On/Off actuator CT431620

Programming manual

Index

1 GENERAL DESCRIPTION 3
2 TECHNICAL INFORMATION 4
3 PROGRAMMING 5
3.1 APPLICATION PROGRAM INFORMATION 5
3.2 INDIVIDUAL ADDRESS ASSIGNMENT 5
3.3 TYPE OF DEVICE. 6
3.4 OUTPUTS OBJECTS 8
3.4.1 Binary outputs table 8
3.4.2 Binary outputs description 9
3.4.3 Blind outputs table 9
3.4.4 Blind outputs description 10
3.4.5 Fan-coil outputs table 11
3.4.6 Fan coil outputs description 14
3.4.7 Thermo-valve outputs table 15
3.4.8 Thermo-valve outputs description 17
3.5 OUTPUTS PARAMETERS 17
3.5.1 Binary outputs parameters 17
3.5.2 Blind outputs parameters. 20
3.5.3 Fan-coil outputs parameters 22
3.5.4 Thermo-valve outputs parameters 23
3.6 AdVANCED FUNCTIONS 24
3.6.1 Arithmetic and Logic block (ALU) 25
3.6.2 Timer / counter block 26
4 INSTALLATION 30

1 General description

The Bes ref. CT431620 is an on/off actuator composed of 16 potential-free relay outputs (dry contact).
Its 16 outputs allow controlling 16 on / off electrical circuits, 8 blinds (2 outputs for one blind motor: up phase and down phase) or 4 fan coils. Due to its high cut off capacity, this device is also recommended for capacitive loads, sockets, and electrical appliances control. The inputs can operate in different modes allowing to control binary outputs, blinds, fan-coil or thermo valves separately or simultaneously.

It incorporates an advanced Arithmetic and Logic Unit (UAL) that allows performing complex logic operation, timers programming, counters, etc. using internal results of operations or other external variables.

The cut off capacity of the relays is $16 \mathrm{~A} @ 230 \mathrm{Vac}$ (potential free relay output). If necessary, insert a contactor to control higher power circuits.

General characteristics:

- 16 potential free relay outputs with a $16 \mathrm{~A} @ 230 \mathrm{Vac}$ cut-off capacity.
- Each output can work independently or simultaneously in different modes (binary, blinds, fan-coils...).
- Easy and visual ALU (Arithmetic and Logic Unit) with timers, counters and any logic and arithmetic operation implementation.

2 Technical information

Power supply	29V $\mathrm{DC}_{\text {d }}$ from KNX BUS
KNX current consumption	9 mA from KNX BUS
Mounting	DIN rail
Size	9 DIN modules
Connections	BUS connection terminal KNX Screw terminals for outputs
Outputs	16 potential free relay output.
Outputs cut-off capacity	16A @ 230Vac
Environment temperature range	Operation: $-10^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}$ Storage: $-30^{\circ} \mathrm{C} / 60^{\circ} \mathrm{C}$ Transportation: $-30^{\circ} \mathrm{C} / 60^{\circ} \mathrm{C}$
Regulation	According to the directives of electromagnetic compatibility and low voltage: EN 50090-2-2 / UNE-EN 61000-6-3:2007 / UNE-EN 61000-6-1:2007 / UNE-EN 61010-1.

3 Programming

3.1 Application program information

- Application program: Ingenium / Actuators v2 (manufacturer / program name).
- Catalogue version: v1.0
- Maximum number of communication objects: 256.
- Maximum number of assignments: 256.
- ETS minimum required version: 4.1.8

The parameters of the device are configured in the ETS into the parameters menu.

3.2 Individual address assignment

This actuator has a programming button for the KNX individual address assignment which is located on the front of the device.
A red LED near the programming button lights up when it is pressed manually or if the device is set remotely to programming mode state.

The LED is automatically turned off if the ETS has assigned an individual address correctly or if the programming button is pressed again manually.

3.3 Type of device

The parameters of the device are configured in the ETS into the parameter menu.
There are several tabs at the left side to configure different parameters depending on the type of device selected. In this case, the device that must be selected is the type "16 outputs".

Use the selector at the top of the main window to select the type of device to program.

After that, a number of inputs and outputs appear depending on the model of the device selected. Each of these inputs and outputs can be configured to work in different modes independently and simultaneously. To do so it has to be selected in the left side the tab "Inputs configuration" for the inputs and the tab "Outputs configuration" for the outputs.

Outputs can be disabled or programmed in binary, blinds, fan coil or thermo-valve modes.

Depending on the type of output selected, more than one slot is occupied, for example, when selecting blinds outputs two outputs are reserved (odd output for the move up phase and even output for move down phase). Once selected blind output instead of having 2 channel output only appears 1 channel output combining the previous ones where all the blind parameters can be configured.

