speed outside the "limitation range" is set when the limitation is activated, then the required speed or the limit speed of the range is set.
- After switch off of the limitations, the fan speed and the communication objects for valve control are recalculated and executed. This means that during limitation, the product operates normally in the background, the outputs are not changed and implementation only occurs once limitation ends.

Each of the four limitations used to limit the fan speeds has the same parameters.

```
Important
```

They are prioritized according to the listed sequence. The highest priority is assigned to limitation 1, e.g. Frost/Heat protection; the lowest priority is assigned to limitation 4, e.g. standby operation.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

The setting options of valve outputs E, F and G do not differentiate from those of output H .
The descriptions of the parameters and communication objects for outputs E, F and G are described in Parameter window H: Output, page 163.

Parameter window H: Output

All settings for output H are made in this parameter window.
This parameter window is visible if the Output H has been enabled in the Parameter window Enable output E...H, page 125.

D General 1. Manual operation	Reaction of output	N/O	-
4 Outputs A...H	Contact position	Unchanged	-
Enable output A...D	on bus voltage failure		
A/B: Output			
Function	Object value "Switch" on bus voltage recovery	Do not write	\checkmark
C/D: Output	bus voltage recovery		
Function	Enable function Time	No	\checkmark
Enable output E... H			
E, F, G: Fan	Enable communication object "Status Switch" 1-bit	No	-
Status messages			
Automatic control			
H: Output:			
1) Inputs a...c			

Reaction of output

Options: $\quad \frac{\mathrm{N} / \mathrm{O}}{\mathrm{N} / \mathrm{C}}$

This parameter sets whether the output operates as a normally closed contact or normally open contact.

- Normally opened contact: An ON telegram (1) closes the contact, and an OFF telegram (0) opens the contact.
- Normally closed contact: An ON telegram (1) opens the contact, and an OFF telegram (0) closes the contact.

Contact position

on bus voltage failure
Options: Unchanged
Open
Closed
The output can adopt a defined state on bus voltage failure (BVF) using this parameter.

- Open: The contact is opened with bus voltage failure.
- Closed: The contact is closed with bus voltage failure.
- Unchanged: No change of the contact setting.

Note

Take note of the reaction on bus voltage failure, recovery and download.

Object value "Switch" on
bus voltage recovery
Options: Do not write Write with "0" Write with "1"

This parameter determines the reaction of the communication object Switch after a bus voltage recovery. As standard the communication object Switch receives the value 0.

- Don't write: After bus voltage recovery, the value 0 is retained in the communication object Switch. The switch state is not re-determined.

Note

Before the very first download (device fresh from the factory), the value before bus voltage failure is undefined. For this reason, the communication object Switch is written with 0 and the contact is open.

- Write with 0: The communication object Switch is written with a 0 on bus voltage recovery. The contact position is redefined and set based on the set device parameterization.
- Write with 1: The communication object Switch is written with a 1 on bus voltage recovery. The contact position is redefined and set based on the set device parameterization.

Note

Take note of the reaction on bus voltage failure, recovery and download.
The device draws the energy for switching the contact from the bus. After bus voltage is applied, it takes about ten seconds before sufficient energy is available to switch all contacts simultaneously.
Depending on the transmission and switching delay on bus voltage recovery set in the General parameter window, the individual outputs will only assume the desired contact position after this time.
If a shorter time is set, the device will only switch the first contact when sufficient energy is stored in the device, in order to ensure that enough energy is available to immediately bring all outputs safely to the required position if there is another bus voltage failure.

Enable function Time

Options:

- No: The parameter window remains disabled and invisible.
- Yes: The - Time parameter window appears.

After the Time function has been enabled, the parameter window - Time is enabled. Further settings are undertaken there.

Note

For a more precise description of the function, see Communication objects Output H , page 228 ff .

Enable communication object

"Status Switch" 1-bit

Options: $\quad \frac{\mathrm{No}}{\mathrm{Yes}}$

Selection of option Yes.

Dependent parameters:

Send object value

Options: \quadNo, update only On change	
	After request After a change or request

- No, update only: The status is updated but not sent.
- On change: The status is sent when a change occurs.
- After request: The status is sent when a request occurs.
- After a change or request: The status is sent on a change or a request.

Object value of contact position

Options: $\quad \frac{1=\text { Closed, } 0=\text { Open }}{0=\text { Closed, } 1=\text { Open }}$
This parameter defines the communication object value of the switch status (Status switch).

- 1 = Closed, $0=$ Open: A closed contact is represented by communication object value 1 and an open contact is represented by the value 0 .
- $0=$ Closed, 1 = Open: A closed contact is represented by communication object value 0 and an open contact is represented by the value 1 .

Note

The contact position and thus the switch status can be the result of a series of priorities and links.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

3.2.3.18.1

Parameter window Time

All settings for the Time: Staircase lighting function are made in this parameter window.
This parameter window is visible if the parameter Enable function Time has been enabled in the Parameter window H: Output, page 163.

D. General 1. Manual operation	Time function	Staircase lighting	
4 Outputs A...H	Extending staircase lighting time by multiple operation ("Pumping up")	Yes (retriggerable)	-
Enable output A...D			
A/B: Output	Staircase lighting time$\text { in } s[1 . . .65,535]$	30	\square
Function			\square
C/D: Output			
Function	Staircase lighting can be switched	ON with 1 and OFF with 0	-
Enable output E...H	Restart of staircase time after end of permanent ON	No	
E, F, G: Fan			-
Status messages			
Automatic control	Object value "Disable function Time" after a download	Unchanged	-
H: Output:			
Time			
D Inputs a...c			

Explanations of the time functions and sequences can be found in Planning and application, page 237 ff . Please also observe the Function diagram, page 245, from which the switching and timing priorities originate.

Time function

Staircase lighting

- Staircase lighting: The value that switches the staircase lighting on and off can be parameterized. The staircase lighting time starts when the function is switched on. It is switched off immediately after the staircase lighting time ends.

Extending staircase lighting time by multiple operation ("Pumping up")
Options: \quad No (not retriggerable)
Yes (retriggerable)
Up to max. $2 \times$ staircase lighting time Up to max. $3 \times$ staircase lighting time Up to max. $4 x$ staircase lighting time Up to max. 5 x staircase lighting time

If a further ON telegram is received during the staircase lighting time sequence, the remaining staircase lighting time can be extended. This is possible by repeated actuation of the push button ("pumping up") until the maximum parameterized number of retriggering operations is reached. The maximum time can be set to $1,2,3,4$ or 5 times the staircase lighting time.

Let's say the staircase lighting time has been extended by "pumping up" to the maximum time. If some of the time has already elapsed, the staircase lighting time can be re-extended to the maximum time by "pumping up" again. However, the parameterized maximum time may not be exceeded.

- No (not retriggerable): The receipt of an ON telegram is ignored. The staircase lighting time continues unmodified to completion.
- Yes (retriggerable): New ON telegrams reset the staircase lighting time and starts to count again. This process can be repeated as often as desired using this selection.
- Up to max. $2 / 3 / 4 / 5 x$ staircase lighting time: New ON telegrams extend the staircase lighting time by $2 / 3 / 4 / 5$ times.

Staircase lighting time

in s [1...65,535]

Options: 1...30...65,535
The staircase lighting defines how long the contact is closed - provided that the output is programmed as a normally open contact - and how long the light remains on after an ON telegram. The input is made in seconds.

Staircase lighting can be switched

Options: \quad ON with 1 and OFF with 0
ON with 1, no action with 0
ON with 0 or 1, switch OFF not poss.
This parameter defines the telegram value used for switching the staircase lighting on and off prematurely.

- ON with 0 or 1 , switch OFF not poss.: The function Staircase lighting is switched on independently of the value of the incoming telegram. Premature switch off is not possible.

Restart of staircase time after end
of permanent ON
Options: $\quad \frac{\mathrm{No}}{\mathrm{Y}}$
Yes

- No: The lighting switches off if Permanent $O N$ is ended.
- Yes: The lighting remains on and the staircase lighting time restarts.

The function of Permanent ON is controlled via the Permanent $O N$ communication object value. If the communication object receives a telegram with the value 1 , the output is switched on regardless of the value of the communication object Switch and remains switched on until the communication object Permanent $O N$ has the value 0 .

Object value "Disable function Time"

after a download

Options: Unchanged
0 = Enable function Time
1 = Disable function Time
This parameter defines how the parameter function Time should behave after bus voltage recovery. With a telegram to the communication object Disable function time, the function Time can be disabled.

- Unchanged: The function Time can continue unchanged.

Note

The state of the Time function is stored with bus voltage failure and continues unchanged after bus voltage recovery.

- $0=$ Enable function Time: The Time function is enabled by a telegram with the value 0 .

> Note
> If the staircase lighting is disabled when the function Time is operational, the light will stay at ON until it is switched to OFF manually.

- $\quad 1=$ Disable function Time: The Time function is disabled by a telegram with the value 1.

Note

Enabling is only possible via the communication object Disable function Time.

How does the staircase lighting react on bus voltage failure?

Reaction in the event of bus voltage failure is specified by the parameter Reaction on bus voltage failure in parameter window H: Output

How does the staircase lighting react on bus voltage recovery?
Reaction on bus voltage recovery is defined by two conditions.

1. By the communication object Disable function time. If staircase lighting is disabled after bus voltage recovery, it can only be switched on or off via the communication object Switch.
2. By the parameterization of the communication object Switch. Whether the light is switched on or off on bus voltage recovery depends on the settings of Switch.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

3.2.4
3.2.4.1

Parameter window Enable inputs a...c

Parameter window Enable inputs a...c

Settings for enabling and description of inputs a...c

| General |
| :--- | :--- |
| Manual operation |
| Outputs A...H |\quad Input a

Note

In the following, the setting possibilities of inputs a...c are explained using input a as an example. The setting possibilities are identical for all inputs.

Input a

Input b

Input \mathbf{c}
Options: Disabled
Switch sensor
Value/forced operation
PT100 2-cond. technology [-50...+150 $\left.{ }^{\circ} \mathrm{C}\right]$
PT1000 2-cond. technology [-50...+150 $\left.{ }^{\circ} \mathrm{C}\right]$
KTY $\left[-50 \ldots+150^{\circ} \mathrm{C}\right]$
The operating mode of the input is set with this parameter. The respective parameter window a : $x x x$ also becomes visible with the selection of an operating mode.

Description (40 characters)

With this parameter, it is possible to enter a text of up to 40 characters in length for identification in the ETS.

Note

The text which is entered is used to provide help, in order to obtain an overview of the inputs when they are fully assigned and to indicate the function assigned to the input. The text is purely for informative purposes and has no further function.

Parameter window a: Switch sensor

This parameter window is visible if the option Switch sensor has been enabled for the parameter Input a in the Parameter window Enable inputs a...c, page 170.

Note

The device features several inputs. However, as the functions for all inputs are identical, only the functions of input a will be described.

Maximum dead time

This parameter is fixed to a preset 250 ms .

The maximum dead time prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the maximum dead time?

An edge change at the input is assessed with a maximum dead time (delay) value of 250 ms . This time may vary from 0 ms to 250 ms .

Note

No further bouncing is possible.

Example: Maximum dead time of the input signal for a detected edge:

After detection of an edge on the input, further edges are ignored for the maximum dead time T_{D}.

Distinction between long and short
operation
Options:

$$
\frac{\mathrm{No}}{\mathrm{Yes}}
$$

Using this parameter, you set if the input differentiates between short and long operation.

- Yes: After opening/closing the contact, it must first of all be ascertained if a short or long operation has occurred here. Only thereafter will a possible reaction be triggered.

The following table shows the function in detail:

T_{L} is the time duration from where a long operation is detected.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter Distinction between long and short operation - No

If the option No has been selected with the parameter Distinction between long and short operation, the following parameters appear in Parameter window a: Switch sensor, page 171:

General Manual operation	Maximum dead time	250 ms
1. Outputs A...H	Distinction between long and short	No
4 Inputs a...c	operation	No
Enable inputs a...c	Opening the contacts -> Event 0	Yes
a: Switch sensor	Closing the contacts -> Event 1	
b: Switch sensor c: Switch sensor	Activate minimum signal duration	No
	Scan input after download, ETS reset and bus voltage recovery	No
	Enable communication object "Start event 0/1" 1-bit	No
	Enable communication object "Block" 1-bit	No
	Enable communication object "Switch 1"	No
	Enable communication object "Switch 2"	No -
	Enable communication object "Switch 3"	No *

Opening the contacts -> Event 0
Closing the contacts $->$ Event 1
<--- NOTE

Activate minimum signal duration

Options:

$$
\frac{T_{00}}{Y e s}
$$

Selection Yes:
Dependent parameters:
On closing the contact
in [0...65,535] X 0.1 s
Options: 0...10...65,535

On opening the contact
in [0...65,535] x 0.1 s
Options: $0 \ldots$ 10...65,535

What is the minimum signal duration?

In contrast to the maximum dead time, a telegram is only sent after the minimum signal duration has elapsed.

The individual functions are:
If an edge is detected on the input, the minimum signal duration will commence. No telegram is sent on the bus at this time. The signal on the input is observed within the minimum signal duration. If a further edge appears at the input during the minimum signal duration, it will be interpreted as a new operation, and the minimum signal duration restarts. If no further edges occur after the start of the minimum signal duration, a telegram is sent on the bus, after the minimum signal duration has timed out.

