KNX (ㅁ)

KNX S4-B10 230V Multifunctional Actuator

Item number 70137

1. Description 5
1.1. Technical data 6
2. Installation and start-up 6
2.1. Installation notes 6
2.2. Device design 8
2.2.1. Indication of operation mode with the Power LED 9
2.2.2. Status display by the channel LEDs 9
2.3. Notes on mounting and commissioning 10
2.4. Connection examples for binary inputs 10
2.4.1. Using the internal auxiliary voltage of the actuator 10
2.4.2. Using an external voltage 11
3. Transfer protocol 12
3.1. List of all communication objects 12
4. Parameter setting 29
4.1. General settings 29
4.1.1. Local operation 29
4.2. Inputs 29
Input as bus button 30
4.3. Outputs 34
4.3.1. Channel settings - drives 35
4.3.1.1. Control (drives) 37
Block - blocking objects 41
Block - wind blocking 42
Block - rain blocking 43
4.3.1.2. Automatic for shading (drives) 43
4.3.1.3. Automatic for windows (drives) 48
4.3.1.4. Scenes (drives) 52
4.3.1.5. Button inputs (drives) 53
Input as bus button 53
Input as actuator button 53
Input as zero position sensor 54
4.3.2. Channel settings - switch functions 54
4.3.2.1. Connection (switch functions) 55
4.3.2.2. On/Off switch delays, time switching (switch functions) 55
4.3.2.3. Blocking function (switch functions) 56
4.3.2.4. Button input (switch functions) 56
Input as bus button 56
Input as actuator button 57
5. General part 58
5.1. Output channel with drive 58
5.1.1. Control modi for drive control 58
5.1.2. Connection option for zero position sensors 59
5.2. Output channel with switch function 62
5.2.1. Correlation connection - time switch - block .. 62

Elsner Elektronik GmbH • Sohlengrund 16 • D-75395 Ostelsheim • Germany

Installation, inspection, commissioning and troubleshooting of the device
141 must only be carried out by a competent electrician.

This manual is amended periodically and will be brought into line with new software releases. The change status (software version and date) can be found in the contents footer. If you have a device with a later software version, please check
www.elsner-elektronik.de in the menu area "Service" to find out whether a more up-todate version of the manual is available.

Clarification of signs used in this manual

Safety advice.

DANGER!

WARNING!

CAUTION!

Safety advice for working on electrical connections, components, etc.
... indicates an immediately hazardous situation which will lead to death or severe injuries if it is not avoided.
... indicates a potentially hazardous situation which may lead to death or severe injuries if it is not avoided.
... indicates a potentially hazardous situation which may lead to trivial or minor injuries if it is not avoided.

ATTENTION! ... indicates a situation which may lead to damage to property if it is not avoided.

ETS
In the ETS tables, the parameter default settings are marked by underlining.

1. Description

The KNX S4-B10 230 V Actuator with integrated facade control has 4 multifunctional outputs, 4 pairs of buttons and monitoring LEDs. Each of the four multifunctional outputs can connect to either a drive with Up/Down control (blinds, awnings, shutters, windows) or two switchable devices (On/Off for light and ventilation). The connected drives and devices can be operated directly on
KNX S4-B10 230 V and via hand switches.
The automation can be specified externally or internally. Internally, there are numerous options available for blocking, locking (e.g. master-slave) and priority definition (e.g. manual-automatic). Scenes can be saved and called up via the bus (scene control with 16 scenes per drive).
Ten binary inputs can be used either for direct operation (e.g. hand switches) or as bus switches (or also for e.g. alarm notifications). The desired behaviour can be defined precisely through selection of the response times in Standard, Comfort or Deadman mode.

Functions:

- $\mathbf{4}$ multifunctional outputs each for a $\mathbf{2 3 0}$ V drive (shade, window) or for connecting two switchable devices (light, fan)
- Keypad with 4 button pairs and status LEDs
- 10 binary inputs for use as hand switches or as bus switches with variable voltage (6... 80 V DC, $6 . . .240 \mathrm{~V}$ AC)
- Automatic runtime measurement of the drives for positioning (including fault notification object)
- Position feedback (movement position, also slat position for blinds)
- Position storage (movement position) via 1-bit object (storage and call-up e.g. via button)
- Control via internal or external automation
- Integrated shade control for each drive output (with slat tracking according to sun position for blinds)
- Scene control for movement position with 16 scenes per drive (also slat position for blinds)
- Mutual locking of two drives using zero position sensors prevents collisions e.g. of shade and window (master-slave)
- Blocking objects and alarm notifications have different priorities, so safety functions always take precedence (e.g. wind block)
- Manual or automatic priority setting via time or communication object

Configuration is made using the KNX software ETS. The product file can be downloaded from the Elsner Elektronik homepage on www.elsner-elektronik.de in the "Service" menu.

1.1. Technical data

Housing	Plastic
Colour	White
Assembly	Series installation on mounting rails
Protection Category	IP 20
Dimensions	approx. $107 \times 88 \times 60(\mathrm{~W} \times \mathrm{H} \times \mathrm{D}, \mathrm{mm})$ 6 width units
Weight	approx. 360 g
Ambient temperature	Operation $-20 \ldots+70^{\circ} \mathrm{C}$, Storage $-55 \ldots+90^{\circ} \mathrm{C}$
Ambient humidity	max. 95\% rF, avoid condensation
Operating voltage	$230 \mathrm{~V} \mathrm{AC}$,
Power consumption	Operation max. approx. 3.5 W Standby max. approx. 0.6 W
Current	on bus: 10 mA
Outputs	$4 \times$ outputs each with 2 connections for drive up/down or 2 devices, 230 V (PE/N/1/2), total. max 10 A and max. 4 A per connection
Inputs	$10 \times$ binary inputs, universal voltage ($6 . . .80 \mathrm{~V}$ DC, $6 \ldots 240 \mathrm{~V}$ AC)
Max. cable length Binary inputs	50 m
Data output	KNX +/- Bus connector terminal
BCU type	own microcontroller
PEI type	0
Group addresses	max. 1024
Assignments	max. 1024
Communication objects	535

The product conforms with the provisions of EU guidelines.

