ABB i-bus ${ }^{\circledR}$ KNX

Room Master Basic, MDRC RM/S 1.1, 2CDG 110094 R0011

The Room Master Basic is a modular installation device (MDRC) in ProM design. It is intended for installation in the distribution board on 35 mm mounting rails. The assignment of the physical address as well as the parameter settings is carried out with ETS 2 from version V1.3a or higher.

The device is powered via the

Technical data

Supply	Bus voltage	21... 32 V DC
	Current consumption, bus	< 12 mA (Fan-In 1)
	Leakage loss, bus	Maximum 250 mW
* The maximum power consumption of the device results from the following specifications:	Leakage loss, device	Maximum $4.85 \mathrm{~W}^{*}$
	KNX bus connection	0.25 W
	Relay 20 A	1.0 W
	Relay 16 A	2.0 W
	Relay 6 A	0.6 W
	Electronic outputs 0.5 A	1.0 W
Connections	KNX	Via bus connection terminals 0.8 mm Ø, solid
	Load circuits	Screw terminals with universal head (PZ 1) $0.2 \ldots 4 \mathrm{~mm}^{2}$ stranded, $2 \times\left(0.2 \ldots 2.5 \mathrm{~mm}^{2}\right)$ $0.2 \ldots 6 \mathrm{~mm}^{2}$ single core, $2 \times\left(0.2 \ldots 4 \mathrm{~mm}^{2}\right)$
	Ferrules without/with plastic sleeves	without: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ with: $0.25 \ldots 4 \mathrm{~mm}^{2}$
	TWIN ferrulese	$0.5 \ldots 2.5 \mathrm{~mm}^{2}$ Contact pin length at least 10 mm
	Tightening torque	maximum 0.8 Nm
	Fans/valves/inputs	Screw terminal, slot head $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ stranded $0.2 \ldots 4 \mathrm{~mm}^{2}$ solid core
	Tightening torque	maximum 0.6 Nm
Operating and display elements	Programming button/LED	for assignment of the physical address
Enclosure	IP 20	to DIN EN 60529
Safety class	11	to DIN EN 61140
Isolation category	Overvoltage category	III to DIN EN 60 664-1
	Pollution degree	2 to DIN EN 60 664-1
KNX safety extra low voltage	SELV 24 V DC	
Temperature range	Operation	$-5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$
	Transport	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
	Storage	$-25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Ambient conditions	Maximum air humidity	93%, no condensation allowed

ABB i-bus ${ }^{\circledR}$ KNX
Room Master Basic, MDRC
RM/S 1.1, 2CDG 110094 R0011

Design	Modular installation device (MDRC)	Modular installation device, ProM
	Dimensions	$90 \times 144 \times 64.5 \mathrm{~mm}$ ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$)
	Mounting width in space units	8 modules at 18 mm
	Mounting depth	64.5 mm
Installation	On 35 mm mounting rail	to DIN EN 60715
Mounting position	as required	
Weight	0.4 kg	
Housing/colour	Plastic housing, grey	
Approvals	KNX to EN 50 090-1, -2	Certification
CE mark	in accordance with the EMC guidelin	low voltage guideline

Electronic outputs

Rated values	Number	4, non-isolated, short-circuit proofed
	U_{n} rated voltage	$24 \ldots .230 \mathrm{VAC}(50 / 60 \mathrm{~Hz}$)
I_{n} rated current (per output pair)	0.5 A	
Continuous current	0.5 A resistive load at T_{A} up to $20^{\circ} \mathrm{C}$	
	$0.3 \mathrm{~A} \mathrm{resistive} \mathrm{load} \mathrm{at} \mathrm{T}_{\mathrm{A}}$ up to $60^{\circ} \mathrm{C}$	
	Inrush current	Maximum $1.6 \mathrm{~A}, 10$ s at T_{A} bis $60^{\circ} \mathrm{C}$
		$\mathrm{T}_{\mathrm{A}}=$ ambient temperature