Example: Minimum signal duration of the input signal for a detected edge:

In only two cases do no further edge changes occur within the minimum signal duration $\mathrm{T}_{\text {м }}$ after a change of edge. For this reason, only both of these are detected as valid.

Note

The minimum signal duration is not considered after a download and/or ETS reset.

Scan input after download,

ETS reset and bus voltage recovery

Options:
 $\frac{\mathrm{No}}{\mathrm{Yes}}$

- No: The object value is not scanned after a download, ETS reset and bus voltage recovery.
- Yes: The object value is scanned after a download, ETS reset and bus voltage recovery.

Dependent parameter:
Inactive wait state after bus voltage
recovery in s [0...65,535]
Options: $\quad 0 . . .65,535$
Here the waiting time after a bus voltage recovery is set. After the waiting time has elapsed the state on the input terminals is scanned. The input reacts as if the state on the input terminals has just changed.

Note

The inactive waiting time does not add to the actual, adjustable sending delay time. This can be set separately.

Enable communication objects

"Start event 0/1" 1-bit
Options: Yes
No

- Yes: The 1 -bit communication object Start event $0 / 1$ is enabled. As a result, the same events, such as those of the push button/switch connected to the binary input, can also be triggered by the receipt of a telegram on the communication object Start event 0/1.

Enable communication object

"Block" 1-bit
Options:
$\frac{\mathrm{No}}{\mathrm{Yes}}$

- Yes: The 1-bit block communication object Block is enabled. This can be used to disable the input.

> Notes
> If the input is disabled and the option Send cyclically is set, the last state is still sent regardless of the block. The option Block still blocks the physical input, sending continues internally.
> Should the internal block with this input not be permitted, this communication object has no effect on the respective input.

Enable communication object

"Switch 1"
Options: No
Yes

- Yes: The communication object Switch 1 appears.

Dependent parameters:

Reaction on event 0

Options: No edge evaluation
ON
OFF
Toggle
Terminate cyclic transmission

Reaction on event 1

Options: \quad No edge evaluation
ON
OFF
Toggle
Terminate cyclic transmission
The reaction of the communication object is determined here. If the option Yes has been selected with the parameter Distinction between long and short operation, the reaction occurs with a short or long operation. With the option No, it occurs with each edge change.

Important

If the option Terminate cyclic transmission is set, it is important to note that this is only effective if the option Yes has only been selected in the parameter Send cyclically.

Internal connection

Options:
No
Output E
Output F
Output G
Output H
With this parameter, a direct connection of the binary input with an output can be established. With this connection, no assignment of the group address is necessary.

- Output E...H: The communication object Switch of the output is updated together with the communication object Switch 1 of the input.

Attention
 If an internal connection with an output is selected, and at the same time the reaction to an event is parameterized with toggle, the communication object Switch 1 of the input is updated with the inverted value of the communication object Status Switch of the output.
 Ensure that the communication object Status Switch of the output is enabled. The settings normally closed contact/normally open contact and Invert status should be parameterized, so that a toggle function is possible.

Send cyclically

Options:

What is cyclic sending?

Cyclic transmission enables the communication object Switch to send automatically at a fixed interval. If cyclic transmission is only carried out for a specific object value (ON or OFF), this condition refers to the value of the communication object. It is therefore possible in principle to start cyclic transmission by sending a value to the communication object Switch. As this behavior is unwanted, the flags Write and Update of the communication object are deleted in the preliminary setting, so that they cannot be changed via the bus. If this functionality is required irrespectively, these flags should be set accordingly. When the communication object Switch changes and after bus recovery (after the sending delay time has elapsed), the communication object value is sent immediately on the bus, and the sending cycle time restarts.
Selection Yes:
Dependent parameters:

Telegram is repeated every

Options: Every second
Every 2/3/5/10/30/60 seconds
Every 2/3/5/10/30/60 minutes Every 2/3/5/10/12 hours

The sending cycle time describes the time used between two cyclically sent telegrams.

On object value

Options:
$\frac{0}{1}$
0 or 1

- 1:The communication object value is sent cyclically with 1.
- 0 : The communication object value is sent cyclically with 0 .
- 0 or 1: The communication object values 0 or 1 are sent cyclically.

Enable communication object
 "Switch 2"

"Switch 3"
Options: $\quad \frac{\mathrm{No}}{\mathrm{Yes}}$

- Yes: The communication object Switch $2 / 3$ becomes visible.

Dependent parameters:

Reaction on event 0

Options: \quad No edge evaluation
ON
OFF
Toggle
Terminate cyclic transmission

Reaction on event 1

Options: No edge evaluation
ON
OFF
Toggle
Terminate cyclic transmission
The reaction of the communication object is determined here. If the option Yes has been selected with the parameter Distinction between long and short operation, the reaction occurs with a short or long operation. With the option No, it occurs with each edge change.

Internal connection

Options: \quad No
Output E
Output F
Output G
Output H
With this parameter, a direct connection of the input with an output can be established. With this connection, no assignment of the group address is necessary.

- Output E...H: The communication object Switch of the output is updated together with the communication object Switch $2 / 3$ of the input.

Attention

If an internal connection with an output is selected, and at the same time the reaction to an event is parameterized with toggle, the communication object Switch $2 / 3$ of the input is updated with the inverted value of the communication object Status Switch of the output.
Ensure that the communication object Status Switch of the output is enabled. The settings normally closed contact/normally open contact and Invert status should be parameterized, so that a toggle function is possible.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

If the option Yes is selected with the parameter Distinction between long and short operation, the following parameters appear in the Parameter window a: Switch sensor, page 171:

Short operation -> Event 0 Long operation -> Event 1
 <--- NOTE
 Input on operation
 Options: Open
 Closed

- Open: The input is opened with actuation.
- Closed: The input is closed with actuation.

If a normally open contact is connected to the input, the option Closed should be selected; on a normally closed contact the option Open should be selected

Long operation after ...

Options: $\quad \underline{0.6 / 0.8 ~ s}$
1/1.2/1.5 s
2/3/4/5/6/7/8/9/10 s
Here the time period T_{L}, after which an operation is considered a "long" operation, is defined.

[^10]
Parameter window a: Value/forced operation

This operating mode allows the sending of values of any data types.
This parameter window is visible if the option Value/forced operation is selected in the parameter Input A in the Parameter window Enable inputs a...c, page 170.

Maximum dead time

This parameter is fixed to a preset 250 ms .
The maximum dead time prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the maximum dead time?

An edge change at the input is assessed with a maximum dead time (delay) value of 250 ms . This time may vary from 0 ms to 250 ms .

```
Note
No further bouncing is possible
```

Example: Maximum dead time of the input signal for a detected edge:

After detection of an edge on the input, further edges are ignored for the maximum dead time T_{D}.

Enable communication object

"Block" 1-bit
Options: No $\frac{\mathrm{No}}{\mathrm{Yes}}$

- Yes: The 1-bit block communication object Block is enabled. This can be used to disable the input.

[^11]
Distinction between long and short

operation

Options:

$\frac{\mathrm{No}}{\mathrm{Yes}}$

Using this parameter, you set if the input differentiates between short and long operation.

- Yes: After opening/closing the contact, it must first of all be ascertained if a short or long operation has occurred here. Only thereafter will a possible reaction be triggered.

Note

With Distinction between long and short operation, two communication objects are visible for each input. One communication object only transmits during short operation, the other communication object only during a long operation.

The following table shows the function in detail:

T_{L} is the time duration from where a long operation is detected.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

If the option No has been selected with the parameter Distinction between long and short operation, the following parameters appear in Parameter window a: Value/forced operation, page 181:

Maximum dead time	250 ms	
Enable communication object	No	-
"Block" 1-bit		
Distinction between long and short operation	No	-
Opening the contacts -> Event 0 Yes	Yes ${ }^{\text {No }}$	
Closing the contacts -> Event 1		
Activate minimum signal duration	No	-
Scan input after download,	No	-
Value 1 (event 0 or	1-byte value [0...255]	-
Sent value [0...255]	0	-
Value 2 (event 1 or	1-byte value [0...255]	-
on long operation)		
Sent value [0...255]	0	0

Opening the contacts -> Event 0 Closing the contacts -> Event 1
<--- NOTE

Activate minimum signal duration

Options:
$\frac{\mathrm{No}}{\mathrm{Yes}}$

Selection Yes:
Dependent parameters:
On closing the contact in [0...65,535] X 0.1 s

Options: 0...10...65,535

On opening the contact
in [0...65,535] x 0.1 s
Options: $\quad 0 .$. 10...65,535

What is the minimum signal duration?

In contrast to the maximum dead time, a telegram is only sent after the minimum signal duration has elapsed. The individual functions are:

If an edge is detected on the input, the minimum signal duration will commence. No telegram is sent on the bus at this time. The signal on the input is observed within the minimum signal duration. If a further edge appears at the input during the minimum signal duration, it will be interpreted as a new operation, and the minimum signal duration restarts. If no further edges occur after the start of the minimum signal duration, a telegram is sent on the bus, after the minimum signal duration has timed out.

Example: Minimum signal duration of the input signal for a detected edge:

In only two cases do no further edge changes occur within the minimum signal duration $\mathrm{T}_{\text {м }}$ after a change of edge. For this reason, only both of these are detected as valid.

Note

The minimum signal duration is not considered after a download and/or ETS reset.

Scan input after download,

ETS reset and bus voltage recovery
Options:

$\frac{\text { No }}{\text { Yes }}$

- No: The object value is not scanned after a download, ETS reset and bus voltage recovery.
- Yes: The object value is scanned after a download, ETS reset and bus voltage recovery.

The following parameter appears:
Inactive wait state after bus voltage
recovery in s [0...65,535]
Options: $\underline{0} \ldots 65,535$
Here the waiting time after a bus voltage recovery is set. After the waiting time has elapsed the state on the input terminals is scanned. The input reacts as if the state on the input terminals has just changed.

Note

The inactive waiting time does not add to the actual, adjustable sending delay time. This can be set separately.

Value 1 (event 0 or on short operation)

```
Options: Do not send
    1-bit value [0/1]
    2-bit value (forced operation)
    1 -byte value [-128...127]
    1-byte value [0...255]
    1-byte value (8-bit scene)
    2-byte value [-32,768...32,767]
    2-byte value [0...65,535]
    2-byte value (floating point)
    4-byte value (floating point)
    3 -byte value (time of day/weekday)
    4-byte value [-2147483648...2147483647]
    4 -byte value [0...4294967295]
```

This parameter serves for defining the data type which is sent when the contact is actuated.

Note

With the setting 2-byte value (floating point), rounding off errors can occur, meaning that the value sent to the bus may not correspond precisely to the set value. If a high degree of precision is required, select the option 4 -byte value (floating point).

Depending on the selection made in the parameter Value 1, different parameters will appear. All parameters are described in the following:

Sent value [X]

Options: ON/OFF/TOGGLE
0/1
-128...0... 127
0... 255
-32,768...0...32,767
0...65,535
-100...0... 100
-2147483648...… 2147483647
0... 4294967295

This parameter defines the value which is sent on operation. The value range is dependent on the set data type of the value X.

Sent value (forced operation)

Options: ON, activate forced operation
OFF, activate forced operation
Disable forced operation
This parameter defines the value which is sent on operation.

In the following table, the Forced operation function is explained:

Bit $\mathbf{1}$	Bit $\mathbf{0}$	Access	Description
0	0	Enabled	The communication object Switch of the actuator is enabled by the binary input. The assigned sensor can control the actuator via the Switch communication object. The binary input does not control the actuator. Bit 0 of the value of the Forced operation communication object is not evaluated. The Forced operation communication object sends a telegram with the group addresses of the Forced operation communication object and the status of the Switch communication object with every state change of the Switch communication object.
0	1	Enabled	

8-bit scene [1...64]
Options: 1... 64
This parameter defines the scene number, which is sent on actuation.

Recall/store scene

Options: $\quad \frac{\text { Recall }}{\text { Save }}$
This parameter defines whether the scene is to be recalled or stored.
Hour [0...23]
Options: $\underline{0} \ldots 23$

Minute [0...59]
Options: $\underline{0} \ldots 59$

Seconds [0...59]

Options: $\underline{0} \ldots 59$
With these parameters, the hours, minutes and seconds are set which are to be send when actuated.

Weekday [1 = Mo, 2..6, $7=\mathrm{Su}$]
Options: $\quad 0=$ No day
1 = Monday
2 = Tuesday
3 = Wednesday
4 = Thursday
5 = Friday
6 = Saturday
7 = Sunday
Using these parameters, the weekday sent on actuation is set.

