751688xx

Software description						
ETS search path for light scene push button 8gang comfort:						ETS symbol:
Push button / Push button general / Light scene push button 8gang comfort						
PEI type		01 Hex	01 Dez	reserved	application	501
		00 Hex	00 Dez	No adapter used	application	6401
Applications:						
No.	Summarized descrip			Name:		Version:
	Light scene / dimming			Light scene / dimmin	ng 106501	0.1
2	Telegram sequence			Telegram sequence	106401	0.1

Application:			1. Light scene / dimming 106501		
Executable from mask version:			1.1 onwards		
Number of addresses (max):			22	dynamic table handling	Yes 区 No \square
Number of assignments (max):			22	maximum number of assignments	44
Communication objects:			20		
Obje		Function	Name	Type	Flag
\square	0	Brightness value	Output 1	1 byte	W, C, T
$\square+1$	0	Switching	Output 1	1 bit	W, C, T
$\square+$	1	Brightness value	Output 2	1 byte	W, C, T
$\square+1$	1	Switching	Output 2	1 bit	W, C, T
$\square+1$	2	Brightness value	Output 3	1 byte	W, C, T
\square	2	Switching	Output 3	1 bit	W, C, T
$\square+1$	3	Brightness value	Output 4	1 byte	W, C, T
$\square+$	3	Switching	Output 4	1 bit	W, C, T
$\square+$	4	Brightness value	Output 5	1 byte	W, C, T
$\square+1$	4	Switching	Output 5	1 bit	W, C, T
\square	5	Brightness value	Output 6	1 byte	W, C, T
\square	5	Switching	Output 6	1 bit	W, C, T
$\square+$	6	Brightness value	Output 7	1 byte	W, C, T
$\square+$	6	Switching	Output 7	1 bit	W, C, T
$\square-1$	7	Brightness value	Output 8	1 byte	W, C, T
$\square+$	7	Switching	Output 8	1 bit	W, C, T
\square	8	Dimming	Output 1	4 bit	C, T
\square	9	Dimming	Output 2	4 bit	C, T
\square	10	Dimming	Output 3	4 bit	C, T
\square	11	Dimming	Output 4	4 bit	C, T
\square	12	Dimming	Output 5	4 bit	C, T
\square	13	Dimming	Output 6	4 bit	C, T
\square	14	Dimming	Output 7	4 bit	C, T
\square	15	Dimming	Output 8	4 bit	C, T
$\square+$	16	Cascade	Input	1 byte	W, C
$\square+$	17	Extension unit	Input	1 byte	W, C, T
\square	18	Cascade	Output	1 byte	C, T
\square	19	Lock	In-/Output	1 bit	W, C, T

Light scene push button 8gang comfort flush-mounted 751688xx

Object description

$\square \square_{\text {- }}$ 0-7	Brightness value:	1 byte object for setting a defined brightness value between 0 and 255
맷 0-7	Switching	1 bit object for switching of the load
\square \| 8-15	Dimming:	4 bit object for relative change of brightness between 0 and 100%
맷 16	Cascade input:	1 bit input-cascade object for the connection of several light-scene pushbuttons in cascaded operation (Master-Slave).
ㅁㅐㅐ 17	Extension unit:	1 byte object for controlling the light-scene pushbutton from an extension unit
\square \| 18	Cascading output	1 bit cascading output object for the connection of several light-scene pushbuttons in cascaded operation (master-slave).
맨 19	Lock:	1 bit object for disableing of the light-scene push button (normal and cascaded operation)

Scope of functions

General

- 2 operating modes: light-scene mode (with and without cascading) and switching/dimming mode
- Operating level switch-over (light-scene mode - switching / dimming mode) by 3-key actuation
- Status indication for each button by means of red LED available
- Operation indication by means of white LED parameterizable
- Disable mode can be activated via object

Light scene

- Recalling and storing of 8 light-scenes with 8 output channels each with keys or from extension (1 ${ }^{\text {st }}$ operating level)
- Object types 'switching' (1 bit) or 'brightness' (1 byte) parameterizable for each output channel
- Disableing of individual ouputs possible
- Transmit delay between two values presettable

Switching / dimming mode

- Switching / dimming mode (single-key operation) for light-scene adjustment (2 $2^{\text {nd }}$ operating level)
- Telegram repetition, transmission of dimming step width and stop telegram parameterizable
- Time after which the long-time operation function is executed presettable
- Change-over time from switching / dimming mode to light-scene functions parameterizable
-Cascading
- Combination of several light-scene push buttons to increase the number of available outputs (cascaded operation)
- Single-run or continuous-run operation in cascade available
- Light scene number can be incremented for continuous operation
- Output delay presettable