Binary inputs

Rated values	Number	$8^{1)}$
	U_{n} scanning voltage	32 V , pulsed
	I_{n} scanning current	0.1 mA
	Scanning current I_{n} at switch on	maximum 355 mA
	Permissible cable length	$\leq 100 \mathrm{~m}$ one-way,
1) All binary inputs are internally connected to the same potential.	at cross-section $1.5 \mathrm{~mm}^{2}$	

Room Master Basic, MDRC
RM/S 1.1, 2CDG 110094 R0011

Rated current output 6 A

$\left.\begin{array}{lll} & \begin{array}{l}\text { Number } \\ U_{n} \text { rated voltage } \\ I_{n} \text { rated current (per output) }\end{array} & \begin{array}{l}3 \text { contacts } \\ \text { Rated }\end{array} \\ \hline & \begin{array}{l}\text { AC3* operation (cos } \varphi=0.45) \\ \text { DIN EN } 60947-4-1\end{array} & 6 \mathrm{~A}\end{array}\right)$
${ }^{1)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds.
Typical delay of the relay is approx. 20 ms .
${ }^{2)}$ The maximum inrush-current peak may not be exceeded.

* What do the terms AC1, AC3 and AC5a mean?

In Intelligent Installation Systems different switching capacity and performance specifications which are dependent on the special application have become established in industrial and residential systems. These performance specifications are rooted in the respective national and international standards. The tests are defined so that typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential) are simulated.
The specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:
AC1 - Non-inductive or slightly inductive loads, resistive furnaces (relates to switching of ohmic/resistive loads)
AC3 - Squirrel-cage motors: Stating, switching off motors during running (relates to (inductive) motor load)
AC5a - Switching of electric discharge lamps
These switching performances are defined in the standard DIN EN 60947-4-1
Contactors and motor-starters - Electromechanical contactors and motor-starters.
The standard describes starter and/or contactors which previously preferably used in industrial applications.

Room Master Basic, MDRC

RM/S 1.1, 2CDG 110094 R0011

Rated current outputs 16 A

Rated value	Number	2
	U_{n} rated voltage	250/440 V AC ($50 / 60 \mathrm{~Hz}$)
	I_{n} rated current	16 A
Switching currents	AC3* operation $(\cos \varphi=0.45)$ DIN EN 60 947-4-1	8 A/230 V
	AC1* operation ($\cos \varphi=0.8$) DIN EN 60 947-4-1	$16 \mathrm{~A} / 230 \mathrm{~V}$
	Fluorescent lighting load AX to DIN EN 60 669-1	$16 \mathrm{~A} / 250 \mathrm{~V}(70 \mu \mathrm{~F})^{2)}$
	Minimum switching performance	$\begin{aligned} & 100 \mathrm{~mA} / 12 \mathrm{~V} \\ & 100 \mathrm{~mA} / 24 \mathrm{~V} \end{aligned}$
	DC current switching capacity (resistive load)	$16 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical service life	$>3 \times 10^{6}$
	Electronic endurance to DIN IEC 60 947-4-1	
	AC1* (240 V/cos $\varphi=0.8$)	$>10^{5}$
Switching times ${ }^{11}$	Maximum relay position change per output and minute if only one relay is switched.	313

Fluorescent lighting load $\mathrm{AX} \quad 16 \mathrm{~A} / 250 \mathrm{~V}(70 \mu \mathrm{~F})^{2)}$
Minimum switching performance $\quad 100 \mathrm{~mA} / 12 \mathrm{~V}$

DC current switching capacity $16 \mathrm{~A} / 24 \mathrm{~V}=$ (resistive load)
${ }^{1)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds.
Typical delay of the relay is approx. 20 ms .
${ }^{2)}$ The maximum inrush-current peak may not be exceeded.

*What do the terms AC1, AC3 and AC5a mean?