Value 2 (event 1 or on long operation)

Note

The options and parameter descriptions of the parameter Value 2 correspond with those of parameter Value 1.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

If the option Yes is selected with the parameter Distinction between long and short operation, the following parameters appear:

General
Manual operation
Outputs A...H
Inputs a...c
Enable inputs a...c
a: Value/forced operation
b: Value/forced operation
c: Value/forced operation

```
Maximum dead time
Enable communication object
"Block" 1-bit
Distinction between long and short
operation
Short operation -> Event 0
Long operation -> Event 1
Input on operation
    Long operation after...
Value 1 (event 0 or
on short operation)
Sent value [0...255]
Value 2 (event 1 or
on long operation)
Sent value [0...255]
```


Short operation -> Event 0 Long operation -> Event 1
<--- NOTE

[^12]
3.2.4.4.1

Parameter window a: PT100/PT1000

This operating mode allows the sending of temperature values.
This parameter window is visible if one of the options PT100 or PT1000 is selected in the parameter Input a in the Parameter window Enable inputs a...c, page 170.

D. General 1. Manual operation	Send output value as	2-byte [EIB floating point]	
D Outputs A...H	Temperature offset in $0.1{ }^{\circ} \mathrm{C}$	0	\square
4 Inputs a...c	$[-50 \ldots+50]$		\cdots
Enable inputs a...c			
a: PT1000	Line fault compensation	None	-
b: Switch sensor	Filter	Inactive	*
	Send output value	On change	-
	Output value is sent from a change of [$\mathrm{x} 0.1^{\circ} \mathrm{C}$]	10	$\stackrel{\square}{\square}$
	Use Threshold 1	No	\checkmark
	Use Threshold 2	No	-

The Sensor output is set with these parameters. The data can be found in the sensor manufacturer's technical documentation.

Send output value as

This parameter is fixed to 2-byte [EIB floating point].

What is the output value?

The Analogue Input records a sensor measured value, converts it according to the set parameters and sends it on the bus. This sent value is designated as the output value.

Temperature offset in $0.1^{\circ} \mathrm{C}$
[-50...+50]
Options: -50...…+50
A maximum offset of $\pm 5^{\circ} \mathrm{C}$ can be added to the recorded temperature with this parameter.

Line fault compensation

Options: None
Via cable length
Via cable resistance
This parameter is used for setting the line fault compensation.
Selection of options Via cable length and Via cable resistance: For a description, see chapter Line fault compensation Via cable length:, page 197 and chapter Line fault compensation Via cable resistance, page 198.

Filter

Options: Inactive
Low (mean value over 4 measurements)
Medium (mean value over 16 measurements)
High (mean value over 64 measurements)
This parameter is used for setting a filter (floating mean value filter). This can be used to set the output value as a mean value using three different options.

- Inactive: Filter is not active
- Low: Mean output value over 4 measurements
- Medium: Mean output value over 16 measurements
- High: Mean output value over 64 measurements

Important

By use of the filter the output value is "smoothed" via the mean value and is available for further processing. The filter thus has immediate effects on the thresholds and calculation values. The higher the degree of the filtering applied, the smoother the result. This means that the changes to the output values become slower.
Example: An erratic change of the sensor signal with the setting Medium will take 16 seconds until the output value is through.

Send output value

Options: On request
On change
Cyclically
On change and cyclically
This parameter defines how the output value should be sent.

- On request: The output value is sent on request.

The Request output value - Input a communication object appears.
As soon as a 1 is received at this communication object, the current output value is sent once to the communication object Output value - Input a.

- On change: The output value is sent when a change occurs.
- Cyclically: The output value is sent cyclically.
- On change and cyclically: The output value is sent cyclically when a change occurs.

Selection of options On change, cyclically and On change and cyclically:
Dependent parameters:
Output value is sent from a
change of [$\mathrm{x} 0.1^{\circ} \mathrm{C}$]
Options: 1...10... 200
This parameter defines from which temperature change the output value should be sent.

- 10: The output value is sent after a change of $1^{\circ} \mathrm{C}$.

Output value is sent

Options: Every second
Every 2/3/5/10/30/60 seconds Every $2 / 3 / 5 / 10 / 30 / 60$ minutes Every 2/3/5/10/12 hours

- The interval for cyclical sending is set with this additional parameter.

Use Threshold 1

Options:

- No: The parameter window remains disabled and invisible.
- Yes: The Threshold 1 parameter window appears.

After the Threshold function has been enabled, the parameter window a: Threshold 1 is enabled. Further settings can be made here, e.g. setting the hysteresis and thresholds. If Yes is selected, the communication object Threshold 1 - Input a appears.

Use Threshold 2

Options: \quad No
Yes

- No: The parameter window remains disabled and invisible.
- Yes: The Threshold 2 parameter window appears.

After the Threshold function has been enabled, the parameter window a: Threshold 2 is enabled. Further settings can be made here, e.g. setting the hysteresis and thresholds. If Yes is selected, the communication object Threshold 2 - Input a appears.

Parameter options for KTY

This parameter window is visible if the option $K T Y$ is selected in the parameter Input a in the Parameter window Enable inputs a...c, page 170.

Manufacturer designation

Options: \quad	KT $100 / 110 / 130$
	KT $210 / 230$
	KTY $10-5 / 11-5 / 13-5$
	KTY $10-6 / 10-62 / 11-6 / 13-6 / 16-6 / 19-6$
	KTY $10-7 / 11-7 / 13-7$
	KTY $21-5 / 23-5$
	KTY $21-6 / 23-6$
	KTY $21-7 / 23-7$
	KTY $81-110 / 81-120 / 81-150$
	KTY $82-110 / 82-120 / 82-150$
	KTY $81-121 / 82-121$
	KTY $81-122 / 82-122$
	KTY $81-151 / 82-151$
	KTY $81-152 / 82-152$
	KTY $81-210 / 81-220 / 81-250$
	KTY $82-210 / 82-220 / 82-250$
	KTY $81-221 / 82-221$
	KTY $81-222 / 82-222$
	KTY $81-251 / 82-251$
	KTY $81-252 / 82-252$
	KTY $83-110 / 83-120 / 83-150$
	KTY $83-121$
	KTY 83-122
	KTY 83-151
	User-defined

For selection of a predefined KTY sensor

Note

If a KTY sensor which is not in the list is used, the option $K T Y$ user-defined can be used to enter its characteristic (see following page).

KTY user-defined

The following ohmic values must rise to higher temperatures
<- Note
To ensure correct functioning of the Analogue Input with respect to the user-defined entries, the ohm (resistance) values as visible for the preset values must be in ascending order.
An incorrect entry can lead to unrealistic output values!

Resistance in ohms at $\mathbf{- 5 0} . .+150^{\circ} \mathrm{C}$

Options:

$$
0 \ldots 1,030 \ldots 4,280 \ldots 5,600
$$

A resistance characteristic can be entered via these 11 parameters. The data can be found in the sensor manufacturer's technical documentation.

Note

The description of the further parameters can be found in the description Parameter window a: PT100, PT1000, page 191.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Line fault compensation Via cable length:

Cable length, single distance
[1... 30 m]
Options: 1... 10 ... 30
For setting the single cable length of the connected temperature sensor.

Important

The maximum cable length permitted between the sensor and device input is 30 m .

Cross-section of conductor

Value * $0.01 \mathrm{~mm}^{2}$ [1...150]
Options: $\quad 1 \ldots . \underline{100 \ldots 150\left(150=1.5 \mathrm{~mm}^{2}\right)}$
The cross-section of the conductor to which the temperature sensor is connected is entered using this parameter.

Important

Line fault compensation via cable length is only suitable for copper conductors.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Line fault compensation Via cable resistance

Cable resistance in milliohms

(total of forw. and ret. conduct.)
Options: 0...500...10,000
Using this parameter the level of cable resistance of the connected temperature sensor is set.

> Important
> In order to correctly measure the cable resistance, the conductors must be shorted together at the end of the cable and should not be connected to the Analogue Input.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Parameter window a: Threshold 1

The following details also apply to Threshold 2.

| General |
| :--- | :--- |
| Manual operation |
| Outputs A...H |
| Inputs a...c |
| Enable inputs a... |
| a: PT1000 |
| a: Threshold 1 |
| a: Threshold 1 Output |
| b: Switch sensor |
| c: Switch sensor |\quad| Tolerance band lower limit |
| :--- |
| Input in $0.1^{\circ} \mathrm{C}$ |
| Tolerance band upper limit |
| Input in $0.1^{\circ} \mathrm{C}$ |
| Threshold 1 can be changed via the bus |
| 1-bit or 1-byte |
| Send if threshold fallen below |
| Min. duration of the undershoot |
| Send if threshold exceeded |

Tolerance band lower limit Input in $0.1^{\circ} \mathrm{C}$
Options: - $-\mathbf{5 0 0} \ldots 1500$

Tolerance band upper limit Input in $0.1^{\circ} \mathrm{C}$
Options: -500... 1500
The upper and lower limits of the tolerance band are set via these two parameters.
The entry is made in steps of $0.1^{\circ} \mathrm{C}$, i.e. an entry of 1500 means $150^{\circ} \mathrm{C}$.

Threshold 1 can be changed via the bus

Options: No
Yes
This parameter specifies whether the limits can be changed via the bus.

- Yes: The following communication objects appear:

Modify - Input a Threshold 1 lower limit
Modify - Input a Threshold 1 upper limit.

Important

The value formats of these communication objects are the same as the format set in parameter window a: PT100/PT1000 or KTY, under the parameter Send output value as.

1-bit or 1-byte

Options: 1-bit
1-byte [0...+255]

Selection of option 1-bit:
Dependent parameters:

Send if threshold fallen below

Send if threshold exceeded

Options: No telegram
ON telegram
OFF telegram

- No telegram: No reaction occurs.
- ON telegram: A telegram with the value 1 is sent.
- OFF telegram: A telegram with the value 0 is sent.

Min. duration of the undershoot

Min. duration of the overshoot

Options: None
5/10/30/60 seconds
2/3/5/10/30/60 minutes
2/3/5/10/12/24 hours

- None: the threshold is sent directly.

With the further time options, a minimum duration can be selected. If the send condition reverts during the minimum duration, no telegrams are sent.

Selection of option 1-byte [0...+255]:
Dependent parameters:

Send if Threshold fallen below

[0...+255]

Send if Threshold exceeded

[0...+255]
Options: $\underline{0} . .255$
A value of 0 to 255 can be entered in single steps.
Min. duration of the undershoot

Min. duration of the overshoot

Options: \quad	$\frac{\text { None }}{5 / 10 / 30 / 60 \text { seconds }}$
	$2 / 3 / 5 / 10 / 30 / 60$ minutes
	$2 / 3 / 5 / 10 / 12 / 24$ hours

- None: the threshold is sent directly.

With the further time options, a minimum duration can be selected. If the send condition reverts during the minimum duration, no telegram is sent.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Parameter window a: Threshold 1 Output

The details in the following also apply to a: Threshold 2 Output.

General	
Manual operation	Send threshold object
Outputs A...H	
4 Inputs a...c	
Enable inputs a...c	
a: PT1000	
a: Threshold 1	
a: Threshold 1 Output	
b: Switch sensor	
c: Switch sensor	

Send threshold object

Options:
On change
On change and cyclically
This parameter is used to specify the send behavior of the threshold object.

- On change: The threshold object is sent when a change occurs.
- On change and cyclically: The threshold object is sent cyclically when a change occurs. The threshold object is sent cyclically until the value falls below or exceeds the other limit.

Dependent parameters:

Cycle time if lower threshold fallen below

Cycle time if upper threshold exceeded

Options:	None
	$\frac{5}{2 / 10 / 30 / 60 ~ s e c o n d s}$
	$2 / 3 / 5 / 10 / 30 / 60$ minutes
	$2 / 3 / 5 / 10 / 12 / 24$ hours

These two parameters are used to define the point at which cyclical sending should take place after an undershoot of the lower limit or an overshoot of the upper limit.