Functional description

Operating levels

The light-scene push button 8gang comfort has two operating levels offering the following functions depending on parametrization:

Operating level 1 (light-scene mode):

Light scene without storage function:
Key-press recall light-scene
Light scene with storage function:
Short key-press (<1 s): recall light-scene Long key-press (>5 s): store light-scene Key-press (> $1 \mathrm{~s}-<5 \mathrm{~s}$): no function

Operating level 2 (Switching / dimming mode):

8-channel switching or dimming (single-key operation) for setting or readjusting local light-scenes

Object type output $=$ switching (1 bit)
Key-press switching (TOGGLE)
Object type output = brightness (1 byte) / dimming (4 bits)

Short key-press:
Long key-press:
switching (TOGGLE)
dimming (in opposite direction)

Setting of local light-scene

Prerequisites:

- "Storage function by local operation" parameter must be set to "enable",
- The read flags of the actuator objects to be stored must be set.

For local adjustment of the parametrized light-scenes proceed as follows:

- switch over to operating level 2 : switching / dimming mode \Rightarrow operation LED flashing,
- switch light-scene by pressing the corresponding key,
- switch over to operating level 1: light-scene mode \Rightarrow operation LED permanently lit up,
- store local light-scene by long press on the corresponding key (> 5 s),
- the status LED of the key pressed lights up during storage.

751688xx

Operating level switch-over

Changing between operating levels is effected by pressing 3 keys simultaneously (keys $1+5+8$). The illustration below explains switching from operating level 1 to level 2 and back.
switch-over by pressing 3 keys:
press keys $1+5+8$ at the same time for 3 to 8 sec.
switch-over by pressing 3 keys: press keys $1+5+8$ at the same time for 3 to 8 sec.

1 st operating level light-scene

1st operating level light-scene

Operating level switch-over with automatic switch-back

If the "Switch-over time from dimming to light-scene function" parameter is not set to "manual switch-over", operating level 2 (when activated) is automatically switched back to operating level 1 after the preset time.

Cascaded operation

If more than 8 output data channels are required per light-scene, the light-scene push buttons can be cascaded.
This type of operation makes use of the master-slave configuration, i.e. a master unit can be cascaded with several slave units. A device can parameterized to work as master or as slave.
With local operation of a master, all light-scenes (master and slave) are recalled or stored, if the "Local operation" parameter is not set to "local light-scene". With local operation of a slave, however, only the local light-scenes of the slave are recalled or stored. For storing, the "Storage function with local operation" must be set to "enabled".

EIB

For cascading, the units must be connected via the cascading in- and outputs in a ring configuration. Faultless operation of the cascaded units moreover requires that all disable objects are linked with one another by means of the same group address.

Single-loop operation of a cascade (example: 1 master and 2 slaves)

1. Actuation of the master (key-press).
2. The master sends a disable telegram (1) to slave 1 and slave 2.
3. The master transmits the light-scene data.
4. Via the cascading output, the master transmits the corresponding light-scene number (2) to the cascading input of slave 1.
5. Slave 1 transmits the corresponding light-scene data.
6. Via the cascading output, slave 1 transmits the corresponding light-scene number (3) to the cascading input of slave 2.
7. Slave 2 transmits the corresponding light-scene data.
8. Via the cascading output, slave 2 transmits the corresponding light-scene number (4) to the cascading input of the master.
9. Via the disable object, the master transmits an enable telegram (5) to slave 1 and slave 2.

Endless-loop operation

Basically, the endless-loop operation is the same as cascaded operation except that master does not send an enable telegram on receiving the light-scene number from the last slave, but rather his local light-scene data and then the light-scene number on to the next slave.
This cycle repeats itself until a key on the master is pressed or the extension activated (control element must be parameterized for endloss-loop operation). When the master then receives again the light-scene number from the last slave, it will stop its data output as in cascaded operation.
Attention: If the endless-loop operation is to be terminated by a key-press on the master, this can be achieved by pressing any of the keys briefly ($<1 \mathrm{~s}$). If the key is pressed longer, the key-press will be interpreted after the end of an endless-loop operation as a new key-press and thus trigger a new recalling or storing cycle.
In endless-loop operation, the master can be parameterized in such a way that it increments the lightscene number after each loop. In this way, special light effects (e.g. running lights) can be realized with only a few light-sene push buttons which are all assigned to the same groups.
An actuation of the slaves only recalls or stores the local light-scenes.