Once the types of inputs or outputs are selected, the communication objects associated to them will appear in the group objects menu.

Default communication objects and names are explained next.
3.4 Outputs objects
3.4.1 Binary outputs table

Object	Name \| Function	Length	DPT	Flags				
				C	R	W	T	U
0	Channel A 1 - Binary output \| Switch on/off	1 bit	1.001	\bullet		\bullet		
1	Channel A 1 - Binary output \| Switch on/off status	1 bit	1.001	-	-		-	
8	Channel A 2 - Binary output \| Switch on/off	1 bit	1.001	\bullet		-		
9	Channel A 2-Binary output \| Switch on/off status	1 bit	1.001	\bullet	\bullet		-	
16	Channel B 3-Binary output \| Switch on/off	1 bit	1.001	-		-		
17	Channel B 3 - Binary output \| Switch on/off status	1 bit	1.001	-	-		-	
24	Channel B 4 - Binary output \| Switch on/off	1 bit	1.001	-		\bullet		
25	Channel B 4-Binary output \| Switch on/off status	1 bit	1.001	-	\bullet		-	
32	Channel C 5 - Binary output \| Switch on/off	1 bit	1.001	-		-		
33	Channel C 5 - Binary output \| Switch on/off status	1 bit	1.001	\bullet	-		-	
40	Channel C 6 - Binary output \| Switch on/off	1 bit	1.001	-		-		
41	Channel C 6 - Binary output \| Switch on/off status	1 bit	1.001	\bullet	-		-	
48	Channel D 7 - Binary output \| Switch on/off	1 bit	1.001	-		-		
49	Channel D 7 - Binary output \| Switch on/off status	1 bit	1.001	\bullet	-		-	
56	Channel D 8 - Binary output \| Switch on/off	1 bit	1.001	\bullet		\bullet		
57	Channel D 8 - Binary output \| Switch on/off status	1 bit	1.001	\bullet	\bullet		-	
64	Channel E 9-Binary output \| Switch on/off	1 bit	1.001	-		-		
65	Channel E 9 - Binary output \| Switch on/off status	1 bit	1.001	\bullet	-		-	
72	Channel E 10 - Binary output \| Switch on/off	1 bit	1.001	\bullet		-		
73	Channel E 10 - Binary output \| Switch on/off status	1 bit	1.001	\bullet	-		-	
80	Channel F 11 - Binary output \| Switch on/off	1 bit	1.001	\bullet		\bullet		
81	Channel F 11 - Binary output \| Switch on/off status	1 bit	1.001	\bullet	-		-	
88	Channel F 12 - Binary output \| Switch on/off	1 bit	1.001	\bullet		\bullet		
89	Channel F 12 - Binary output \| Switch on/off status	1 bit	1.001	-	-		\bullet	
96	Channel G 13 - Binary output \| Switch on/off	1 bit	1.001	-		\bullet		

97	Channel G 13 - Binary output \| Switch on/off status	1 bit	1.001	\bullet	\bullet		\bullet
104	Channel G 14 - Binary output \| Switch on/off	1 bit	1.001	\bullet		\bullet	
105	Channel G 14 - Binary output \| Switch on/off status	1 bit	1.001	\bullet	\bullet		\bullet
112	Channel H 15 - Binary output \| Switch on/off	1 bit	1.001	\bullet		\bullet	
113	Channel H 15 - Binary output \| Switch on/off status	1 bit	1.001	\bullet	\bullet		\bullet
120	Channel H 16 - Binary output \| Switch on/off	1 bit	1.001	\bullet		\bullet	
121	Channel H 16 - Binary output \| Switch on/off status	1 bit	1.001	\bullet	\bullet		\bullet

3.4.2 Binary outputs description

Name \quad Object X: Channel X Binary output | Switch onloff

Function 1-bit communication object for switching on and off an output.
Description When a " 1 " is received through this object the output is switched. When a " 0 " is received through this object the output is switched off.

This is the normally open behaviour that depends on the parameter "mode. The normally close behaviour is the opposite.

By default, the status of an output is memorized when there is a power supply failure

Name Object X: Channel X Binary output | Switch onloff status

Function
1-bit communication object for feedback signalling of state of the output.
Description When the output is off and receives a switch on telegram a " 1 " is sent through this object. When the output is on and receives a switch off telegram " 0 " is sent through this object.