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

3.3 Communication objects

3.3.1 Summary of communication objects

No.	Function	Name	Data Point Type (DPT)	Length	Flags				
					C	R	S	T	U
0	In operation	General	1.002	1-bit	X	X		x	
1	Request status values	General	1.017	1-bit	x		x	x	
2	Block manual operation	General	1.003	1-bit	x		X		
3	Status Manual operation	General	1.003	1-bit	X	x		x	
4	Status byte	General	Non DPT	1-byte	X	x		x	
5	Fault (overload/short-circuit)	Output A Output A/B	1.005	1-bit	X	x		x	
6	Reset malfunction	Output A Output A/B	1.015	1-bit	X		x	x	
7	Fault (overload/short-circuit)	Output C Output C/D	1.005	1-bit	x	x		x	
8	Reset malfunction	$\begin{aligned} & \text { Output C } \\ & \text { Output C/D } \end{aligned}$	1.015	1-bit	x		x	x	
9	2nd control value, cooling, continuous (PWM)	Output A Output A/B	5.001	1-byte	X	x			
	2nd control value, cooling, continuous (3-point)	Output A Output A/B	5.001	1-byte	x	x			
	2nd control value, cooling, analog ($0 . . .10 \mathrm{~V}$)	Output A	5.001	1-byte	x	x			
10	Control value, heating, ON/OFF	Output A	1.001	1-bit	X		x		
	Control value, heating, continuous (PWM)	Output A	5.001	1-byte	x		x		
	Control value, heating, continuous (3-point)	Output A/B	5.001	1-byte	x		x		
	Control value, heating, analog ($0 \ldots .10 \mathrm{~V}$)	Output A	5.001	1-byte	x		X		
11	Status Control value	Output A Output A/B	5.001	1-byte	X	x		X	
	Status Control value	Output A Output A/B	1.011	1-bit	x	x		X	
12	Fault control value	Output A Output A/B	1.005	1-bit	X	x		x	
13	Activate purge	Output A Output A/B	1.003	1-bit	X		x		
14	Status Valve purge	Output A Output A/B	1.003	1-bit	X	x		x	
15	Priority 1, Forced operation	Output A Output A/B	1.001	1-bit	x		x		
	Priority 1, Block	Output A Output A/B	1.001	1-bit	X		X		
16	Priority 2, Forced operation	Output A Output A/B	1.001	1-bit	X		x		
	Priority 2, Block	Output A Output A/B	1.001	1-bit	x		x		
17	Priority 3, Forced operation	Output A Output A/B	1.001	1-bit	X		x		
	Priority 3, Block	Output A Output A/B	1.001	1-bit	x		x		
18	Status byte	Output A Output A/B	Non DPT	1-byte	X	X		x	
19	Not assigned								

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

No.	Function	Name	Data Point Type (DPT)	Length	Flags				
					c	R	S	T	U
20... 29	Output B CO as for output A								
30... 39	Output C CO as for output A								
40... 49	Output D CO as for output A								

No.	Function	Name	Data Point Type (DPT)	Length	Flags				
					C	R	S	T	U
50	Switch	Output E	1.001	1-bit	\times		x		
51	Switch speed 1	Fan EFG (Multi-level)	1.001	1-bit	x		x		
	Switch	Fan EFG (One-level)	1.001	1-bit	x		x		
	Permanent on	Output E	1.003	1-bit	x		x		
52	Switch speed 2	Fan EFG (Multi-level)	1.001	1-bit	x		x		
	Disable function Time	Output E	1.003	1-bit	x		x		
53	Switch speed 3	Fan EFG (Multi-level)	1.001	1-bit	x		x		
	Status Switch	Output E	1.001	1-bit	x	x		x	
54	Fan speed up/down	Fan EFG (Multi-level)	1.007	1-bit	x		x		
55	Status Fan ON/OFF	Fan EFG	1.001	1-bit	x	x		x	
56	Status Fan speed	Fan EFG (Multi-level)	5.010	1-byte	x	x		x	
57	Status Fan speed 1	Fan EFG (Multi-level)	1.001	1-bit	x	x		x	
58	Status Fan speed 2	Fan EFG (Multi-level)	1.001	1-bit	x	x		x	
59	Status Fan speed 3	Fan EFG (Multi-level)	1.001	1-bit	x	x		x	
60	Switch	Output F	1.001	1-bit	x		x		
	Run-on	Fan EFG (Multi-level)	1.003	1-bit	x		x		
61	Limitation 1	Fan EFG	1.003	1-bit	x		x		
	Permanent on	Output F	1.003	1-bit	x		x		
62	Limitation 2	Fan EFG	1.003	1-bit	x		x		
	Disable function Time	Output F	1.003	1-bit	x		x		
63	Limitation 3	Fan EFG	1.003	1-bit	x		x		
	Status Switch	Output F	1.001	1-bit	x	x		x	
64	Limitation 4	Fan EFG	1.003	1-bit	x		x		
65	Forced operation	Fan EFG	1.003	1-bit	x		x		
66	Automatic ON/OFF	Fan EFG	1.003	1-bit	x		x		
67	Status Automatic	Fan EFG	1.003	1-bit	x	x		x	
68	Status byte fan	Fan EFG	Non DPT	1-byte	x	x		x	
69	Control value A	Fan EFG (2 control values)	5.010	1-byte	x		x		
	Control value	Fan EFG (only 1 control value)	5.010	1-byte	x		x		
70	Control value B	Fan EFG (2 control values)	5.010	1-byte	x		x		
	Switch	Output G	1.001	1-bit	x		x		
71	Toggle control value A/B	Fan EFG (2 control values)	1.001	1-bit	x		x		
	Permanent on	Output G	1.003	1-bit	x		x		
72	Fault control value	Fan EFG	1.005	1-bit	x	x		x	
	Disable function Time	Output G	1.003	1-bit	x		x		
73	Status Switch	Output G	1.001	1-bit	x	x		x	
74...79	Not assigned								

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

No.	Function	Name	Data Point Type (DPT)	Length	Flags				
					C	R	S	T	U
80	Switch	Output H	1.001	1-bit	x		x		
81	Permanent on	Output H	1.003	1-bit	x		x		
82	Disable function Time	Output H	1.003	1-bit	x		X		
83	Status Switch	Output H	1.001	1-bit	x	x		x	
84... 89	Not assigned								
90	Block	Input a: Switch sensor	1.003	1-bit	x		X		
		Input a: Value/forced operation	1.003	1-bit	x		x		
	Output value	Input a: Temperature sensor	9.001	2-byte	x	x		x	
91	Switch 1	Input a: Switch sensor	1.001	1-bit	x		X	x	
	Value 1	Input a: Value/forced operation	Variable		x			x	
	Request output value	Input a: Temperature sensor	1.009	1-bit	x		X		
92	Switch 2	Input a: Switch sensor	1.001	1-bit	x		X	x	
	Value 2	Input a: Value/forced operation	Variable		x			X	
	Measured value out of range	Input a: Temperature sensor	1.001	1-bit	x	x		X	
93	Switch 3	Input a: Switch sensor	1.001	1-bit	x		x	x	
	Threshold 1	Input a: Temperature sensor	Variable		x	X		x	
94	Start event 0/1	Input a: Switch sensor	1.001	1-bit	x		x		
	Change Threshold 1 lower limit	Input a: Temperature sensor	Variable		x	x	x		
95	Change Threshold 1 upper limit	Input a: Temperature sensor	Variable		x	X	X		
96	Threshold 2	Input a: Temperature sensor	Variable		x	x		x	
97	Change Threshold 2 lower limit	Input a: Temperature sensor	Variable		x	x	x		
98	Change Threshold 2 upper limit	Input a: Temperature sensor	Variable		x	X	x		
99	Not assigned								
-									
100... 109	Input b The same CO as Input a								
110... 119	Input c The same CO as Input a								
120	Toggle heating	General	1.100	1-bit	X		X		
121	Valve control values parallel mode	General	1.100	1-bit	x		X		
-									

Communication objects General

No.	Function	Communication object name	Data type	Flags
$\mathbf{0}$	In operation	General	1 -bit DPT 1.002	C, R, T

The communication object is enabled if the parameter Enable communication object "In operation" 1-bit has been selected with the option Send value 0/1 cyclically in Parameter window General - Settings, page 71.
In order to regularly monitor the presence of the device on the KNX, an in-operation monitoring telegram is sent cyclically on the bus
As long as the communication object is activated, it sends a programmable in operation telegram
Telegram value: $\quad 1=$ System in operation with option Send value 1 cyclically
$0=$ System in operation with option Send value 0 cyclically

1	Request status values	General	1-bit DPT 1.017	C, W, T
This communication object is enabled if the option Yes has been selected for the parameter Enable communication object "Request status values" 1 -bit in the Parameter window General - Settings, page 71. If the communication object receives a telegram with the value $x(x=0 ; 1 ; 0$ or 1$)$, all Status communication objects are sent on the bus, as long as these have not been programmed with the option On change, After request or After a change or request. Option $x=1$ produces the following function: Telegram value: $\quad 1=$ All status messages are sent. $0=$ No reaction				
	Block manual operation	General	1-bit DPT 1.003	C, W
	nication object is enabled if ration in the Parameter wind mmunication object the Manu lue 0 , the button is blocked alue 0 , the button is blocked lue: $\quad 1=$ a button enab 	/disable via tion - Settin enabled or he device	been selected n, it toggles	parame tely to K
	Status Manual operation	General	1-bit DPT 1.003	C, R, T
	nication object is enabled if . operation" (1-bit) in the Pa nication object indicates wh Manual operation is sent $O n$ lue: $\quad 0=$ Manual operation 1 = Manual operation	s been sel Manual op ration is a quest or A	ter Enable ge 74. uest as prog	cation ob

No.	Function	Communication object name	Data type	Flags
$\mathbf{4}$	Status byte	General	1-byte none DPT	C, R, T

The status byte reflects the current state of the input.

Bit sequence 76543210
Bit 7: Heating or cooling mode (only in fan coil valves)
0 : Cooling mode
1: Heating mode
Bit 6: Not assigned
Always 0
Bit 5: \quad Not assigned
Always 0
Bit 4: Status of internal calibration
0: Calibration completed
1: Calibration running
Bit 3: Communication
0: Communication is OK
1: Communication is disrupted

Note

In the event of a fault "Internal communication fault", no values are sent if the option After request is selected

Bit 2: Status Input c Measured value out of range
0 : In range
1: Out of range
Bit 1: Status Input b Measured value out of range
0 : In range
1: Out of range
Bit 0: Status Input a Measured value out of range
0 : In range
1: Out of range
If the option Yes has been selected for the parameter Enable communication object "Request status values" 1-bit, the communication objects no. $4,18,28,38$ and 48 are sent immediately. For all other status objects, e.g. for the fan, it is also possible to use parameters to set the time when each of them is to be sent to the bus.
For further information see: Status byte General, p. 256

No.	Function	Communication object name	Data type	Flags
$\mathbf{5}$	Fault (overload/short-circuit)	Output A Output A/B	1-bit DPT $\mathbf{1 . 0 0 5}$	C, R, T

If there is a fault on an output, e.g. due to a short-circuit or overload, the LED A and B will flash. The communication object Fault (overload/short-circuit) simultaneously sends a telegram with the value 1.
In the event of a fault on output A and/or B, these two outputs are switched off.
After the fault has been fixed, the fault is reset via the communication object Reset malfunction and the communication object hast the value 0 .
If the fault still persists, the LED will flash again, and the communication object has the value 1.

Note

Signaling via LED occurs only for the devices FCA/S 1.1.2.2 and FCA/S 1.2.2.2.
The communication object is always visible.
Telegram value: $\quad 0=$ No fault on the output.
$1=$ Fault on the output.

6	Reset malfunction	Output A Output A/B	1-bit DPT 1.015	C, W, T

A fault is reset via this communication object, e.g. short-circuit/overload LED flashes on the device.

Note

Signaling via LED occurs only for the devices FCA/S 1.1.2.2 and FCA/S 1.2.2.2.
A reset is only successful if the fault has been repaired and is no longer present.
The LED turns off after it is successfully reset.
There is no reaction should the value 1 be received during correct operation.
If this communication object has not been assigned with a group address, the fault can only be reset when the device is restarted.
The communication object is always visible.
Telegram value: $\quad 0=$ No function
1 = Reset malfunction

7	Fault (overload/short-circuit)	Output C Output C/D	1-bit DPT 1.005	C, R, T
 See communication object 5 Output C Output C/D 1-bit DPT 1.015 C, W, T 8 Reset malfunction				

[^13]| No. | Function | Communication object
 name | Data type | Flags |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{9}$ | 2nd control value, cooling, continuous
 (PWM) | Output A | 1-byte
 DPT 5.001 | C, R |

This communication object is enabled if in the Parameter window Enable output A...D, page 78, a fan coil operation mode with 2 control values and 1 valve has been selected, along with the operating mode Valve drive, thermoelectric (PWM). In addition, the parameter Control value is received as in the Parameter window A: Output (Valve drive, thermoelectric (PWM)), page 99, must be parameterized with the option Byte.
The 2nd control value is set fixed to cooling.
The communication object value [0...255] determines the variable mark-to-space ratio of the valve drive. With communication object value 0 the output switches OFF (valve is closed with normally closed valve drive). With communication object value 255 the output switches ON permanently (valve is fully open with normally open valve drive).
$\begin{aligned} \text { Telegram value: } & 0=\text { OFF (valve drive closed) } \\ & x=\text { Intermediate values }\end{aligned}$ 255 = ON (valve drive opened)

9	2nd control value, cooling, continuous (3-point)	Output A/B	1-byte DPT 5.001	C, R

This communication object is enabled if a fan coil operating mode with 2 control values and 1 valve, and the operating mode Valve drive, motor-driven (3-point) have been selected in the Parameter window Enable output A...D, page 78.
The 2nd control value is set fixed to cooling.
The communication object value [0...255] determines the control value of the valve drive.
If the communication object value is 0 , the output switches OFF (voltage 0 V),
If the communication object value is 255 , the output switches $O N$ permanently (full voltage).
Telegram value: $\quad 0=$ OFF (valve drive closed)
x = Intermediate values
$255=$ ON (valve drive opened)

$\mathbf{9}$	2nd control value, cooling, analog $(0 \ldots .10 \mathrm{~V})$	Output A	1-byte DPT 5.001	C, R	
See communication object 9 2nd control value, cooling, continuous (3-point)					

Note

As the functions for all outputs are identical, only the functions of output A and A / B will be described.