In Intelligent Installation Systems different switching capacity and performance specifications which are dependent on the special application have become established in industrial and residential systems. These performance specifications are rooted in the respective national and international standards. The tests are defined so that typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential) are simulated.
The specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.
Typical application:
AC1 - Non-inductive or slightly inductive loads, resistive furnaces (relates to switching of ohmic/resistive loads)

AC3 - Squirrel-cage motors: Stating, switching off motors during running (relates to (inductive) motor load)
AC5a - Switching of electric discharge lamps
These switching performances are defined in the standard DIN EN 60947-4-1 Contactors and motor-starters - Electromechanical contactors and motor-starters. The standard describes starter and/or contactors which previously preferably used in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX	Room Master Basic, MDRC
	RM/S 1.1,2CDG 110094 R0011

Lamp load output

Lamps	Incandescent lamp load	2300 W
Fluorescent lamp T5 / T8	Uncorrected	2300 W
	Parallel compensated	1500 W
	DUO circuit	1500 W
Low-voltage halogen lamps	Inductive transformer	1200 W
	Electronic transformer	1500 W
	Halogen lamp 230 V	2300 W
Dulux lamp	Uncorrected	1100 W
	Parallel compensated	1100 W
Mercury-vapour lamp	Uncorrected	2000 W
	Parallel compensated	2000 W
Switching performance (switching contact)	Max. peak inrush-current $\mathrm{I}_{\mathrm{p}}(150 \mu \mathrm{~s})$	400 A
	Max. peak inrush-current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$	320 A
	Max. peak inrush-current $\mathrm{I}_{\mathrm{p}}(600 \mu \mathrm{~s})$	200 A
Number of electronic ballasts (T5/T8, single element) ${ }^{11}$	18 W (ABB EVG $1 \times 58 \mathrm{CF}$)	23
	24 W (ABB EVG-T5 $1 \times 24 \mathrm{CY}$)	23
	36 W (ABB EVG $1 \times 36 \mathrm{CF})$	14
	58 W (ABB EVG $1 \times 58 \mathrm{CF}$)	11
	80 W (Helvar EL 1×80 SC)	10

${ }^{1)}$ For multiple element lamps or other types the number of electronic ballasts must be determined using the peak inrush current of the electronic ballasts.

Room Master Basic, MDRC

RM/S 1.1, 2CDG 110094 R0011

Rated current output 20 A

Rated value	Number	1
	U_{n} rated voltage	250/440 V AC ($50 / 60 \mathrm{~Hz}$)
	I_{n} rated current	20 A
Switching currents	AC3* operation $(\cos \varphi=0.45)$ DIN EN 60 947-4-1	$16 \mathrm{~A} / 230 \mathrm{~V}$
	AC1* operation ($\cos \varphi=0.8$) DIN EN 60 947-4-1	$20 \mathrm{~A} / 230 \mathrm{~V}$
	Fluorescent lighting load AX to DIN EN 60 669-1	$20 \mathrm{~A} / 250 \mathrm{~V}(140 \mu \mathrm{~F})^{2}$
	Minimum switching performance	$\begin{aligned} & 100 \mathrm{~mA} / 12 \mathrm{~V} \\ & 100 \mathrm{~mA} / 24 \mathrm{~V} \end{aligned}$
	DC current switching capacity (resistive load)	$20 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical service life	$>10^{6}$
	Electronic endurance to DIN IEC 60 947-4-1	
	AC1* (240 V/cos $\varphi=0.8)$	$>10^{5}$
	AC3* (240 V/cos $\varphi=0.45$)	$>3 \times 10^{4}$
	AC5a* (240 V/cos $\varphi=0.45$)	$>3 \times 10^{4}$
Switching times ${ }^{1)}$	Maximum relay position change per output and minute if only one relay is switched.	93

) The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds.
Typical delay of the relay is approx. 20 ms .
${ }^{2}$) The maximum inrush-current peak may not be exceeded.

*What do the terms AC1, AC3 and AC5a mean?