3.4.3 Blind outputs table

Object	Name \| Function	Length	DPT	Flags					
				C	R	W	T	U	
0	Channel A 1/2-Shutter/blind \| Move up/down (0/1)	1 bit	1.001	\bullet		\bullet			
1	Channel A 1/2-Shutter/blind \\| Stop	1 bit	1.001	\bullet		-			
3	Channel A 1/2-Shutter/blind \| Position	1 byte	5.010	-		\bullet			
4	Channel A 1/2-Shutter/blind \| Position status	1 byte	5.010	\bullet	-		-		
16	Channel B 3/4-Shutter/blind \| Move up/down (0/1)	1 bit	1.001	\bullet		\bullet			
17	Channel B 3/4-Shutter/blind \| Stop	1 bit	1.001	\bullet		\bullet			
19	Channel B 3/4-Shutter/blind \| Position	1 byte	5.010	-		\bullet			
20	Channel B 3/4-Shutter/blind \| Position status	1 byte	5.010	\bullet	\bullet		\bullet		

32	Channel C $5 / 6$ - Shutter/blind \| Move up/down (0/1)	1 bit	1.001	\bullet	\bullet		
33	Channel C 5/6-Shutter/blind \| Stop	1 bit	1.001	-			
35	Channel C 5/6-Shutter/blind \| Position	1 byte	5.010	-	-		
36	Channel C 5/6-Shutter/blind \| Position status	1 byte	5.010	-		\bullet	
48	Channel D 7/8-Shutter/blind \| Move up/down (0/1)	1 bit	1.001	-			
49	Channel D 7/8-Shutter/blind \\| Stop	1 bit	1.001	-	-		
51	Channel D 7/8-Shutter/blind \| Position	1 byte	5.010	-	-		
52	Channel D 7/8-Shutter/blind \| Position status	1 byte	5.010	-		-	
64	Channel E 9/10-Shutter/blind \| Move up/down (0/1)	1 bit	1.001	\bullet	-		
65	Channel E 9/10-Shutter/blind \| Stop	1 bit	1.001	-	\bullet		
67	Channel E 9/10-Shutter/blind \| Position	1 byte	5.010	-	-		
68	Channel E 9/10-Shutter/blind \| Position status	1 byte	5.010	\bullet		-	
80	Channel F 11/12-Shutter/blind \| Move up/down (0/1)	1 bit	1.001	-	-		
81	Channel F11/12 - Shutter/blind \| Stop	1 bit	1.001	-	-		
83	Channel F 11/12-Shutter/blind \| Position	1 byte	5.010	-	-		
84	Channel F 11/12-Shutter/blind \| Position status	1 byte	5.010	\bullet		-	
96	Channel G 13/14-Shutter/blind \| Move up/down (0/1)	1 bit	1.001	\bullet	-		
97	Channel G 13/14-Shutter/blind \| Stop	1 bit	1.001	\bullet	-		
99	Channel G 13/14-Shutter/blind \| Position	1 byte	5.010	\bullet	-		
100	Channel G 13/14-Shutter/blind \| Position status	1 byte	5.010	-		\bullet	
112	Channel H 15/16-Shutter/blind \| Move up/down (0/1)	1 bit	1.001	\bullet	-		
113	Channel H 15/16-Shutter/blind \| Stop	1 bit	1.001	-	\bullet		
115	Channel H 15/16-Shutter/blind \| Position	1 byte	5.010	\bullet	-		
116	Channel H 15/16-Shutter/blind \| Position status	1 byte	5.010	-		-	

3.4.4 Blind outputs description

Name \quad Object X: Channe X Shutter/blind | Move up/down (=011)

Function 1-bit communication object for moving up or down the blind.
Description When a " 1 " is received through this object the blind moves down. When a "0" is received through this object the blind moves up.

Odd outputs (Z 1 and Z 3) must be connected to the up phase of the motor. Even outputs (Z 2 and $\mathrm{Z4}$) must be connected to the down phase of the motor. This order cannot be altered.

Name	Object $\mathrm{X}:$: ChanneI X - Shutter/blind \| Stop
Function	1-bit communication object for stop the blind movement.
Description	When any value is received through this object the blind motor stops moving.

Name \quad Object X: Channel X - Shutter/blind | Position

Function 1-byte communication object for direct positioning of the blind.
Description When a value is sent to this object the blind moves to the received position

Name \quad Object X: Channel X - Shutter/blind | Position status

Function
1-byte communication object for feedback signalling of the position of the blind.
Description When the blind motor stops the current position is sent through this object as feedback being $0=$ completely closed and $255=$ completely open.
By default, the position of the blind is only sent when the motor stops. If the parameter "Status feedback during movement" is activated, the position of the blind is sent every second while it is moving