No.	Function	Communication object name	Data type	Flags
10	Control value, heating, ON/OFF	Output A	$\begin{aligned} & \text { 1-bit } \\ & \text { DPT } 1.001 \end{aligned}$	C, W
This communication object is enabled if the operating mode Valve drive, thermoelectric (PWM) is selected in the Parameter window Enable output A...D, page 78, and the parameter Control value is received as is parameterized with the option Bit in the Parameter window A: Output (Valve drive, thermoelectric (PWM)), page 99.				
10	Control value, heating, continuous (PWM)	Output A	1-byte DPT 5.001	C, W
This wind Par The obje 255 Tele	munication object is enabled if the oper nable output A...D, page 78, and the pa window A: Output (Valve drive, therm unication object value [0...255] determ ue the output switches OFF (valve is tput switches ON permanently (valve is value: 0 = OFF (valve drive clos $\mathrm{x}=$ Intermediate values 255 = ON (valve drive open	on mode Valve drive, thermoe ameter Control value is receive lectric (PWM)), page 99. es the variable mark-to-space osed with normally closed valv fully open with normally open val d) d)	($P W M$) is se selected with f the valve d . With comm ive).	arameter Byte in the communication object value
10	Control value, heating, continuous (3-point)	Output A/B	1-byte DPT 5.001	C, W
The communication object value [$0 \ldots 255$] determines the control value of the valve drive. If the communication object value is 0 , the output switches OFF (voltage 0 V). If the communication object value is 255 , the output switches ON permanently (full voltage). Telegram value: $0=$ OFF (valve drive closed) x = Intermediate values $255=$ ON (valve drive opened)				
10	Control value, heating, analog (0... 10 V)	Output A	1-byte DPT 5.001	C, W
See communication object 10 Control value, heating, continuous (3-point)				

No.	Function	Communication object name	Data type	Flags
$\mathbf{1 1}$	Status Control value	Output A Output A/B	1-byte DPT 5.001	C, R, T

This communication object is enabled in the Parameter window Function on page 115, via the parameter Enable communication object "Status Control value" with the option Yes and has been selected in parameter Data type via the option Byte.

The control status of the output is sent via this communication object. Hereby, the limit position that the valve should assume is transferred.

The object is not sent in the event of a short circuit, overload, failure of the supply voltage and reference adjustment (only in operation mode Valve drive, motor-driven (3-point))
The LED of the corresponding output indicates the same value as the status.
Note

The status is sent if:

- a request is received via the communication object Request status values and the parameter is set to After request or After a change or request.
- the value of the communication object has changed and the parameter is set to After request or After a change or request.
- a read request is carried out on this communication object.

Telegram value: $\quad 0 \ldots 255=$ Control is displayed directly as a figure value
At $0=$ LED (yellow) off
At $>0=$ LED (yellow) on

11	Status Control value	Output A Output A/B	1-bit DPT 1.011	C, R, T

This communication object is enabled in Parameter window Function on page 115, via the parameter Enable communication object "Status Control value" with the option Yes and has been selected in parameter Data type via the option Byte
The control status of the output is sent via this communication object.
The LEDs of the corresponding outputs indicates the same value as the status.
The status is sent if:

- a request is received via the communication object Request status values and the parameter is set to After request or After a change or request.
- the value of the communication object has changed and the parameter is set to After request or After a change or request.
- a read request is carried out on this communication object.

Telegram value: $\quad 0=$ Control value equal to zero/LED (yellow) off 1 = Control value not equal to zero/LED (yellow) on

No.	Function	Communication object name	Data type	Flags
$\mathbf{1 2}$	Fault control value	Output A Output A/B	1-bit DPT 1.005	C, R, T

This communication object is enabled if the parameter Monitoring control values e.g. thermostat with the option Yes is selected in Parameter window A: Output (Valve drive, thermoelectric (PWM)), page 99.
This communication object indicates a possible fault in conjunction with the room thermostat. The communication objects Control value, heating, ON/OFF or Control value, heating, continuous (PWM) can be cyclically monitored. Should the control value not be received by the transmitting room thermostat within a parameterizable time, a telegram with the value 1 is sent.
The communication object value is sent via the communication object Request status values depending on the parameterization, on a change and/or request.
Telegram value: $\quad 0=$ No fault
1 = Fault

13	Activate purge	Output A Output A/B	1-bit DPT 1.003	C, W

This communication object is enabled in Parameter window Function, page 115, via the parameter Enable valve purge with the option Yes. This communication object triggers the valve purge.
Telegram value: $\quad 0=$ End valve purge, valve will be closed

$$
1 \text { = Start valve purge, valve will be opened }
$$

The purging cycle time is restarted if automatic valve purge has been activated at start-up of the device.
The purging cycle time will be restarted at the end of the actual purging period. The parameterized valve purging duration is included here.
If a valve purge currently underway is interrupted by a manual valve purge or a control value, which reached the parameterized purge value, the purge cycle time is restarted. If the active purge duration was less that the parameterized purge duration, this will not be taken into consideration. In this case, the actual purge cycle time is shorter in duration by the active purge duration.

Note

A valve purge not undertaken due to a higher priority will no longer be undertaken.
The following functions are executed with telegram value 0 .

- A valve purge currently under way is interrupted.
- The purge cycle with automatic valve purging will be restarted.

No.	Function	Communication object name	Data type	Flags
$\mathbf{1 4}$	Status Valve purge	Output A Output A/B	1-bit DPT 1.003	C, R, T

This communication object is enabled in Parameter window Function on page 115, via the parameter Enable valve purge and the communication object Status valve purge 1-bit with the option Yes. The status of the valve purge is displayed via this communication object.

The status is sent if:

- a request is received via the communication object Request status values and the parameter is set to After request or After a change or request.
- the value of the communication object has changed and the parameter is set to After request or After a change or request.
- a read request is carried out on this communication object.

Telegram value: $\quad 0=$ Valve purge inactive
1 = Valve purge active

Note

The status is displayed as soon as a valve purge has been activated. The status remains active, even when the valve purge has been interrupted, e.g. by a priority

15	Priority 1, Forced operation	Output A Output A/B	1-bit DPT 1.001	C, W

This communication object is enabled if the parameter Safety priority 1 with the option Forced operation i(1-bit-object) is enabled in the Parameter window Security, page 119
If a telegram with the value 1 or 0 is received (can be parameterized), the output is forcibly operated and the operation is blocked.
The reaction of the output with an active forced operation is set in parameter Control value on forced operation in \% [0...100].
Telegram value: $\quad 1 / 0=$ Forced operation

15	Priority 1, Block	Output A Output A/B	1-bit DPT 1.001	C, W

This communication object is enabled if the parameter Safety priority 1 with the option Block is enabled in the Parameter window Security, page 119.
If a telegram with the value 1 or 0 is received (can be parameterized), the output remains in its current position and the operation is blocked.

Telegram value: $\quad 1 / 0=$ Block

16	Priority 2, Forced operation	Output A	1 bit	CPT 1.001
Output A/B	Wit			
	Output A	DPT 1.001		
Output A/B				

See communication object 15

17	Priority 3, Forced operation	Output A Output A/B Output A Output A/B	1 bit DPT 1.001 1 bit DPT 1.001	C, W
See communication object 15				

No.	Function	Communication object name	Data type	Flags
$\mathbf{1 8}$	Status byte	Output A Output A/B	1-byte non DPT	C, R, T

This is a diagnostics byte for the output. The value of the communication object is sent when a telegram is received on the communication object Request status values. The communication object is always visible.
Telegram value:

Bit sequence
Bit 7: Not assigned
Bit 6: Not assigned
it 5: Not assigned
Always 0

Always 0
Bit 4: Overload/short circuit current
0: No overload/short-circuit
1: Overload/short circuit current
Bit 3: Manual operation active
0: Manual operation inactive
1: Manual operation active
Bit 2: \quad Safety priority 1, 2, 3 (forced operation or block)
0 : None active
1: At least one active
Bit 1: Purging
0: No valve purge
1: Valve purge active
Bit 0: Status output/control value >0
0: Control value $=0 /$ output $=$ OFF
1: Control value $=0 /$ output $=\mathrm{ON}$

For further information see: Status byte outputs A, B, C, D, p. 257

19				
Not assigned				
20... 29		Output B		
Communication objects for output B See communication objects 10...19, output A				
30... 39		Output C		
Communication objects for output C See communication objects 10...19, output A				
40... 49		Output D		
Communication objects for output D See communication objects 10...19, output A				

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

Abstract

Note All three fan speeds can also be individually parameterized as outputs E, F and G. See Communication objects Switch actuators E, page 227, Communication objects Output F, page 227 and Communication objects Output G, and 227 for descriptions of the communication objects. The settings options are described in Parameter window Enable output E...H, page 125

3.3.4.1

Communication objects Fan Multi-level

No	Function	Communication object name	Data type	Flags
50				
not assigned				
51	Switch speed 1	Fan E, F, G	1 bit DPT 1.001	C, W
	nication object is (Multi-level), pag is selected in Para communication ob hrough forced ope tion object Autom N telegrams are re ion objects, the valu ion objects Switch lue: $\quad 0=$ Fan 1 = Fan	Enable direct operation with er Enable communication obje peration (Multi-level), page 144 ceive a control value for fan sp r limitations $1 \ldots 4$ are retained s automatic operation. in a short period of time at vario one that will control the fan. A tches the fan off.	option Yes in Status Fan s 1. omatic oper Switch speed F telegram	meter wi bit with abled. 3) e three
52	Switch speed 2			
See communication object 51				
53	Switch speed 3			
See communication object 51				

No.	Function	Communication object name	Data type	Flags
$\mathbf{5 4}$	Fan speed up/down	Fan E, F, G	$\mathbf{1}$ bit DPT 1.007	C, W
This communication object is enabled if the parameter Enable direct operation is selected with the option Yes in the Parameter window E, F, G: Fan (Multi-level), page 126, and the parameter Enable communication object "Fan speed				
up/down" 1-bit is selected with the option Yes in the Parameter window Direct operation (Multi-level), page 144.				
With this communication object, the fan can be switched one fan speed further up or down via a 1 bit telegram. Switching (up/down) is determined by the telegram value. With multiple manual up or down switching, the required speed will be increased or reduced by a speed step. This is feasible until the maximum or minimum possible speed is reached. The parameterized limitations are taken into account here. Further up or down telegrams are ignored and not executed. Each new switching telegram initiates a recalculation of the required speed. Telegram value: $\quad 0=$ Switch fan speed DOWN				

55	Stat	Fan ON/OFF	Fan E, F, G	1 bit DPT 1.001	C, T
This communication object is enabled if the parameter Enable communication object "Status fan ON/OFF" 1-bit with the option Yes is selected in the Parameter window Status messages (Multi-level), page 131.					
The communication object receives the communication object value $1(\mathrm{ON})$, if at least one fan speed is not equal to zero (OFF). The value of the communication object is sent if not equal to zero. This communication object thus defines the status of the fan, whether it is switched on or off.					
$\begin{array}{ll} \text { Telegram value: } & 0=\mathrm{OFF} \\ & 1=\mathrm{ON} \end{array}$					
Note					
Some fans require an ON telegram before you set a fan speed. Using the communication object Status fan ON/OFF, the fan can, for example, be switched on centrally with a switch actuator via the main switch.					

56	Status Fan speed	Fan E, F, G	1-byte DPT 5.010	C, R, T

This communication object is enabled if the parameter Enable communication object "Status Fan speed" 1-byte with the option Yes is selected in the Parameter window Status messages (Multi-level), page 131.
You can parameterize whether the communication object value is updated only, or sent on the bus after a change or on request. It is possible to parameterize whether the actual or required speed is displayed with the status communication object.
This communication object allows you, for example, to display the fan speed as a figure value.
The following telegram values apply for the 1 byte communication object:

Figure value	Hexadecimal	Binary value bit $\mathbf{7 6 5 4 3 2 1 0}$	Fan speed
0	00	00000000	$0($ OFF)
1	01	00000001	Fan speed 1
2	02	00000010	Fan speed 2
3	03	00000011	Fan speed 3

No.	Function	Communication object name	Data type	Flags
57	Status Fan speed 1	Fan E, F, G	1-bit DPT 1.001	C, R, T
This opti You cha You com Tele	munication object is enab es is selected in the Param parameterize whether the also parameterize whether cation object allows you value: $\quad 0=$ Fan spee 1 = Fan speed	Enable communication obje us messages (Multi-level), pag ject value is updated but not indicate a current fan speed peed in a visualization or to in	Status Fan sp 31. , sent on req required fan it on a disp	it with th y sent is
58	Status Fan speed 2			
See communication object 57				
59	Status Fan speed 3			
See communication object 57				
60	Run-on	Fan E, F, G	1 bit DPT 1.003	C, W
This communication object is enabled if run-on behavior is enabled in the Parameter window Startup/Run-on, page 146. If run-on behavior is enabled, it will be activated after an ETS reset or by an ON telegram on this communication object. Telegram value: $\quad 0=$ Run-on disabled 1 = Run-on enabled				
61	Limitation 1	Fan E, F, G	1 bit DPT 1.003	C, W

This communication object is enabled if the parameter Enable limitations with the option Yes is enabled in the Parameter window Automatic control (Multi-level), page 136

Note

Limitation 1 is only active in automatic operation.