Parameters		
Description:	Values:	Remarks:
G General		
Function of operating LED	ON OFF	White operation LED lit up when the supply voltage is present (ON) or always off (OFF).
Light duration of the status LEDs at operation indication	$\begin{array}{\|l} 0.75 \mathrm{~s} \\ 2.25 \mathrm{~s} \\ 3 \mathrm{~s} \end{array}$	ON-time of a status LED as confirmation of a key-press
Memory function at local operation	disabled	Storage function is disabled for local operation.
	enabled	Light scenes preset on operating level 2 can be stored by a long key-press (>5 s) on operating level 1.
Operation with cascading	NO	Cascaded operation not activated.
	YES; master YES; slave	Light scene push button working in the cascaded mode as master or slave.
Delay time for light scene transmission (time between two values)	40 ms (instabus recommendation) $60 \mathrm{~ms}, 80 \mathrm{~ms}, 100 \mathrm{~ms}, 200$ ms 300 ms (Powerline recommendation) $400 \mathrm{~ms}, 500 \mathrm{~ms}$, $1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s}$	Time between two values of a light-scene.
Switch-over time between dim operation and lightscene operation	Switch-over manually $5 \mathrm{~s}, 10 \mathrm{~s}, 15 \mathrm{~s}, 20 \mathrm{~s}$	Time of switching over from operating level 2 (switching / dimming mode) back to operating level 1 (light-scene mode) only manually by pressing 3 keys at the same time.
		Switching over from operating level 2 (switching / dimming mode) back to level 1 (light-scene mode) is automatic after x seconds.

Parameters		Values:
Description:	Remarks:	
Object types	Switching (1 bit) Brightness value (1 byte) / Dimming (4 bits)	Setting of data type for output 1. Setting of data type for output 2. Setting of data type for output 3. Output 2 Output 3 Output 4 Output 5 Output 6 Output 7 Output 8

Parameters			
Description:	Values:		Remarks:
ζ Dimming			
Dimming brighter by	$\begin{array}{r} 100 \% \\ 50 \% \\ 25 \% \\ 12.5 \% \end{array}$	$\begin{array}{r} 6 \% \\ 3 \% \\ 1.5 \% \end{array}$	With a dimming telegram, the brightness can be increased by $\mathrm{x} \%$ max.
Dimming darker by	$\begin{array}{r} 100 \% \\ 50 \% \\ 25 \% \\ 12.5 \% \end{array}$	$\begin{array}{r} 6 \% \\ 3 \% \\ 1.5 \% \end{array}$	With a dimming telegram, the brightness can be reduced by x \% max.
Telegram repetition	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$		Cyclical repetition of dimming telegram during key-press.
Time between two telegrams	200 ms 300 ms 400 ms 500 ms	$\begin{array}{r} 750 \mathrm{~ms} \\ 1 \mathrm{~s} \\ 1.5 \mathrm{~s} \\ 2 \mathrm{~s} \end{array}$	Time between two telegrams when telegram repetition is preset. A new dimming telegram is sent whenever this time has elapsed.
Time between switching and dimming base	$\begin{aligned} & 100 \mathrm{~ms} \\ & 300 \mathrm{~ms} \\ & 500 \mathrm{~ms} \\ & 1 \mathrm{~s} \end{aligned}$		Time after which the long key-press function (dimming) is executed. Time $=$ base \bullet factor
Time between switching and dimming Factor (2...127)	2...127, 3		Time after which the long key-press function (dimming) is executed. Default: $130 \mathrm{~ms} \bullet 3=390 \mathrm{~ms}$
Send a stop telegram ?	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$		On releasing of the key, a stop telegram is transmitted / no stop telegram is transmitted.

Parameters		
Description:	Values:	Remarks:
Light scene 1 Light scene 2	Light scene 3 Light scene 4	Light scene 5 Light scene 7 Light scene 6 Light scene 8
Output 1 Output 2 Output 3 Output 4	ON OFF disabled disabled OFF Basic brightness 10 \% brightness 20 \% brightness 25% brightness 30 \% brightness 40 \% brightness 50 \% brightness 60 \% brightness 70 \% brightness 75% brightness 80 \% brightness 90% brightness 100 \% brightness	Preset selection for object type parameterization "Switching (1 bit)" for the corresponding output. Preset selection for object type parameterization "Brightness (1 byte) / dimming (4 bits)" for the corresponding output.
	ON OFF disabled	Preset selection for object type parameterization "Switching (1 bit)" for the corresponding output.
Output 8	disabled OFF Basic brightness 10 \% brightness 20 \% brightness 25 \% brightness 30% brightness 40 \% brightness 50 \% brightness 60 \% brightness 70 \% brightness 75% brightness 80 \% brightness 90% brightness 100 \% brightness	Preset selection for object type parameterization "Brightness (1 byte) / dimming (4 bits)" for the corresponding output.