Object	Name \| Function	Length	DPT	Flags				
				C	R	W	T	U
0	Channel A/B - Fan Coil \| Fan speed control	1 byte	5.010	-		-		
1	Channel A/B - Fan Coil \| Fan speed status	1 byte	5.010	-	-		-	
3	Channel A/B - Fan Coil \| Auto/manual ($=0 / 1$)	1 bit	1.001	-		-		
4	Channel A/B - Fan Coil \| Auto/manual status ($=0 / 1$)	1 bit	1.001	\bullet	\bullet		\bullet	
5	Channel A / B - Fan Coil \| Fan speed 1	1 bit	1.001	-		-		
6	$\begin{aligned} & \text { Channel A/B - Fan Coil \| Fan speed } 2 \\ & (1=s e t / 0=\text { nothing }) \end{aligned}$	1 bit	1.001	-		-		
7	```l```	1 bit	1.001	-		\bullet		
8	Channel A/B - Fan Coil \| Fan speed 1 status	1 bit	1.001	-	-		-	
9	Channel A/B - Fan Coil \| Fan speed 2 status	1 bit	1.001	-	-		-	
10	Channel A/B - Fan Coil \| Fan speed 3 status	1 bit	1.010	-	-		-	
11	Channel A/B - Fan Coil \| Fan on/off status	1 bit	1.001	-	-		-	

Channel A/B - Fan Coil | Fan speed off 1 bit
$(1=$ set $/ 0=$ nothing $)$

Channel C/D - Fan Coil \| Fan speed control				by
Channel C/D - Fan Coil \| Fan speed status				
Channel C/D - Fan Coil \| Auto/manual (=0/1)				
Channel C/D - Fan Coil \| Auto/manual status ($=0 / 1$)				
Channel C/D - Fan ($1=$ set/0=nothing)		Fan speed		
Channel C/D - Fan ($1=$ set/0=nothing)	Coil	Fan speed	2	
Channel C/D - Fan ($1=$ set/0=nothing)		Fan speed	3	

ChanneI C/D - Fan Coil | Fan speed 1 status 1 bit

Channel C/D - Fan Coil | Fan speed 2 status 1 bit
Channel C/D - Fan Coil | Fan speed 3 status 1 bit

Channel C/D - Fan Coil | Fan on/off status 1 bit
Channel C / D - Fan Coil | Fan speed off 1 bit
$(1=$ set $/ 0=$ nothing $)$ Channel E/F - Fan Coil | Fan speed control

Channel E/F - Fan Coil \| Fan speed status					
Channel E/F - Fan Coil \| Auto/manual ($=0 / 1$)					
Channel E/F - Fan Coil \| Auto/manual status (=0/1)					
Channel E/F ($1=$ set/0=nothing)	Fan	Coil	Fan	speed	
Channel E/F (1=set/0=nothing)	Fan	Coil	Fan	speed	
Channel E/F (1=set/0=nothing)	Fan	Coil	Fan	speed	

Channel E/F - Fan Coil | Fan speed 1 status 1 bit
Channel E/F - Fan Coil | Fan speed 2 status 1 bit
Channel E/F - Fan Coil | Fan speed 3 status 1 bit
Channel E/F - Fan Coil | Fan on/off status 1 bit
$\underset{\text { (} 1=\text { set/0=nothing) }}{\text { Channel E/F }}$

Channel G/H - Fan Coil | Fan speed control 1 byte
Channel G/H - Fan Coil | Fan speed status 1 byte

Channel G/H - Fan Coil \| Auto/manual (=0/1)	1 bit	1.001	\bullet		\bullet	
Channel G/H-Fan Coil \| Auto/manual status ($=0 / 1$)	1 bit	1.001	\bullet	\bullet		\bullet
Channel G/H - Fan Coil \| Fan speed 1 ($1=$ set $/ 0=$ nothing)	1 bit	1.001	\bullet		\bullet	
Channel G/H - Fan Coil \| Fan speed 2 ($1=$ set $/ 0=$ nothing)	1 bit	1.001	\bullet		\bullet	
Channel G/H - Fan Coil \| Fan speed 3 ($1=$ set $/ 0=$ nothing $)$	1 bit	1.001	\bullet		\bullet	
Channel G/H - Fan Coil \| Fan speed 1 status	1 bit	1.001	-	\bullet		\bullet
Channel G/H - Fan Coil \| Fan speed 2 status	1 bit	1.001	\bullet	\bullet		\bullet
Channel G/H - Fan Coil \| Fan speed 3 status	1 bit	1.010	\bullet	\bullet		\bullet
Channel G/H - Fan Coil \| Fan on/off status	1 bit	1.001	\bullet	\bullet		\bullet
Channel G/H - Fan Coil \| Fan speed off ($1=$ set $/ 0=$ nothing $)$	1 bit	1.001	\bullet		\bullet	