The limitation 1 is active if a telegram with the value 1 is received on the communication object Limitation 1. The Limitation 1 is deactivated if a telegram with the value 0 is received on the communication object Limitation 1 .
When Limitation 1 is activated, the fan can only assume the fan speed or speed range as set in the parameter Limitation 1.
Telegram value: $\quad 0=$ Limitation x inactive
$1=$ Limitation x active

| 62 | Limitation 2 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| See communication object 61 | | | |
| 63 | Limitation 3 | | |
| See communication object 61 | | | |
| 64 | Limitation 4 | | |
| See communication object 61 | | | |

No.	Function	Communication object name	Data type	Flags
65	Forced operation	Fan E, F, G	$\mathbf{1}$ bit DPT 1.003	C, W

This communication object is enabled if the parameter Enable communication object "Forced operation" 1-bit with the option Yes is selected in the Parameter window E, F, G: Fan (Multi-level), page 126.
If a forced operation is activated, the device switches to forced operation regardless of the control value and its parameterized Limitation 1... 4 .
Telegram value: $\quad 0=$ No forced operation
1 = Forced operation

66	Automatic ON/OFF	Fan E, F, G	1 bit DPT 1.003	C, W

This communication object is enabled if the parameter Automatic operation is enabled in the Parameter window E, F, G: Fan (Multi-level), page 126.
If automatic operation is enabled, it will be activated after a download, an ETS reset or by an ON telegram on this communication object.
Automatic mode is switched off if a telegram is received on a "manual communication object".
Manual communication objects are:

- Fan: Fan speed switch
- Fan: Switch speed $x(x=1,2$ or 3$)$
- Fan: Fan speed up/down
- Fan: Limitation $\mathrm{x}(\mathrm{x}=1,2,3$ or 4$)$

During forced operation, automatic mode remains active but operates only within the allowed limits.
If the value 1 is set in the parameter:
Telegram value: $\quad 0=$ Automatic operation OFF
1 = Automatic operation ON
If the value 0 is set in the parameter:
Telegram value: $\quad 0=$ Automatic operation ON
1 = Automatic operation OFF

67
Status Automatic
This communication object is enabled if the parameter Enable communication object "Status Automatic" 1-bit with the option
Yes is selected in the Parameter window Status messages (Multi-level), page 131.
You can parameterize whether the communication object value is updated but not sent, sent on request, or only sent when
changed.
The communication object indicates the status of automatic operation.
Telegram value: \quad1 = Inactive 1

No.	Function	Communication object name	Data type	Flags
68	Status byte fan	Fan E, F, G	1-byte Non DPT	C, R, T

This communication object is enabled if the parameter Enable communication object "Status byte fan" 1-byte with the option Yes is selected in the Parameter window Status messages (Multi-level), page 131.

The operating state of the fan can be displayed or sent on the bus via this communication object. You can parameterize whether the communication object value is updated but not sent, sent on request, or only sent when changed.
Telegram values:
Bit sequence
76543210
Bit 7: Forced operation

$$
0 \text { : Inactive }
$$

1: Active
Bit 6: Limitation 1
0 : Inactive
1: Active
Bit 5: Limitation 2
0: Inactive
1: Active
Bit 4: Limitation 3
0 : Inactive
1: Active
Bit 3: Limitation 4
0: Inactive
1: Active
Bit 2: Thermostat fault
0: Inactive
1: Active
Bit 1: Automatic
0: Inactive
1: Active
Bit 0: Control value
0: Control value A
1: Control value C

For further information see: Status byte fan, p. 258

No.	Function	Communication object name	Data type	Flags
69	Control value A (if 2 control values) or Control value (if only 1 control value)	Fan E, F, G	1-byte DPT 5.010	C, W

This communication object is enabled if the parameter Automatic operation is enabled in the Parameter window E, F, G: Fan (Multi-level), page 126.
Using this communication object, the control value for automatic operation is predefined as a 1 -byte value [0...255].

70	Control value B (if 2 control values)	Fan E, F, G	1-byte DPT 5.010	C, W

This communication object is enabled if automatic operation is enabled in the Parameter window E, F, G: Fan (Multi-level), page 126 and two inputs have been activated by the parameter Number of control value inputs in the Parameter window Automatic control (Multi-level), page 136.
Using this communication object the second control value for automatic operation is predefined as a 1 byte value [0...255].

71	Toggle control value A/B (if 2 control values)	Fan E, F, G	1-bit DPT 1.001	C, W

This communication object is enabled if two communication objects have been activated for the control values (control value A and control value B) in the Parameter window Automatic control (Multi-level), page 136, and they should be selected via a communication object.

72	Fault control value	Fan E, F, G	1-bit DPT 1.005	C, R, T

This communication object is enabled if the parameter Activate monitoring control values with the option Yes is selected in the Parameter window Automatic control (Multi-level), page 136.
This communication object displays control value faults.
The blower actuator uses the Fault control value communication object to report a fault and then reacts according to the parameterization for faults.
Telegram value: $\quad 0=$ No fault

$$
1 \text { = Fault }
$$

Note

If no value is sent to the communication object Control value A, Control value B or Control Value for a set time, a sender fault is assumed. If the communication object Toggle control value A / B receives a value, the monitoring time is started.

Not assigned

This communication object is enabled if the parameter Enable communication object "Status fan ON/OFF" 1-bit with the option Yes is selected in the Parameter window Status messages (single speed), page 153.
The communication object receives the communication object value 1 (ON), if the fan speed is not equal to zero (OFF). The value of the communication object is updated and sent when the fan speed is changed.
This communication object thus defines the status of the fan, whether it is switched on or off. It can also be used for control of a main switch for the fan.

$$
\begin{array}{ll}
\text { Telegram value: } & 0=\mathrm{OFF} \\
1=\mathrm{ON}
\end{array}
$$

Note

Some fans require an ON telegram before you set a fan speed. Using the communication object Status fan ON/OFF, the fan can, for example, be switched on centrally with a switch actuator via the main switch.

56... 60

Not assigned

No.	Function	Communication object name	Data type	Flags
$\mathbf{6 1}$	Limitation 1	Fan E, F, G	$\mathbf{1}$ bit DPT 1.003	C, W

This communication object is enabled if the parameter Enable limitations is selected with the option Yes in the Parameter window Automatic control (One-level), page 155.

Note

Limitation 1 is only active in automatic operation.

The limitation 1 is active if a telegram with the value 1 is received on the communication object Limitation 1 . The Limitation 1 is deactivated if a telegram with the value 0 is received on the communication object Limitation 1.
When Limitation 1 is activated, the fan can only assume the fan speed or speed range which has been set in the parameter window Limitation 1.
Telegram value: $\quad \begin{aligned} 0 & =\text { Limitation } \mathrm{x} \text { inactive } \\ 1 & =\text { Limitation } \mathrm{x} \text { active }\end{aligned}$

62	Limitation 2			
See communication object 61				
63	Limitation 3			
See communication object 61				
64	Limitation 4			
See communication object 61				
65	Forced operation	Fan E, F, G	1 bit DPT 1.003	C, W
This communication object is enabled if the parameter Enable communication object "Forced operation" 1-bit with the option Yes is selected in the Parameter window E, F, G: Fan (One-level), page 150.				
If a forced operation is activated, the device switches to forced operation regardless of the control value and its parameterized Limitation 1...4.				
Telegram value: $\quad \begin{array}{ll}0 & =\text { No forced operation } \\ 1 & =\text { Forced operation }\end{array}$				

No.	Function	Communication object name	Data type	Flags
66	Automatic ON/OFF	Fan E, F, G	$\mathbf{1}$ bit DPT 1.003	C, W

This communication object is enabled if the parameter Enable automatic operation with the option Yes is selected in the Parameter window E, F, G: Fan (One-level), page 150.

If automatic mode is enabled, it will be activated on this communication object with the value 1 after a download, ETS reset or via a telegram. Automatic mode is switched off if a signal is received on a "manual communication object".
Manual communication objects are:

- Fan: Fan speed switch
- Fan: Switch speed x ($x=1,2$ or 3)
- Fan: Fan speed up/down
- Fan: Limitation x ($x=1,2,3$ or 4)

During one of the four limitations or forced operation, automatic mode remains active but operates only within the allowed limits.
If the value 1 is set in the parameter:
Telegram value: $\quad 0=$ Automatic operation OFF
If the value 0 is set in the parameter:
Telegram value: $\quad 0=$ Automatic operation ON
1 = Automatic operation OFF

67	Status Automatic	Fan E, F, G	1 bit DPT 1.003	C, R, W

This communication object is enabled if the parameter Enable communication object "Status Automatic" 1-bit with the option Yes is selected in the Parameter window Status messages (single speed), page 153

You can parameterize whether the communication object value is updated but not sent, sent on request, or only sent when changed.
The communication object indicates the status of automatic operation.

Telegram value:	$0=$ Inactive
1	$=$ Activated

No.	Function	Communication object name	Data type	Flags
$\mathbf{6 8}$	Status byte fan	Fan E, F, G	1-byte Non DPT	C, R, T

This communication object is enabled if the parameter Enable communication object "Status byte fan" 1-byte with the option Yes is selected in the Parameter window Status messages (single speed), page 153.
The operating state of the fan can be displayed or sent on the bus via this communication object. You can parameterize whether the communication object value is updated but not sent, sent on request, or only sent when changed.
Telegram values:
Bit sequence
76543210
Bit 7: Forced operation
0 : Inactive
1: Active
Bit 6: Limitation 1
0 : Inactive
1: Active
Bit 5: Limitation 2
0: Inactive
1: Active
Bit 4: Limitation 3
0: Inactive
1: Active
Bit 3: Limitation 4
0: Inactive
1: Active
Bit 2: Thermostat fault
0: Inactive
1: Active
Bit 1: Automatic
0 : Inactive
1: Active
Bit 0: Control value
0: Control value A
1: Control value C

For further information see: Status byte fan, p. 258

No.	Function	Communication object name	Data type	Flags
$\mathbf{6 9}$	Control value A (if 2 control values) or Control value (if only 1 control value)	Fan E, F, G	1-byte DPT 5.010	C, W

This communication object is enabled if the automatic operation is enabled in the Parameter window E, F, G: Fan (One-level), page 150
Using this communication object the control value for automatic operation is predefined as a 1 byte value [0...255].

70	Control value B (if 2 control values)	Fan E, F, G	1-byte DPT 5.010	C, W

This communication object is enabled if automatic operation is enabled in the Parameter window E, F, G: Fan (One-level), page 150 and two inputs have been activated by the parameter Number of control value inputs in the Parameter window Automatic control (One-level), page 155.
Using this communication object the second control value for automatic operation is predefined as a 1 byte value [0...255].

71	Toggle control value A/B (if 2 control values)	Fan E, F, G	1-bit DPT 1.001	C, W

This communication object is enabled if two communication objects have been activated for the control values (control value A and control value B) in the Parameter window Automatic control (One-level), page 155, and they should be selected via a communication object.

72	Fault control value	Fan E, F, G	1-bit DPT 1.005	C, R, T

This communication object is enabled if the parameter Activate monitoring control values with the option Yes is selected in the Parameter window Automatic control (One-level), page 155
This communication object displays control value faults
The blower actuator uses the Fault control value communication object to report a fault and then reacts according to the parameterization for faults.

Telegram value: $\quad 0=$ No fault
1 = Fault

Note

If no value is sent to the communication object Control value A, Control value B or Control Value for a set time, a sender fault is assumed. If the communication object Toggle control value A / B receives a value, the monitoring time is started.

$73 . .79$				

Not assigned

ABB i-bus ${ }^{\circledR}$ KNX
 Commissioning

Note
If the outputs E, F and G are enabled as switch actuators, the parameters and options correspond to those of output H , see Communication objects Output H, page 228.

Communication objects Output E

No.	Function	Communication object name	Data type	Flags
$50 \ldots 53$		Output E		

Communication objects for output E
See communication objects $80 \ldots 83$, output H

Communication objects Output F

No.	Function	Communication object name	Data type	Flags
$60 \ldots 63$		Output F		
Communication objects for output F See communication objects $80 \ldots 83$, output H				

Communication objects Output G

No.	Function	Communication object name	Data type	Flags
$\mathbf{7 0 . . . 7 3}$		Output G		
Communication objects for output G See communication objects $80 \ldots 83$, output H				

No.	Function		Communication object name	Data type	Flags
80	Switch		Output H	1 bit DPT 1.001	C, W
This communication object is enabled if the parameter Output H is enabled in the Parameter window Enable output E...H, page 125.					
This communication object is used for switching the output ON/OFF. The device receives a switch telegram via the communication object Switch.					
N/O:					
Telegram value:		$\begin{aligned} & 1=\text { Switch ON } \\ & 0=\text { Switch OFF } \end{aligned}$			
N/C:					
Telegram value:		$\begin{aligned} & 1=\text { Switch OFF } \\ & 0=\text { Switch ON } \end{aligned}$			

81	Permanent on	Output H	1-bit DPT 1.003	C, W

This communication object is enabled if the parameter Enable function Time is selected with the option Yes in the Parameter window H: Output, page 163.
The output can be forcibly switched on with this communication object.
If the communication object receives a telegram with the value 1 , the output is switched on regardless of the value of the communication object Switch and remains switched on until the communication object Permanent $O N$ has the value 0. When the permanent ON state ends, the state of the communication object Switch is used.

Permanent ON only switches ON and "masks" the other functions. This means that the other functions, e.g. Staircase lighting, continue to run in the background but do not initiate a switching action. When permanent ON ends, the contact position which would result without the permanent ON function becomes active. For the Staircase lighting function the reaction after permanent ON is parameterized in Parameter window Time, page 166.