Parameters		
Description:	Values:	Remarks:
B Cascading		
Local operation	Local light-scene	When a recall key is pressed, the light-scene push button only outputs its local light-scene.
	One time cascade cycle	When a recall key is pressed, the light-scene push button at first only outputs its local lightscene. Thereafter, it transmits the corresponding light-scene number via the cascading output to the next slave (setting possible only if parameterized as "master").
	Unending cascade cycle	When a recall key is pressed and when a light-scene number is received from the last slave, the light-scene push button at first only outputs its local light-scene. Thereafter, it transmits the corresponding light-scene number via the cascading output to the next slave (setting possible only if parameterized as "master").
Operation via extension unit	Local light-scene	When an extension unit is operated, the light-scene push button only outputs its local light-scene.
	One time cascade cycle	On operation of the extension unit, the lightscene push button at first only outputs its local light-scene. Thereafter, it transmits the corresponding light-scene number via the cascading output to the next slave (setting possible only if parameterized as "master").
	Unending cascade cycle	After operation from an extension unit, the light-scene push button at first only outputs its local light-scene when a recall key is pressed or when a light-scene number is being received from the last slave. Thereafter, it transmits the corresponding light-scene number via the cascading output to the next slave (setting possible only if parameterized as "master").
Increment light-scene	NO	In unending cascade cycle, the master retains the current light-scene number after each loop.
	YES	In unending cascade cycle, the master increments the light-scene number after each loop.
Delay time of output signal base	$\begin{aligned} & 100 \mathrm{~ms} ; 1 \mathrm{~s} ; 10 \mathrm{~s} ; 1 \mathrm{~min} ; 10 \\ & \min \end{aligned}$	Time between output of own light-scene and transmission to cascading output. Output delay = basis \bullet factor
Delay time of output signal factor (0...255)	0...255, 2	Time between output of own light-scene and transmission to cascading output. Default value $=100 \mathrm{~ms} \cdot 2 \approx 200 \mathrm{~ms}$
Software remarks		
- On return of bus voltage, operating level 2 (if activated) will be switched back to operating level 1.		

Appl	ati		Telegram sequ	nce 106401	
Exec	tab	from mask version:			
Num	er	addresses (max):		dynamic table handling	Yes 区 No 口
Num	er	assignments (max):		maximum lenght of table	20
Com	un	cation objects:			
Obje		Function	Name	Type	Flag
\square	0	Switching	Output 1	1 bit	W, C, T
\square	0	Value transmitter 1 byte	Output 1	1 byte	W, C, T
\square	0	Value transmitter 2 bytes	Output 1	2 bytes	W, C, T
प-1	1	Switching	Output 2	1 bit	W, C, T
पat	1	Value transmitter 1 byte	Output 2	1 byte	W, C, T
\square	1	Value transmitter 2 bytes	Output 2	2 bytes	W, C, T
Da-1	2	Switching	Output 3	1 bit	W, C, T
प-	2	Value transmitter 1 byte	Output 3	1 byte	W, C, T
\square	2	Value transmitter 2 byte	Output 3	2 bytes	W, C, T
\square	3	Switching	Output 4	1 bit	W, C, T
\square	3	Value transmitter 1 byte	Output 4	1 byte	W, C, T
प-1	3	Value transmitter 2 bytes	Output 4	2 bytes	W, C, T
प-1	4	Switching	Output 5	1 bit	W, C, T
Dat	4	Value transmitter 1 byte	Output 5	1 byte	W, C, T
प-	4	Value transmitter 2 bytes	Output 5	2 bytes	W, C, T
\square	5	Switching	Output 6	1 bit	W, C, T
$\square \square_{\text {- }}$	5	Value transmitter 1 byte	Output 6	1 byte	W, C, T
प-1	5	Value transmitter 2 bytes	Output 6	2 bytes	W, C, T
प-1	6	Switching	Output 7	1 bit	W, C, ${ }^{\text {T }}$
\square	6	Value transmitter 1 byte	Output 7	1 byte	W, C, T
만	6	Value transmitter 2 bytes	Output 7	2 bytes	W, C, T
\square	7	Switching	Output 8	1 bit	W, C, T
प-1	7	Value transmitter 1 byte	Output 8	1 byte	W, C, T
\square	7	Value transmitter 2 bytes	Output 8	2 bytes	W, C, T
- $\square_{\text {- }}$	8	Extension unit	Input	1 byte	W, C, T
\square	9	Alarm message	User module	1 bit	C, T