3.4.6 Fan coil outputs description

Name	Object X: Fan Coil \| Fan speed X
Function	1-bit communication object for switch the fan coil to the corresponding speed.
Description	When a " 1 " is received through this object the fan-coil speed changes to the corresponding one. The other speeds are deactivated and a " 0 " is sent to the other speed objects for feedback.
	The speeds of the fan-coil must be connected to the outputs as following: $Z 1=$ speed $1, Z 2=$ speed 2 and $\mathrm{Z} 3=$ speed 3 . If it is necessary to change this configuration use a "custom fan-coil"
Name	Object X: Fan Coil \| Fan speed X status
Function	1-bit communication object for feedback signalling of the current speed.
Description	When a speed is selected the status is sent through this object. A telegram with value " 1 " is sent through the object of the speed selected and also " 0 " is sent through the other speeds objects.
Name	Object X: Fan Coil \| Fan speed control
Function	1-byte communication object for direct speed selection.
Description	When a value is received through this object the fan coil control compares it to the threshold levels configured and activates the corresponding speed
Name	Object X: Fan Coil \| Fan speed status
Function	1-byte communication object for feedback signalling of the current speed status.
Description	The current fan-coil speed value is sent through this object for feedback signalling with every change.
Name	Object X: Fan Coil \| Auto/manual ($=0 / 1$)
Function	1-bit communication object to select fan-coil mode.
Description	When a "1" is received through this object, the fan coil changes to manual mode and when it receives a " 0 " it changes to automatic mode.
Name	Object X: Fan Coil \| Autormanual (=0/1) status
Function	1-bit communication object for feedback signalling of the fan coil mode.
Description	When a mode is selected, the status of the fan coil is sent through this object. A telegram of value "1" is sent in the case of manual mode and a "0" in case of automatic mode.
Name	Object X: Fan Coil \| Fan onloff status
Function	1-bit communication object for feedback signalling of the fan coil status.
Description	When the fan coil is off and receives a switch on telegram, it sends " 1 " through this object. When the fan coil is on and receives a switch off telegram, it sends "0" through this object.
Name	Object X: Fan Coil \| Fan speed off ($1=$ set $0=$ nothing
Function	1-bit communication object for fan coil switch off selection.

Description When a "1" is received through this object, the fan coil switches off and when it receives a "0" does not change its status.
3.4.7 Thermo-valve outputs table

Object	Name \| Function	Length	DPT	Flags				
				C	R	W	T	U
0	Channel A 1 - Valve \| Open/close ($=0 / 1$)	1 bit	1.001	\bullet		\bullet		
1	Channel A 1 - Valve \| Open/close status	1 bit	1.001	-	-		\bullet	
8	Channel A 2 - Valve \| Open/close ($=0 / 1$)	1 bit	1.001	-		\bullet		
9	Channel A 2 - Valve \| Open/close status	1 bit	1.001	-	-		-	
16	Channel B 3 - Valve \| Open/close ($=0 / 1$)	1 bit	1.001	-		\bullet		
17	Channel B 3 - Valve \| Open/close status	1 bit	1.001	-	-		-	
24	Channel B 4 - Valve \| Open/close ($=0 / 1$)	1 bit	1.001	\bullet		\bullet		
25	Channel B 4 - Valve \| Open/close status	1 bit	1.001	-	-		-	
32	Channel C 5 - Valve \| Open/close (=0/1)	1 bit	1.001	-		-		
33	Channel C 5 - Valve \| Open/close status	1 bit	1.001	-	-		-	
40	Channel C 6 - Valve \| Open/close ($=0 / 1$)	1 bit	1.001	-		-		
41	Channel C 6 - Valve \| Open/close status	1 bit	1.001	-	\bullet		-	
48	Channel D 7 - Valve \| Open/close ($=0 / 1$)	1 bit	1.001	-		-		
49	Channel D 7 - Valve \| Open/close status	1 bit	1.001	\bullet	-		-	
56	Channel D 8 - Valve \| Open/close ($=0 / 1$)	1 bit	1.001	-		\bullet		
57	Channel D 8 - Valve \| Open/close status	1 bit	1.001	-	-		-	
64	Channel E 9 - Valve \| Open/close ($=0 / 1$)	1 bit	1.001	-		-		
65	Channel E 9 - Valve \| Open/close status	1 bit	1.001	\bullet	-		-	
72	Channel E 10 - Valve \| Open/close (=0/1)	1 bit	1.001	\bullet		\bullet		
73	Channel E 10 - Valve \| Open/close status	1 bit	1.001	\bullet	\bullet		-	
80	Channel F 11 - Valve \| Open/close (=0/1)	1 bit	1.001	\bullet		-		
81	Channel F 11 - Valve \| Open/close status	1 bit	1.001	\bullet	-		-	
88	Channel F 12 - Valve \| Open/close (=0/1)	1 bit	1.001	\bullet		\bullet		
89	Channel F 12 - Valve \| Open/close status	1 bit	1.001	-	-		-	