This communication object can be used, for example, to allow service or maintenance and cleaning personnel to initiate a permanent ON. The device receives a switch telegram via the switch object

Permanent ON becomes inactive after a download or bus voltage recovery.
Telegram value: $\quad 1=$ Activates permanent ON mode
0 = Deactivates permanent ON mode

82	Disable function Time	Output H	1 bit DPT 1.003	C, W

This communication object is enabled if the parameter Enable function Time is selected with the option Yes in the Parameter window H: Output, page 163.
The communication object value can be determined after a bus voltage recovery in the Parameter window Time, page 166, using the parameter Object value "Disable function Time" after a download.
With the Time function disabled, the output can only be switched on or off; the Staircase lighting function is not triggered.
Telegram value: $\quad 0=$ Staircase light disabled
1 = Staircase lighting enabled
The contact position at the time of disabling and enabling is retained and will only be changed with the next switch telegram to communication object Switch.

83	Status Switch	Output H	1 bit DPT 1.001	C, R, T

This communication object is enabled if the parameter Enable communication object "Status Switch" 1-bit with the option Yes is selected in the Parameter window H: Output, page 163.
You can parameterize whether the communication object value No, update only, On change, On request or After a change or request is sent on the bus. The communication object value directly indicates the current contact position of the switching relay.
The status value can be inverted.
Telegram value: $\quad 1=$ Relay ON or OFF depending on the parameterization
$0=$ Relay OFF or ON depending on the parameterization

Communication objects Inputs a...c

The communication objects of all Inputs do not differentiate from one another and are explained using Input a.

The descriptions of the parameter setting options of Inputs a...c are described in Parameter window Enable inputs a...c, page 170.

The communication objects Input a have the nos. 90...99.
The communication objects Input b have the nos. 100... 109
The communication objects Input c have the nos. 110... 119

No.	Function	Communication object name	Data type	Flags
$\mathbf{9 0}$	Block	Input a: Switch sensor	$\mathbf{1}$ bit DPT 1.003	C, W
This communication object is enabled if the parameter Enable communication object "Block" 1-bit with the option Yes is selected in the Parameter window a: Switch sensor, page 171. Using the communication object Block, the input can be blocked or enabled. With activated communication object Block the inputs are blocked.				
Note When the input is blocked there is fundamentally no reaction to a signal change on the input, but: - Waiting for a long button operation or a minimum signal duration is suspended. - Parameterized Send cyclically is not interrupted. - The description of the communication object Switch x is still possible. If the input state changed during the blocked phase, this leads to immediate sending of the new communication object value after enabling. If the input state remains the same during the blocking phase, the communication object value is not sent.				

Telegram value: \quad| $0=$ Enable input a |
| :--- |
| $1=$ Block input a |

91	Switch 1	Input a: Switch sensor	1 bit DPT 1.001	C, W, T

This communication object is enabled if the parameter Input a is selected with the option Switch sensor in the Parameter window Enable inputs a...c, page 170.
In accordance with the parameter setting, this communication object can be set to ON, OFF, Toggle, Terminate cyclic transmission or No edge evaluation via actuation of the input. With toggle, the previous value, e.g. 1, is toggled directly to the value 0 . The communication object can be sent cyclically, e.g. for lifesign monitoring of the sensor.

Note

The communication object can be written to externally. Thus cyclic sending is interrupted or may not be possible depending on the parameter setting.

No further communication objects are visible with the setting.

Telegram value: \quad| $0=\mathrm{OFF}$ | |
| :--- | :--- |
| 1 | $=\mathrm{ON}$ |

| 92 | Switch 2 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| See communication object 91 | | | |
| 93 | Switch 3 | | |

See communication object 91

Communication objects Value/forced operation

No.	Function	Communication object name	Data type	Flags
$\mathbf{9 0}$	Block	Input a: Value / forced operation	$\mathbf{1}$ bit DPT 1.003	C, W

This communication object is enabled if the parameter Input a is selected with the option Value/forced operation in the Parameter window Enable inputs a...c, page 170 and the parameter Enable communication object "Block" 1-bit is then selected with the option Yes in the Parameter window a: Value/forced operation, page 181.
Using the communication object Block, the input can be blocked or enabled. With activated communication object Block the inputs are blocked.

Note

When the input is blocked there is fundamentally no reaction to a signal change, but:

- Waiting for a long button operation or a minimum signal duration is suspended.
- The parameter setting 8-bit scene ends saving.
- Communication objects continue to be updated and sent if necessary.

When enabling an input, a change of the signal states (as opposed to before the block) leads to immediate processing, e.g.:

- The minimum actuation or detection of a long/short button push starts.
- Communication objects send their current value if necessary.

Telegram value: \quad| 0 | $=$ Enable input a |
| ---: | :--- |
| 1 | $=$ Block input a |

91	Value 1	Input a: Value / forced operation	DPT variable	C, T

This communication object is enabled if the parameter Input a with the option Value/forced operation is enabled in the Parameter window Enable inputs a...c, page 170.
This communication object sends a value on the bus with short operation when opening or closing the contact. The value and data type can be freely set in the parameters.

Communication objects Temperature sensor

No.	Function	Communication object name	Data type	Flags
$\mathbf{9 0}$	Output value	Input a: Temperature sensor	2-byte DPT 9.001	C, R, T

This communication object is used to send the output value to the bus.
The output value can be
sent as a 2-byte value [EIB floating point] EIS 5 DPT 9.001.

What is sent at an undershoot or overshoot of 10% ?
Up to an overshoot of 10% the measured value is shown and sent. Applies for both the upper and lower limits. Furthermore, the measured value continues to be sent as a Measured value $+10 \%$.

The following must be observed, particularly with the lower limit:
This only applies if the lower limit of 0 is different. If the lower limit is 0 , it is not possible to determine an undershoot.

91	Request output value	Input a: Temperature sensor	2-bit DPT 1.009	C, W

This communication object appears if the output value On request is to be sent.
If a 1 is received at this communication object, the current output value is sent once from the communication object Output value - Input a.

92	Measured value out of range	Input a: Temperature sensor	1-bit DPT 1.001	C, W
Telegram value: \quad1 0	$=$ Measured value out of range			
	$=$ Measured value in range			

The communication object can be used to check the short-circuit detection of the sensor. The check is repeated with every measurement

When is the value of the communication object sent?

Measured value out of range is sent if the measured value exceeds the lower or upper limit by more than 5 \%.
The following must be observed, particularly with the lower limit:
This only applies if the lower limit of 0 is different. If the lower limit is 0 , it is not possible to determine an undershoot.

Behavior with PT100 or PT1000?

The following applies with the calculation of the maximum and minimum output values with the PT100/1000:
The lowest measurable resistance with the PT100 is about 80 ohms (with the PT1000 800 ohms) and corresponds to about $50^{\circ} \mathrm{C}$

The highest measurable resistance with the PT100 is about 157 ohms (with the PT1000 1,570 ohms) and corresponds to about $+150^{\circ} \mathrm{C}$.
Important
The programmable feeder line resistance is subtracted from the measured resistance. Thereafter, a programmable
temperature offset is added.
Depending on the programming of the feeder line resistances and the temperature offset, different minimum and
maximum values result.
If the sensor goes open circuit, the highest possible positive temperature value in ${ }^{\circ} \mathrm{C}$ is sent. If the sensor goes short
circuit, the lowest possible negative temperature value in ${ }^{\circ} \mathrm{C}$ is sent. The sent temperature values are dependent, for
example, on the temperature sensor used, on the line error, ambient temperatures, etc.

Behavior with a floating contact?

The communication object has no function with the selection.

ABB i-bus ${ }^{\circledR}$ KNX Commissioning

No.	Function	Communication object name	Data type	Flags
$\mathbf{9 3}$	Threshold 1	Input a: Temperature sensor	Variable DPT variable	C, R, T

As soon as the set threshold value is exceeded or below the limit, it is possible to send a

1 -bit value $[0 / 1]$	EIS 1	DPT	1.001
1 -byte value $[0 \ldots+255]$	EIS 6	DPT	5.001

The object value depends on the data type of the threshold object (1-bit, 1-byte). The parameter can be found in the Parameter window a: Threshold 1, page 199

94	Change Threshold 1 lower limit	Input a: Temperature sensor	Variable DPT variable	C, R, T 95
Change Threshold 1 upper limit	Input a: Temperature sensor	Variable DPT variable	C, R, T	

The upper and lower limits of threshold 1 can be changed via the bus.
The data type of these communication objects depends on the set data type of the communication object Output value Input a.

Important				
The lower limit should be selected to be lower than the upper limit.				
96	Threshold 2	Input a: Temperature sensor		
See communication object 93				
97	Change Threshold 2 lower limit	Input a: Temperature sensor	Variable DPT variable	C, R, T
See communication object 94				
98	Change Threshold 2 upper limit	Input a: Temperature sensor	Variable DPT variable	C, R, T
See communication object 95				
99				
Not assigned				
100... 119				
Input b, c				

4

Planning and application

In this chapter you will find some tips and application examples for practical use of the device
Application examples and practical tips on the topic of temperature control, valve drives, characteristic curve correction etc., can be found in the Application manual Heating/Ventilation/Air-Conditioning at www.abb.com/knx.

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

4.1
 Fan output

In this section, the function charts and application explanations for the fan outputs are explained.

4.1.1

Fan operation

In fan operation a single phase fan, blower or convector can be controlled. In combination with a valve control 2,3 or 4 pipe system can be implemented. Fans are controlled via a three-stage speed controller. For this purpose, three windings are tapped off the fan motor. The resulting fan speed is dependent on the tapping selected. It must be ensured that two contacts are not switched on simultaneously. For control purposes, at least one three-stage changeover switch with zero position is usually used. This switch is mapped with a group of outputs in the device.

3
Three-speed changeover switch

The device is controlled in accordance with the following schematic principle:

With three Fan stage x switch ($x=1,2$, or 3) communication objects that are independent of each other, the fan stages are controlled via the outputs of the Fan Coil Actuator.

Alternatively, the fan control can be implemented via a 1-byte communication object Switch speed or via the communication object Fan speed up/down.

Some ventilation controls require an additional central switch on mechanism (main switch) in addition to the speed switch. Another output of the device may be used for this. The output must be linked to the communication object Status Fan ON/OFF. This will switch on the main switch if at least one fan speed is set. If the fan is OFF (Status Fan ON/OFF = 0), the main switch is also switched off.

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

4.1.1.1

Fan with changeover switch
Fans are usually controlled with a changeover switch.
The following control table results for a three-stage fan, which simulates the device with a group of switch outputs:

	Terminal 8	Terminal 9	Terminal 10
OFF	0	0	0
Fan speed 1	1	0	0
Fan speed 2	0	1	0
Fan speed 3	0	0	1

4.1.1.2

Fan with step switch

In some cases, the fan is controlled via a step switch. The following control table results for a three-stage fan, which simulates the device with its outputs:

	Terminal 8	Terminal 9	Terminal 10
OFF	0	0	0
Fan speed 1	1	0	0
Fan speed 2	1	1	0
Fan speed 3	1	1	1

The step switch cannot be switched on rapidly. If, for example, fan speed 3 is to be switched on from the OFF state, fan speeds 1 and 2 must be controlled with the associated dwell times first.

Automatic control

With automatic fan control a fan drive is connected directly to the device and switched via three floating contacts. A single-speed, two-speed or three-speed fan can be connected.

The fan speed is set automatically depending on the control value. For example, the following contro value ranges can be programmed for the corresponding fan speeds:

Control value	Fan speed
$0 \ldots .9 \%$	0 (fan off)
$10 \ldots 39 \%$	1
$40 \ldots 69 \%$	2
$70 \ldots 100 \%$	3

Important

The device is purely an actuator, which does not have a controller for a room thermostat (thermostat).

Control of the room temperature is implemented using a room thermostat which generally detects the room temperature. The device primarily controls a fan and valves. In addition to manual control via the communication objects Fan speed x, Fan speed switch or Fan speed UP/DOWN, the device can also operate in automatic mode together with a room thermostat. Communication objects Control value Heating, Control value Cooling or when operating with just a single input variable, the communication object Control value Heating/Cooling, are available.
The automatic mode is enabled in the parameter window Fan with the parameter Enable automatic operation. Depending on the HVAC system, this is set in the parameter window Control input and the control value communication objects are enabled.

An automatic operation parameterized in the ETS only becomes active after the first download.
Automatic mode is switched off either by a manual setting command via the communication objects Speed x, Fan speed switch or Fan speed up/down, or if a telegram with the value 0 is received via the communication object Automatic ON/OFF.

The automatic operation can be reactivated by the communication object Automatic ON/OFF or activated with the 1-byte communication object Toggle limitation.
Activating one of the four limitations or forced operation does not end automatic operation. By using a range limit (several fan stages are permissible), a limited automatic control with several fan stages (speeds) is possible.

The following functional diagram shows the relationship between automatic and manual operation of the device.

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

4.1.3

Direct operation

With direct fan control via the ABB i-bus ${ }^{\circledR} \mathrm{KNX}$, a fan drive is connected directly to the device and switched via three floating contacts. A single-speed, two-speed or three-speed fan can be connected.