Object description

प-4 0-7	Switching:	1-bit object for switching of a load
प-4 0-7	Value transmitter 1 byte:	1-byte object for value transmit applications (0-255)
- प-4 0-7	Value transmitter 2 bytes:	2 -byte object for value transmit applications (0-65535)
- $\square_{\text {H }} 8$	Extension unit:	1-byte object for control of light-scene push button from extension unit
\square \| 9	Alarm message:	1-bit object for transmission of alarm message

Scope of functions

Telegram sequence

- 4 telegram sequences with up to 8 outputs respectively
- Object types supported: 1 bit, 1 byte, 2 bytes
- Operation from extension unit possible
- Storage function for value selectable by long key-press
- Succession of telegrams and all times between telegrams individually parameterizable
- Multiple repetition of telegram sequences and cascading of telegram sequences possible
- Alarm message after withdrawal of device from flush-mounted bus coupler parameterizable
- Disable function by 4-digit parametrizable key code

General

- Status indication for each key by red LED
- Operation indication by white LED parameterizable

751688xx

Functional description

Telegram sequence and function of status LED

The telegram sequence application permits generating a maximum of 4 telegram sequences with up to 8 telegrams each (1 bit, 1 byte or 2 bytes). All times between telegrams can be parameterized. The following illustration shows an example of a sequence consisting of 8 telegrams and the behaviour of the status LED:

$\mathrm{t}_{\text {Start }}=$ time until $1^{\text {st }}$ telegram
$\mathrm{t}_{1}=$ time between time $1^{\text {st }}$ and $2^{\text {nd }}$ telegram
$\mathrm{t}_{2}=$ time between time $2^{\text {nd }}$ and $3^{\text {rd }}$ telegram
$\mathrm{t}_{3}=$ time between time $3^{\text {rd }}$ and $4^{\text {th }}$ telegram
$t_{4}=$ time between $4^{\text {th }}$ and $5^{\text {th }}$ telegram
$t_{5}=$ time between $5^{\text {th }}$ and $6^{\text {th }}$ telegram
$\mathrm{t}_{6}=$ time between $6^{\text {th }}$ and $7^{\text {th }}$ telegram
$\mathrm{t}_{7}=$ time between $7^{\text {th }}$ and $8^{\text {th }}$ telegram
1.) Function of status LED: status indication

Status indication flashing: NO

2.) Function of status LED: status indication

Status indication flashing: YES

Key assignment and status indication with and without stop LED

The 4 telegram sequences are started with a short press on a key ($<1 \mathrm{~s}$) of the left row and stopped with the keys of the right row.
A long press (>5 s) on any of the keys of the left row permits storing values for the corresponding telegram sequence if the "Storage function in local operation" parameter is set to "enable".

The status LEDs show the following reaction depending on parametrization:

Function of status LED:
Status indication with stop LED
status indication
NO

Start of sequence 1: status LED 1 on

status indication
YES
Status indication with stop LED:
Start of sequence 1: status LED 1 on, stop LED 1 off

Basic state: no sequence active, all stop LEDs on

Stop of sequence 1: status LED 1 off

Start of sequence 2: status LED 2 on

Stop of sequence 1: status LED 1 off, all stop LEDs on

Start of sequence 2: status LED 2 on, stop LED 2 off

Light scene push button 8gang comfort flush-mounted

Cascading

The 4 telegram sequences can be cascaded in any order of succession. In this case, the parameter "Recall of sequence after end of sequence" recalls the next telegram sequence after the preceding one has ended.
The time between sequences is derived from the parameter "Time to $1^{\text {st }}$ telegram".

Fig: Cascading of sequences 1, 2 and 4 containing a different number of telegrams

Multiple runs of the same telegram sequence

A telegram sequence can repeat itself several times. The number of repetitions is fixed by the parameter "Number of sequences (0...255)". The "Time between last and 1st telegram" can be parametrized.

Fig.: 2 Runs of telegram sequence 1

Key-lock by code

Local operation of the light-scene sensor key-lock function must have been software-enabled beforehand in the "Disable function parameter?".
The keys of the sensor are locked by means of the so-called " 3 -key actuation" (keys $2+6+7$ pressed at the same time for approx. 3 s) and by entering a programmed key code. A locked sensor can be unlocked by the same actuation followed by the valid key code. The following illustration shows how to proceed for locking of the sensor keys:

Switch to locking function by pressing keys 2+6+7 at the same time for between 3 and 8 s

Enter key code by pressing 4 keys
in a row (e.g. 4-3-2-1) within 5 s
respectively for each press

Remarks:

- The function of the operation LED with a locked push button is parameterized on the "Disable function" parameter card.