96	Channel G 13 - Valve \| Open/close (=0/1)	1 bit	1.001	\bullet		\bullet	
97	Channel G 13 - Valve \| Open/close status	1 bit	1.001	\bullet	\bullet		\bullet
104	Channel G 14 - Valve \| Open/close (=0/1)	1 bit	1.001	\bullet		\bullet	
105	Channel G 14 - Valve \| Open/close status	1 bit	1.001	\bullet	\bullet		\bullet
112	Channel H 15 - Valve \| Open/close (=0/1)	1 bit	1.001	\bullet		\bullet	
113	Channel H 15 - Valve \| Open/close status	1 bit	1.001	\bullet	\bullet		\bullet
120	Channel H 16 - Valve \| Open/close (=0/1)	1 bit	1.001	\bullet		\bullet	
121	Channel H 16 - Valve \| Open/close status	1 bit	1.001	\bullet	\bullet		\bullet

3.4.8 Thermo-valve outputs description

Name	Object X: Channel X - Valve \| Open/close (=0/1)
Function	1-bit communication object for switching on and off a valve.
Description	When a " 1 " is received through this object the valve is switched. When a " 0 " is received through this object the valve is switched off.
	This is the normally open behaviour that depends on the parameter "mode. The normally close behaviour is the opposite.
	By default, the status of an output is memorized when there is a power supply failure
Name	Object X: Channel X - Valve \| PWM control value (\%duty)
Function	1-byte communication object for setting the duty cycle of the thermo-valve pwm output.
Description	The duty cycle of the pwm signal that controls the thermo-valve output is written by sending a value to this object.
Name	Object X: Channel X - Valve \| Open/close status
Function	1-bit communication object for feedback signalling of state of the valve.
Description	When the valve is open and receives a switch on telegram a " 1 " is sent through this object. When the valve is close and receives a switch off telegram " 0 " is sent through this object.

3.5 Outputs parameters

3.5.1 Binary outputs parameters

When an output is configured as an individual binary output the following parameters can be configured:

1.1.1 Actuators v2 > Channel A 1 - Binary output > Configuration			
General	Working mode	O Normally open	
- Outputs configuration	Normally open: On=close, Off=open \| Normally close: On=open, Off=close		
Configuration	Status after voltage recovery	No change	-
- Channel A 1 - Binary output			
Configuration	Scenes	- Disable Enable	
- Channel A 2 - Binary output	Timer Statistics	- Disable Enable	
Configuration		O Disable Enable	
+ Channel 83 - Binary output			
+ Channel 84 - Binary output			
+ Channel C 5 - Binary output			
+ Channel C6-Binary output			
+ Channel D 7 - ${ }^{\text {Binary output }}$			
+ Channelne-Rinancuitaut Group Objects Channels	meter		

Working mode: Normally open or normally closed. In normally open mode the output relay is controlled with the standard logic: $1=$ close, $0=$ open. In normally closed mode the output relay is controlled with the inverse logic: $1=$ open, $0=$ close.

Status after voltage recovery: It can be controlled the status of the output after a voltage recovery. The available options are:

- "No change": The output will remain in the position that it had before the voltage loss.
- "Open output": The output will be open after a voltage recovery.
- "Closed output": The output will be closed after a voltage recovery.

Lock/unlock: It allows to have a new tab in the left side to configure the behaviour when the channel is locked (disabled) or unlocked (enabled).

Scenes: It allows to have a new tab in the left side to record and run up to 16 scenes.

Timer: It allows to have a new tab in the left side to control the timing to activate or deactivate the output after switch on or switch off.

Statistics: It allows to have a new tab in the left side to count and inform about the time interval during which an output is closed and also to notify when it has been kept closed for a certain number of hours.

```
1.1.1 Actuators v2 > Channel A1 - Binary output > Statistics
    Outputs configuratio
    Running hours alarm No O Yes
    Configuration
C Channel A 1 - Binary output
    Configuration
    Lock/unlock
    Scenes
    Timer
    Statistics
    - Channel A 2 - Binary output
    Configuration
+ Channel 8 3-Binary output
+Channel 84-Binary output
Group Objects Channels Parameter
```


3.5.2 Blind outputs parameters

When outputs are configured as blind outputs the following parameters can be configured:

Type: It allows to select the type of Shutter/Blind. With or without slats. If it is selected with slats will appear two more options:

- Slats total time: In this parameter it must be configured the measured time that the slats takes to open or close completely.
- Slats number of steps: In this parameter it must be configured the number of steps that the slats takes to open or close completely.

Travel time up: In this parameter it must be configured the measured time that the blind takes to raise up completely.
Travel time down: In this parameter it must be configured the measured time that the blind takes to raise down completely.
Direction change pause: This parameter is a value (in ss.f) for a dead time that the device waits before changing the direction of the blind while it is moving.

Additional time for adjustment: Defines an additional time in ss.f for complete blind position adjustment when it gets the upper or lower limit. The corresponding output remains closed an extra time measured in ss.f.

Status feedback during movement: This parameter allows to receive a feedback signalling of the current position of the blind just at the end of the movement or at every second.