The device sets the fan speed in accordance with a value received via the ABB i-bus ${ }^{\circledR}$. The value is received as a 1 byte value.

byte value	Hexadecimal	Binary value bit $\mathbf{7 6 5 4 3 2 1 0}$	Fan speed
0	00	00000000	0 (OFF)
1	01	00000001	Fan speed 1
2	02	00000010	Fan speed 2
3	03	00000011	Fan speed 3
>3	>03	>00000011	Values greater than 3 are ignored

Switchover between automatic and direct operation

The device can be switched between automatic operation and direct operation. The changeover to manual fan control is implemented via a 1 bit value. The fan speed is switched in accordance with the 1 byte value received.

Fan control is changed back to automatic operation if a 1 is received on the respective communication object.
The current status of automatic operation is fed-back via a 1 bit value.

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

4.1.5

Speed switching logic

The following illustration shows the speed changeover logic for the device depending on the control values and the parameterized threshold values and hysteresis values.

The diagram relates to a three-speed fan without parameterized fan limitations. The fan limitations are only relevant after the fan speed has been determined and do not change the flow chart.

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

4.1.6

Fan operation functional diagram
The following illustration indicates the sequence in which the fan control functions are processed. Communication objects, which lead to the same box, have the same priority and are processed in the sequence in which the telegrams are received.

4.2

Switch output
In this section, the function diagrams and application explanations for the switch outputs are explained.

4.2.1

Function diagram

The following illustration indicates the sequence in which the functions are processed. Communication objects which lead to the same box have the same priority and are processed in the sequence in which the telegrams are received.

Note

When the communication object Switch receives a telegram, the result of that telegram serves as an input signal for the Time function. If that function is not disabled, a corresponding switch signal is generated. Subsequently, the switching action is only dependent on the state of the bus voltage. The relay is switched if a switching action allows it.

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

4.2.2
4.2.2.1

Time function
The Time function can be enabled (value 0) and disabled (value 1) via the bus (1 bit communication object Disable function Time). The output operates without a delay as long as the Time function is disabled.

The following functions can be undertaken using the Time function:

- Staircase lighting

You can switch, for example, between functions, e.g. function Staircase lighting (night time operation) and normal ON/OFF switch function (daytime operation).

Staircase lighting

After the staircase lighting time Ton has elapsed, the output switches off automatic. For every telegram with the value 1, the staircase lighting time restarts, unless the parameter Extending staircase lighting by multiple operation ("Pumping up") in the Parameter window Time, page 166, is set to No (not retriggerable).

The reaction is the basic reaction of the Staircase lighting function.
Via "pumping up" - actuation of the push button several times in succession - the user can adapt the staircase lighting to current needs. The maximum duration of the staircase lighting time can be set in the parameters.

If the device receives a further ON telegram when the staircase lighting is switched on, the staircase lighting time is added to the remaining period.

4.3 Valve drives, valves and controller

4.3.1

Electromotor Valve Drives
Electromotor Valve Drives open and close valves via a small electric motor. Electromotor valve drives are offered as proportional or as 2 or 3 -way valve drives.

Proportional valve drives are controlled via an analogue signal, e.g. $0 . . .10 \mathrm{~V}$. They can be controlled with the device. 2 or 3-point valve drives are controlled via switching of the supply voltage.
2 -point valve drives are controlled via the telegrams OPEN and CLOSE. The valve can only be completely open or completely closed. 2-point valves are controlled via a 2-point control or pulse width modulation (PWM). 2-point valve drives which require 2-point control cannot be controlled with the device.

The device does not support the control of electric motor 3-point valve drives. These are normally connected via three connection cables to the device: Neutral conductor, switched phase to OPEN, switched phase for CLOSE. Using 3-point control value drives, the valve can be opened by any desired percentage and the position can be retained over an extended period. If the valve does not move, no voltage is applied to the motor.

The valve is opened wide enough to allow the exact quantity of hot or cold water to flow that is required to bring the heat exchanger to the required temperature. Thus the valve is controlled via the valve opening ($0 . . .100 \%$). The control usually used in most cases is continuous control.

Electrothermal Valve Drives

Electrothermal Valve Drives are adjusted due to heat expansion of a material caused by a flow of electric current. Electrothermal Valve Drives are controlled by pulse width modulation. The device does not support the control of Electrothermal Valve Drives via pulse width modulation.
Electrothermal Valve Drives are offered in the de-energized closed and de-energized opened variants. Depending on the variant, the valve is opened when voltage is applied and closed when no voltage is applied, or vice versa.

Electrothermal Valve Drives are connected via two connection cables to the device.

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

4.3.3

4.3.3.1

Control types

The following control types are commonly used for the control of valves in heating, air-conditioning and ventilation applications.

- Continuous control
- Pulse width modulation (PWM)
- Pulse width modulation - calculation

With continuous control, a control value is calculated based, on the target temperature and the actual temperature, and is used to optimally set the temperature. The valve is brought to a position, which complies with the calculated control value. With this method the valve can be fully opened, fully closed and even positioned in every intermediate position.

Continuous control is the most precise form of temperature control. At the same time, the positioning frequency of the valve drive can be kept low. Continuous control can be implemented with the device for electro-motor 3-point valve drives. This is implemented via a 1 byte control.

What is a 1 byte control?

For 1 byte control, a value of $0 \ldots 255$ (corresponds to $0 \% \ldots 100 \%$) is preset by the room thermostat. At 0%, for example, the valve is closed and at 100% it is fully opened.

Pulse width modulation (PWM)

With pulse width modulation, the valve is operated as with 2-point control exclusively in the positions fully opened and fully closed. In contrast to a 2-point control, the position is not controlled via limit values, but rather by calculated control values similar to continuous control.

The control value is fixed for a timed cycle and recalculated in the duration for valve opening. The control value 20% at a cycle time of 15 minutes, for example, will be recalculated for a valve opening time of three minutes. The control value 50% results in a valve opening time of 7.5 minutes.

With pulse width modulation, a relatively accurate setting of the temperature can be achieved without any resulting overshoots. Simple control values can be used. The positioning frequency of the control value is relatively high.

Pulse width modulation can be used with the device in conjunction with Electromotor or Electrothermal Valve Drives.

For example:
When the device receives a 1 byte control value (continuous control) as an input signal, this value together with the parameterized cycle time from a PWM calculation is converted into a signal for a 2-point control (ON-OFF-ON).

With PWM control, the received control value ($0 . . .100 \%$) calculated in the control algorithm is converted to a pulse width modulation. The conversion is based on a constant cycle time. If the device for example, receives a control value of 20%, then for a cycle time of 15 minutes the valve will be opened for three minutes (20% of 15 minutes) and closed for 12 minutes (80% of 15 minutes).

ABB i-bus ${ }^{\circledR}$ KNX Planning and application

Pulse width modulation - calculation

With pulse width modulation, control is implemented by a variable mark-space ratio.

During the time ton the valve is opened and during the time toff it is closed. On account of ton $=0.4 \times$ tcyc the valve is set to about 40% on. tcyc is the so-called PWM cycle time for continuous control.

$4.4 \quad$ Reaction on bus voltage failure, recovery, download and ETS reset

The way in which the device reacts on bus voltage failure or recovery, download and ETS reset are described below.

Abstract

Important For system reasons, the device switches the outputs OFF for about 1 second after bus voltage recovery, download or ETS reset. The reaction is the same after overload, short-circuit and supply voltage recovery.

Switch off is not taken into account in the status objects.

After switch off, the outputs assume the current state.

4.4.1
 Bus voltage recovery

Fan or switch actuator reaction to bus voltage failure can be set.

Bus voltage recovery

- A fan speed value can be predefined for bus voltage recovery. In Switch actuator mode, the communication object Switch can be written with 0, 1 or not written.
- Status communication objects are sent provided that the option Only after changing or After a change or request has been set.
- The sending delay is only active at bus voltage recovery!

4.4.3
 ETS reset

What is an ETS reset?

Generally an ETS reset is defined as a reset of the device via the ETS. The ETS reset is triggered in the ETS under the menu item Commissioning with the function Reset device. This stops and restarts the application.

Download
During a download, the output behaves just as it would on bus voltage failure.

Note

After a download with a change, the parameter reacts as if there has been an ETS reset.
If the application is downloaded again (full download) after a full discharge, the reaction is the same as after an ETS reset.
After the application is removed or after an interrupted download, the device no longer functions.

ABB i-bus ${ }^{\circledR}$ KNX
 Planning and application

$4.5 \quad$ Priorities

Fan

The priorities for telegram processing are defined as follows:

1. Bus voltage failure
2. Forced operation
3. Direct operation
4. Limitation of automatic operation
5. Malfunction of automatic operation
6. Control value automatic operation
7. Bus voltage recovery

Switch Actuator

The priorities for telegram processing are defined as follows:

1. Bus voltage failure
2. Function Time (Staircase lighting)
3. Switching telegrams
4. Bus voltage recovery

Output A, B, C and D

The priorities for telegram processing are defined as follows:

1. Manual operation, if active
2. Parameterized valve position after bus voltage recovery
3. Communication object Block
4. Communication object Forced operation
5. Valve Purge
6. Control values

Note

1 corresponds with the highest priority.

A Appendix

A. 1

Scope of delivery

The Fan Coil Actuator is supplied together with the following components. The delivered items should be checked against the list below.

- $1 \times$ Fan Coil Actuator, alternatively:

FCA/S 1.1.1.2 Fan Coil Actuator, PWM, MDRC
FCA/S 1.2.1.2 Fan Coil Actuator, 0-10V, MDRC
FCA/S 1.1.2.2 Fan Coil Actuator PWM, Manual Operation, MDRC
FCA/S 1.2.2.2 Fan Coil Actuator, 0-10V, Manual Operation, MDRC

- $1 \times$ installation and operating instructions
- $1 \times$ bus connection terminal (red/black)

ABB i-bus ${ }^{\circledR}$ KNX

A. $2 \quad$ Status byte General

A. 3 Status byte outputs A, B, C, D

= applicable

ABB i-bus ${ }^{\circledR}$ KNX

A. 4 Status byte fan

ABB i-bus ${ }^{\circledR}$ KNX

Appendix

A. $5 \quad$ Order details

Short description	Description	Order No.	bbn 40 16779 EAN	Weight 1 pc [kg]	Packaging [pcs.]
FCA/S 1.1.1.2	Fan Coil Actuator, PWM, MDRC	2CDG110195R0011	942195	0.1	1
FCA/S 1.1.2.2	Fan Coil Actuator, PWM, Manual Operation, MDRC	2CDG110194R0011	942188	0.1	1
FCA/S 1.2.1.2	Fan Coil Actuator, 0-10V, MDRC				
FCA/S 1.2.2.2	Fan Coil Actuator, 0-10V, Manual Operation, MDRC	2CDG110193R0011	942171	0.1	1

ABB i-bus ${ }^{\circledR}$ KNX Appendix

A. 6 Notes

Contact Us

ABB STOTZ-KONTAKT GmbH

Eppelheimer Straße 82
69123 Heidelberg, Germany
Phone: +49 (0)6221 701607
Fax: $\quad+49(0) 6221701724$
e-mail: knx.marketing@de.abb.com

Further information and local contacts: www.abb.com/knx

Note:
We reserve the right to make technical changes or modify the contents of this document without prior notice.
The agreed properties are definitive for any orders placed. ABB AG shall not be liable for any consequences arising from errors or incomplete information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Reproduction, transfer to third parties or processing of the content - including sections thereof - is not permitted without prior expressed written permission from ABB AG.

Copyright © 2015 ABB
All rights reserved

[^0]: 1) For multiple element lamps or other types, the number of electronic ballasts must be determined using the peak inrush current of the ballasts.
[^1]: 1) For multiple element lamps or other types the number of electronic ballasts must be determined using the peak inrush current of the ballasts.
[^2]: ${ }^{* 3}$ in addition to current measured value at ambient temperature (Tu_{u})
 *4 incl. cable and sensor errors

[^3]: 1) The maximum inrush current peak may not be exceeded.
 ${ }^{2)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms .
[^4]: 1) The maximum inrush current peak may not be exceeded.
 ${ }^{2)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms .
[^5]: 1) For multiple element lamps or other types the number of electronic ballasts must be determined using the peak inrush current of the ballasts.
[^6]: 1) For multiple element lamps or other types, the number of electronic ballasts must be determined using the peak inrush current of the ballasts.
[^7]: 1) The maximum inrush current peak may not be exceeded.
 ${ }^{2)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms .
[^8]: 1) For multiple element lamps or other types, the number of electronic ballasts must be determined using the peak inrush current of the ballasts.
 2) Limited by protection with B16 automatic circuit-breaker.
[^9]: Note
 Outputs A and C are automatically assigned via the selection in the parameter Fan Coil operating mode.

[^10]: Note
 The remaining parameter descriptions can be found in Parameter Distinction between long and short operation - No, page 173.

[^11]: Notes
 If the input is disabled and the option Send cyclically is set, the last state is still sent regardless of the block. The option Block still blocks the physical input, sending continues internally.

[^12]: Note
 The remaining parameter descriptions can be found in the chapter Parameter Distinction between long and short operation - No, page 184.

[^13]: See communication object 6