751688xx

Changing the key code

Key code change by local operation of the push button must have been software-enabled beforehand in the "Push button code adjustment by local operation" parameter.
The key code is changed by means of the so-called " 3 -key actuation, i.e. pressing $2+6+7$ for at least 8 s followed by the entry of the old key code. This is confirmed by all 8 status LEDs flashing at the same time. The new code can be entered thereafter.
The following illustration shows how to change the key code:

Switch to changing the key code
by pressing keys $2+6+7$ at the same
time for min. 8 s

Enter old key code (e. g. 4-3-2-1)

Enter new key code:
(e. g. 6-7-1-2)
operation-LED switches off briefly

Remarks:

- The key code can also be changed when the light-scene sensor is locked.
- The changed code is valid also after return of the bus voltage.
- A key code that has been forgotten by the user can only be replaced by reprogramming with the ETS.

Detection of withdrawal - removal alarm

On removal of the user module from the bus coupling unit, the device can generate a 1-bit alarm via object 9 "Alarm message". In this case, the "Alarm function?" parameter must be set to "YES".
The time between removal of the module until telegram triggering is 1 second.

Parameters		
Description:	Values:	Remarks:
ß General		
Function of operation LED	ON OFF	The white operation LED is lit up after arrival of supply voltage (ON) or always off (OFF).
Function of status LED	key-press confirmation	When a key is pressed, the corresponding status LED lights up for the time specified under "LED on-time after key-press". If the transmitted telegram sequence lasts longer than 10 seconds, the status LED flashes four times every ten seconds (cf. functional description).
	Status indication	During transmission of a telegram sequence, the corresponding status LED of the upper key row is lit up (start sequence 1-4) (cf. functional description). The status LED is always off.
Light duration of status LED at operating indictaion	$\begin{aligned} & 0.75 \mathrm{~s} \\ & 2.25 \mathrm{~s} \\ & 3 \mathrm{~s} \end{aligned}$	On-time of status LED for confirmation of keypress
Status indication in case of sequence stop?	YES	During each non-active sequence, the corresponding status LED of the lower key row (stop sequence 1-4) is lit up. When a sequence is activated, the corresponding status LED of the upper key row lights up, whereas the corresponding status LED of the lower key row is extinguished.
	NO	The 4 status LEDs of the lower key row are always off (cf. functional description).
Status LED flashes in case of active active telegram sequence?	NO	During transmission of a telegram sequence, the corresponding status LED of the upper key row is lit up (start sequence 1-4).
	YES	During transmission of a telegram sequence, the corresponding status LED of the upper key row flashes (start sequence 1-4) (cf. functional description).
Memory function at local operation	disabled	The storage function is disabled for local operation.
	enabled	A long press (> 5 s) on a key of the upper row permits storing of values for the corresponding telegram sequence. In this case, the read flags of the actuator objects to be stored must be set.
Alarm function?	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	With the alarm function activated, the device transmits a telegram via object 9 when the light-scene push button is withdrawn from the flush-mounted bus coupler. The telegram value can be specified on the "Alarm" parameter card.

Block function?	NO YES	The light-scene push button can be disabled by a 3-key actuation. In this case, none of the keys triggers an action.

Parameters		
Description:	Values:	Remarks:
凸 Object types		
Output 1 Output 2 Output 3 Output 4 Output 5 Output 6 Output 7 Output 8 Display the consecutive sequence and time of	Switching (1 bit) Value transmitter 1 byte Value transmitter 2 bytes Sequence 1 Sequence 2 Sequence 3 Sequence 4	Setting of data type for output 1. Setting of data type for output 2. Setting of data type for output 3 . Setting of data type for output 4. Setting of data type for output 5 . Setting of data type for output 6 . Setting of data type for output 7 . Setting of data type for output 8. The ETS only displays the parameter cards for the succession and the times of the sequence preset.