Use movement direction feedback object: This parameter allows to receive a feedback signalling of the current moving direction of the blind or not.

Status after voltage recovery: It can be controlled the position of the blind after a voltage recovery with a percentage between 0 and 100 .

Lock/unlock: It allows to have a new tab in the left side to configure the behaviour when the channel is locked (disabled) or unlocked (enabled).

Scenes: It allows to have a new tab in the left side to record and run up to 16 scenes.

Alarm: It allows to have a new tab in the left side to configure the alarm behaviour. If it receives " 0 ", it starts counting the monitoring period, or executes the action set in the "behaviour when alarm $=0$ " parameter. Each time it receives a " 0 ", the time is preloaded again. If no other " 0 " is received and the monitoring time has elapsed, an alarm or programmed alarm action is executed. If it receives " 1 ", it begins to execute the configured alarm actions.

3.5.3 Fan-coil outputs parameters

When outputs are configured as fan-coil outputs the following parameters can be configured:

The received value through the fan-coil control communication object <<Fan X mode [1 byte]>> it is compared to these threshold levels by the device (see section ¡Error! No se encuentra el origen de la referencia. on page ¡Error! Marcador no definido.).

Fan coil control type: It can be selected between direct or sequential type. In the direct type only the relay corresponding to the selected speed is activated, while in the sequential type the relay of the selected speed and the previous ones are activated.

Fan speed threshold level 1: (from 0 to 255) if the fan-coil control value is lower than this threshold level the outputs of the fan-coil are switched off. If the control value is higher the Output 01 is switched on.

Fan speed threshold level 2: (from 0 to 255) if the fan-coil control value is lower than this threshold level the Output 01 is switched on. If the control value is higher the Output 01 is switched off and the Output 2 is switched on.

Fan speed threshold level 3: (from 0 to 255) if the fan-coil control value is lower than this threshold level the Output 02 is switched on. If the control value is higher the Output O 2 is switched off and the Output 3 is switched on.

Hysteresis: percentage to indicate the activation or deactivation threshold of the outputs.
Manual function: manual mode.
Status after voltaje recovery: It allows to select a certain percentage between 0 and 100 for the fan coil after a voltage recovery.

Delays: delays can be set to the activation and/or to deactivation of the fan coil.
Lock/unlock: It allows to have a new tab in the left side to configure the behaviour when the channel is locked (disabled) or unlocked (enabled).

Scenes: It allows to have a new tab in the left side to record and run up to 16 scenes.

3.5.4 Thermo-valve outputs parameters

When outputs are configured as thermo valves outputs the following parameters can be configured:

Working mode: Normally open or normally closed. In normally open mode the output relay is controlled with the standard logic: $1=$ close, $0=$ open. In normally closed mode the output relay is controlled with the inverse logic: $1=$ open, $0=$ close.

Type of control: It can be selected the type of control for the valve. The available options are:

- "On/off": It is controlled the opening and closing of the valve.
- "PWM:": It is established a period of time in which the valve is open a certain percentage of this time introduced through the correspondent communication object and closed the remaining percentage of time until reach 100% of the total time established.

Status after voltage recovery: It can be controlled the status of the output after a voltage recovery. The available options are:

- "No change": The output will remain in the position that it had before the voltage loss.
- "Open output": The output will be open after a voltage recovery.
- "Closed output": The output will be closed after a voltage recovery.

Lock/unlock: It allows to have a new tab in the left side to configure the behaviour when the channel is locked (disabled) or unlocked (enabled).

Valve protection: When this function is activated, the device automatically closes the output for 5 seconds, according to the time established for the protection cycle.
Valve protection
Protection cycle after
Disable \bigcirc Enable
360
\vdots Hours

3.6 Advanced functions

If the advanced functions are enabled in the General menu, a new submenu appears on the left.

In this configuration menu it is possible to select what Arithmetic and logic or timers / counters blocks are enabled.

Name	Arithmetic-logic block X
Values	Enable / Disable
Description	Allows to enable or disable each arithmetic and logic block.
Name	Timer / counter block
Values	Enable / Disable
Description	Allows to enable or disable the each timer / counter blocks.

3.6.1 Arithmetic and Logic block (ALU)

```
1.1.1 Actuators v2 > Advanced functions > Block 1-ALU
+Channel D 7 - Binary output
Operation AND
+Channel D 8 - Binary output
+ Channel E 9-Binary output
+Channel E 10-Binary output
+ Channel F 11 - Binary output
+ ChannelF F 2 - Binary output
+ ChannelG 13-Binary output
+ Channel G 14-Binary output
+ Channel H 15 - Binary output
+ Channel H 16-Binary output
- Advanced functions
    Configuration
    Block 1-ALU
    Block 1-Timer/counter
Group Objects Channels Parameter
```

Name
Operation
Values
AND, NAND, OR, NOR, XOR, XNOR, NOT, BUFFER, == , != , <, > , <= , >= ,+ , - , *, l.
Description It allows to select the arithmetic or logic operation of the block: Logic operations:

- AND: Logic product
- NAND: Negative logic product
- OR: Logic addition
- NOR: Negative logic addition
- XOR: Exclusive logic addition
- XNOR: Negative exclusive logic addition
- NOT: Negation
- BUFFER: Saves the input value in the output.