In Intelligent Installation Systems different switching capacity and performance specifications which are dependent on the special application have become established in industrial and residential systems. These performance specifications are rooted in the respective national and international standards. The tests are defined so that typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential) are simulated.
The specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:
AC1 - Non-inductive or slightly inductive loads, resistive furnaces (relates to switching of ohmic/resistive loads)

AC3 - Squirrel-cage motors: Stating, switching off motors during running (relates to (inductive) motor load)
AC5a - Switching of electric discharge lamps
These switching performances are defined in the standard DIN EN 60947-4-1 Contactors and motor-starters - Electromechanical contactors and motor-starters. The standard describes starter and/or contactors which previously preferably used in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX

Room Master Basic, MDRC

RM/S 1.1, 2CDG 110094 R0011

Lamp load output

Lamps	Incandescent lamp load	3680 W
Fluorescent lamp T5 / T8	Uncorrected	3680 W
	Parallel compensated	2500 W
	DUO circuit	3680 W
Low-voltage halogen lamps	Inductive transformer	2000 W
	Electronic transformer	2500 W
	Halogen lamp 230 V	3680 W
Dulux lamp	Uncorrected	3680 W
	Parallel compensated	3000 W
Mercury-vapour lamp	Uncorrected	3680 W
	Parallel compensated	3680 W
Switching performance (switching contact)	Max. peak inrush-current $\mathrm{I}_{\mathrm{p}}(150 \mu \mathrm{~s})$	600 A
	Max. peak inrush-current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$	480 A
	Max. peak inrush-current $\mathrm{I}_{\mathrm{p}}(600 \mu \mathrm{~s})$	300 A
Number of electronic ballasts (T5/T8, single element) ${ }^{11}$	18 W (ABB EVG $1 \times 58 \mathrm{CF}$)	$26^{2)}$
	24 W (ABB EVG-T5 $1 \times 24 \mathrm{CY}$)	$26^{2)}$
	36 W (ABB EVG $1 \times 36 \mathrm{CF}$)	22
	58 W (ABB EVG $1 \times 58 \mathrm{CF}$)	$12^{2)}$
	80 W (Helvar EL 1×80 SC)	$10^{2)}$

${ }^{1)}$ For multiple element lamps or other types the number of electronic ballasts must be determined using the peak inrush current of the electronic ballasts.
${ }^{2}$) Limited by protection with B16 automatic circuit-breakers.

Application program	Max. number of communication objects	Max. number of group addresses	Max. number of associations
Room Master, Basic/1	255	255	255

Note

For a detailed description of the application program see "Room Master Basic RM/S 1.1" product manual. It is available free-of-charge at www.ABB.de/KNX.

The programming requires EIB Software Tool ETS2 V1.3a or higher.
If ETS3 is used a *.VD3 or higher type file must be imported. The application program is available in the ETS2 / ETS3 at ABB/Room automation, Room Master, Basic.
The device does not support the closing function of a project or the KNX device in the ETS. If you inhibit access to all devices of the project with a BCU code (ETS3), it has no effect on this device. Data can still be read and programmed.

Connection schematics

Hotel room example

RM/S 1.1 with electromotor valve drives

1 Label carrier
2 Programming button
3 Programming LED
4 Bus terminal connection
5 Switch position display and manual operation, output (A) $20 \mathrm{~A}(16 \mathrm{AX})$
6 Switch position display and manual operation, output (B, C) 16 A (10 AX)
7 Load circuits, with 2 terminals each
8 Fan (D, E, F)
9 Valve HEATING (G, H)
10 Valve COOLING (I, J)
11 Binary inputs (a, b, c, d, e, f, g, h)

Hotel room example

RM/S 1.1 with electro-thermal valve drives

1 Label carrier
2 Programming button
3 Programming LED
4 Bus terminal connection
5 Switch position display and manual operation, output (A) 20 A (16 AX)
6 Switch position display and manual operation, output (B, C) 16 A (10 AX)
7 Load circuits, with 2 terminals each
8 Fan (D, E, F)
9 Valve HEATING (G, H)
10 Valve COOLING (I, J)
11 Binary inputs (a, b, c, d, e, f, g, h)

ABB i-bus ${ }^{\circledR}$ KNX

Room Master Basic, MDRC
RM/S 1.1, 2CDG 110094 R0011

Dimension drawing