Parameters		
Description:	Values:	Remarks:
Sequence 1 - values Sequence 2 - values		Sequence 3 - values Sequence 4 - values
Value 1 $(0 \ldots 1),(0 \ldots 255),(0 \ldots 65535)$	$0 . . .1,1$ (only for switching 1 bit)	Input of the 8 values of sequence $x(x=1-4)$ The value ranges result from the parameterized object types as follows: - switching 1 bit 0... 1 - value transmitter 1 byte $0 . . .255$ - value transmitter 2 bytes 0... 65535
Value 2 $(0 \ldots 1),(0 \ldots 255),(0 \ldots 65535)$	$0 \ldots 255,255$ (only for value transmitter 1 byte)	
Value 3 (0...1), (0...255), (0...65535)	byte) 0...65535, 65535	
Value 4 (0...1), (0...255), (0...65535)	(only for value transmitter 2 bytes)	
$\begin{aligned} & \text { Value } 5 \\ & (0 . .1),(0 \ldots 255),(0 \ldots 65535) \end{aligned}$		
$\begin{aligned} & \text { Value } 6 \\ & (0 . . .1),(0 \ldots 255),(0 \ldots 65535) \end{aligned}$		
Value 7 (0...1), (0...255), (0...65535)		
Value 8 (0...1), (0...255), (0...65535)		

Parameters		
Description:	Values:	Remarks:
B $\begin{aligned} & \text { Sequence } 1 \text { - application flow } \\ & \text { Sequence } 2 \text { - application flow }\end{aligned}$		Sequence 3 - application flow Sequence 4 - application flow
Application flow of telegrams	parameterizable	The succession of telegrams in sequence x ($x=1-4$) can be programmed with parameter "1 $1^{\text {st }}$ telegram" to " $8^{\text {th }}$ telegram".
	random	The succession of telegrams in sequence x ($x=1-4$) is random
Number of telegrams	1...8, 8	Setting the number of telegrams for sequence x $(x=1-4)$
$1^{\text {st }}$ telegram	output 1 (default $1^{\text {st }}$ telegram)	Assignment of the 8 possible telegrams to
$2^{\text {nd }}$ telegram	output 2 (default $2^{\text {nd }}$ telegram) output 3 (default $3^{\text {rd }}$ telegram)	the 8 outputs. These parameters are relevant only if "Succession of of telegrams"
$3^{\text {rd }}$ telegram	output 4 (default $4^{\text {th }}$ telegram)	is set to "parameterizable".
$4^{\text {th }}$ telegram	output 5 (default $5^{\text {th }}$ telegram)	
$5^{\text {th }}$ telegram	output 6 (default 6 telegram) output 7 (default $7^{\text {th }}$ telegram)	
$6{ }^{\text {th }}$ telegram	output 8 (default $8^{\text {th }}$ telegram)	
$7^{\text {th }}$ telegram		
$8^{\text {th }}$ telegram		

Parameters			
Description:	Values:		Remarks:
Sequence 1 - times 1-4 Sequence 2 - times 1-4			Sequence 3-times 1-4 Sequence 4-times 1-4
Number of sequences (0...255) (0 = cyclic)	0...255, 1		Number of runs for sequence x $(x=1-4)$
Call up next sequence after the last sequence is expired	No Sequence 1 Sequence 2 Sequence 3 Sequence 4		After the end of sequence $x(x=1-4)$, either sequence $y(y=1-4)$ or none can be called up automatically.
Time to $1^{\text {st }}$ telegram base	$\begin{array}{r} 40 \mathrm{~ms} \\ 100 \mathrm{~ms} \\ 1 \mathrm{~s} \\ 5 \mathrm{~s} \end{array}$	1 min 10 min 30 min 1 h	Time to $1^{\text {st }}$ telegram of sequence x $(x=1-4) \quad$ time $=$ base \bullet factor
Time to $1^{\text {st }}$ telegram factor (1...30)	1..30, 10		Time to $1^{\text {st }}$ telegram of sequence x ($x=1-4$) default: $100 \mathrm{~ms} \cdot 10 \approx 1 \mathrm{~s}$
Time between $-1^{\text {st }}$ and $2^{\text {nd }}$ telegram $-2^{\text {nd }}$ and $3^{\text {rd }}$ telegram $-3^{\text {rd }}$ and $4^{\text {th }}$ telegram base	$\begin{array}{r} 40 \mathrm{~ms} \\ 100 \mathrm{~ms} \\ 1 \mathrm{~s} \\ 5 \mathrm{~s} \end{array}$	1 min 10 min 30 min 1 h	Time between $-1^{\text {st }}$ and $2^{\text {nd }}$ telegram of sequence $x(x=1-4)$ $-2^{\text {nd }}$ and $3^{\text {rd }}$ telegram of sequence $x(x=1-4)$ $-3^{\text {rd }}$ and $4^{\text {th }}$ telegram of sequence $x(x=1-4)$ time $=$ base \bullet factor
Time between $-1^{\text {st }}$ and $2^{\text {nd }}$ telegram $-2^{\text {nd }}$ and $3^{\text {rd }}$ telegram $-3^{\text {rd }}$ and $4^{\text {th }}$ telegram factor (1...30)	1..30, 10		Time between $-1^{\text {st }}$ and $2^{\text {nd }}$ telegram of sequence $x(x=1-4)$ $-2^{\text {nd }}$ and $3^{\text {rd }}$ telegram of sequence $x(x=1-4)$ $-3^{\text {rd }}$ and $4^{\text {th }}$ telegram of sequence $x(x=1-4)$ default: $100 \mathrm{~ms} \cdot 10 \approx 1 \mathrm{~s}$