Comparison operation:

- ==: equality
- !=:inequality
- <: smaller than
- > : greater than
- <= : smaller or equal than
- >=: greater or equal than

Arithmetic operations:

- + : addition
- - : subtraction
- *:multiplication
/ : division

Name	Number of inputs
Values	From 2 to 4
Description	This parameter defines the number of inputs of the block. Depending on the type of operation it is allowed two or more inputs.
Name	Input 1
Values	Communication object / Constant value
Description	This parameter allows to select the type of the input 1 , that can be a constant value or a value received from a communication object.
Name	Format
Values	1 bit, 1 byte unsigned (dpt 5.001), 1 byte unsigned (dpt 5.010), 1 byte signed ($6 .{ }^{*}$), 2 bytes unsigned (dpt $7,{ }^{*}$), 2 bytes unsigned (dpt $8,{ }^{*}$), 2 bytes float (dpt $\left.9,{ }^{*}\right)$.
Description	This parameter allows to select the size and format of the input 1. Depending on the type of operation different formats are allowed.
Name	Input 2/3/4
Values	1 bit, 1 byte unsigned (dpt 5.001), 1 byte unsigned (dpt 5.010), 1 byte signed ($6 .{ }^{*}$), 2 bytes unsigned (dpt $7,{ }^{*}$), 2 bytes unsigned (dpt $8,{ }^{*}$), 2 bytes float (dpt $\left.9,{ }^{*}\right)$.
Description	This parameter allows to select the size and format of the other inputs communication objects. Depending on the type of operation different formats are allowed.

3.6.2 Timer / counter block

```
1.1.1 Actuators v2 > Advanced functions > Block 1 - Timer/counter
# + Channel D 7 - Binary output 
```

Values
PWM, Limit, Cyclic
Description
PWM: It generates a pulse width modulated output according to the period of time and a duty.

Limit: It sends a bit telegram ' 1 ' to the bus when a limit value is exceeded.

Cyclic: It sends a bit telegram ' 1 ' to the bus each time the limit value is exceeded cyclically.

Name Period of time
Values Communication object / Constant value
Description It is the count time of the timer. It can be configured as a constant value or a value received through the bus with one of the following communication object formats:

1 byte (dpt 5.010): Value from 0 to 255 (x 100 ms)
2 bytes (7.004): Value from 0 to 6553500 ms
2 bytes float (9.010): Value from 0 to 670760 s

| Name | Duty |
| :--- | :--- | :--- |
| Values | 1 byte (dpt 5.010), 2 bytes (7.004) or 2 bytes float (9.010) |
| Description | Only visible if timer type PWM is selected. It is the time that the output signal is at high level (" 1 ") within
 the period of time. Its value can be received through the bus with one of the following communication
 object formats: |

1 byte (dpt 5.010): Value from 0 to 255 (x 100 ms)
2 bytes (7.004): Value from 0 to 6553500 ms
2 bytes float (9.010): Value from 0 to 670760 s

Name	Counter type
Values	Rising edge, falling edge, 1 or 0
Description	It is the change that the counter may detect in its "event" object to increase the count.
Name	Limit value
Values	From 0 to 65535
Description	It is the number of events over which the counter sends the finish telegram.
Name	Output behaviour
Values	Send 1 when limit reached, Send counter value (5.010), Send counter value (7.001)
Description	This parameter allows to select the format and behaviour of the counter output. It can be send a 1 when the count limit is reached or it can send the count value each time an event is detected.

4 Installation

\triangle

Feed low voltage lines (BUS and inputs) in separate ducting to that of power (230V) and outputs to ensure there is enough insulation and avoid interferences.

Do not connect the main voltages (230V) or any other external voltages to any point of the BUS or inputs.

KNX products by ingenium

Ingenium, Ingeniería y Domótica S.L.
Parque Tecnológico de Asturias, Parcela 50
33428 Llanera, Asturias, Spain
T (+34) 985757195
tec@besknx.com
www.besknx.com
www.ingeniumsl.com

Liability limitation: The present document is subject to changes or excepted errors. The contents are continuously checked to be according to the hardware and software but deviations cannot be completely excluded. Consequently any liability for this is not accepted. Please inform us of any suggestion. Every correction will be incorporated in new versions of this manual.