Parameters			
Description:	Values:		Remarks:
\measuredangleSequence 1-times 5-8 Sequence 2 - times 5-8			Sequence 3-times 5-8 Sequence 4 - times 5-8
Time between $-4^{\text {th }}$ and $5^{\text {th }}$. telegram $-5^{\text {th }}$ and $6^{\text {th }}$ telegram $-6^{\text {th }}$ and $7^{\text {th }}$ telegram $-7^{\text {th }}$ and $8^{\text {th }}$ telegram - last and $1^{\text {st }}$ telegram base	$\begin{array}{r} 40 \mathrm{~ms} \\ 100 \mathrm{~ms} \\ 1 \mathrm{~s} \\ 5 \mathrm{~s} \end{array}$	1 min 10 min 30 min 1 h	Time between $-4^{\text {th }}$ and $5^{\text {th }}$. telegram of sequence $x(x=1-4)$ $-5^{\text {th }}$ and $6^{\text {th }}$ telegram of sequence $x(x=1-4)$ $-6^{\text {th }}$ and $7^{\text {th }}$ telegram of sequence $x(x=1-4)$ $-7^{\text {th }}$ and $8^{\text {th }}$ telegram of sequence $x(x=1-4)$ - last and $1^{\text {st }}$ telegram of sequence $x(x=1-4)$ time $=$ base \bullet factor
Time between $-4^{\text {th }}$ and $5^{\text {th }}$. telegram $-5^{\text {th }}$ and $6^{\text {th }}$ telegram $-6^{\text {th }}$ and $7^{\text {th }}$ telegram $-7^{\text {th }}$ and $8^{\text {th }}$ telegram - last and $1^{\text {st }}$ telegram factor (1...30)	1..30, 10		Time between $-4^{\text {th }}$ and $5^{\text {th }}$. telegram of sequence $x(x=1-4)$ $-5^{\text {th }}$ and $6^{\text {th }}$ telegram of sequence $x(x=1-4)$ $-6^{\text {th }}$ and $7^{\text {th }}$ telegram of sequence $x(x=1-4)$ $-7^{\text {th }}$ and $8^{\text {th }}$ telegram of sequence $x(x=1-4)$ - last and $1^{\text {st }}$ telegram of sequence $x(x=1-4)$ default: $100 \mathrm{~ms} \cdot 10 \approx 1 \mathrm{~s}$

Parameters		
Description:	Values:	Remarks:
Alarm	$\mathbf{1}$	Defines the value of the telegram issued in the event of an alarm via object 9. Value at alarm

Parameters			
Description:	Values:		Remarks:
$凸$ Block function			
Function of operating LED at block function	LED permanently OFF LED permanently ON Flashing		When the light-scene push button is disabled, the operation LED is always OFF, always ON or in a flashing mode.
Extension unit at block operation	enabled		The disabled light-scene push button can still be operated from an extension.
	disabled		In disabled state, light-scene push button cannot be operated from the extension either.
$1{ }^{\text {st }}$ push button	Push button 1 Push button 2 Push button 3 Push button 4	Push button 5 Push button 6 Push button 7 Push button 8	Defines the $1^{\text {st }}$ key of the key code. The key code is used for activating the disable function of the light-scene push button.
$2^{\text {nd }}$ push button	Push button 1 Push button 2 Push button 3 Push button 4	Push button 5 Push button 6 Push button 7 Push button 8	Defines the $2^{\text {nd }}$ key of the key code. The key code is used for activating the disable function of the light-scene push button.
$3^{\text {rd }}$ push button	Push button 1 Push button 2 Push button 3 Push button 4	Push button 5 Push button 6 Push button 7 Push button 8	Defines the $3^{\text {rd }}$ key of the key code. The key code is used for activating the disable function of the light-scene push button.
$4^{\text {th }}$ push button	Push button 1 Push button 2 Push button 3 Push button 4	Push button 5 Push button 6 Push button 7 Push button 8	Defines the $4^{\text {th }}$ key of the key code. The key code is used for activating the disable function of the light-scene push button.
Local adjustment of push button code	disabled enabled		Local change of the key code is not possible. The key code can be changed by the socalled 3-key actuation (cf. functional description).
Software information			