2. Installation and start-up

2.1. Installation notes

Installation, testing, operational start-up and troubleshooting should only be performed by an electrician.

DANGER!

Risk to life from live voltage (mains voltage)!

There are unprotected live components within the device.

- VDE regulations and national regulations are to be followed.
- Ensure that all lines to be assembled are free of voltage and take precautions against accidental switching on.
- Do not use the device if it is damaged.
- Take the device or system out of service and secure it against unintentional use, if it can be assumed, that risk-free operation is no longer guaranteed.

The device is only to be used for its intended purpose. Any improper modification or failure to follow the operating instructions voids any and all warranty and guarantee claims.

After unpacking the device, check it immediately for possible mechanical damage. If it has been damaged in transport, inform the supplier immediately.

The device may only be used as a fixed-site installation; that means only when assembled and after conclusion of all installation and operational start-up tasks and only in the surroundings designated for it.

Elsner Elektronik is not liable for any changes in norms and standards which may occur after publication of these operating instructions.

2.2. Device design

The device is designed for series installation on mounting rails and occupies 6TE.

1) $-/ \mathrm{N}$ (bridged internally with terminal No. 5). When an external auxiliary voltage is used ($6 \ldots 80$ V DC, $6 \ldots 240 \mathrm{~V}$ AC), one of the $-/ \mathrm{N}$ terminals is to be assigned with - or N
2) Free contacts (bridged internally)
3) Programmer LED and programmer buttons (PRG)
4) Bus terminal slot ($K N X+$ +-)
5) $-/ \mathrm{N}$ (bridged internally with terminal No. 1).
6) Binary inputs 1-6 (1 and 2: two bridged connections)
7) Internal auxiliary voltage +24 V DC. Only for binary inputs!

Do not assign any external voltage!
8) Binary inputs 7-10
9) Up/Down button pairs and LEDs channel A-D
10) Power LED, Indication of operation mode. See "Indication of operation mode with the Power LED" on page 9.
11) Operating voltage input 230 V AC L/N/PE
12) Output A1-A2: "Up"-"Down" or "Device1"-"Device2", max. 4 A
13) Output B1 - B2: "Up"-"Down" or "Device1"-"Device2", max. 4 A
14) Output C1-C2: "Up"-"Down" or "Device1"-"Device2", max. 4 A
15) Output D1-D2: "Up"-"Down" or "Device1"-"Device2", max. 4 A

N ${ }^{\circ}$ 12-15
together max. 10 A
16) Additional outputs $L, N, P E$ (e.g. to supply motors). All terminals L, N or PE of the lower connection strip are bridged internally.

A mix of different auxiliary voltages for the binary inputs is not permitted.

2.2.1. Indication of operation mode with the Power LED

Behaviour	Colour	
On	Green	Normal operation. Bus connection/bus voltage available.
Flashes	Green	Normal operation. No bus connection/bus voltage available.
On	Orange	Device starts up or is beeing programmed via the ETS. No automatic functions are executed.
Flashes	Green (on), Orange (flashing)	Programming mode active.

2.2.2. Status display by the channel LEDs

Behaviour	LED	
To	top	Drive in top end position/device on.
To	bottom	Drive in bottom end position/drive on.
Flashes slowly	top	Drive moves up.
Flashes slowly	bottom	Drive moves down.
Flashes quickly	top	Drive in top end position, blocking active.
Flashes quickly	bottom	Drive in bottom position, blocking active.
Flashes quickly	both simultaneously	Drive in intermediate position, blocking active.
Extend	both	Drive in intermediate position.
Flashes	both alternately	Automatic runtime determination error. If the drive can be moved, drive it into the end position by hand (drive in/drive out completely or open/close) in order to restart the runtime determination. If the drive cannot be moved, check the connections.
"Runlight" above all LEDs	all channels	Incorrect application version was loaded. Use the version compatible with the device!

2.3. Notes on mounting and commissioning

Device must not be exposed to water (rain). This could result in the electronic being damaged.
A relative air humidity of 95% must not be exceeded. Avoid bedewing.
After the operating voltage has been applied, the device will enter an initialisation phase lasting a few seconds. During this phase no information can be received or sent via the bus.

For KNX devices with safety functions (e.g. wind or rain blocks), periodical monitoring of the safety objects must be set up. The optimal ratio is $1: 3$ (example: if the weather station sends a value every 5 minutes, the actuator must be configured for a monitoring period of 15 minutes).

2.4. Connection examples for binary inputs

2.4.1. Using the internal auxiliary voltage of the actuator

2.4.2. Using an external voltage

3. Transfer protocol

3.1. List of all communication objects

Abbreviations:

R Read
W Write
C Communication
T Transfer
DPT Data Point Type

No.	Name	Function	DPT	Flags
1	Software version	Readable		
50	Input 1 long term	Input / output	DPST-1-8	RWCT
51	Input 1 short term	Output	DPST-1-10	R CT
52	Input 1 switching	Input / output	DPST-1-1	RWCT
53	Input 1 dim relative	Input / output	DPST-3-7	RWCT
54	Input 1 encoder 8 bit	Output	DPT-5	R CT
55	Input 1 encoder temperature	Output	DPST-9-1	R CT
56	Input 1 encoder brightness	Output	DPST-9-4	R CT
57	Input 1 scene	Output		R CT
58	Input 1 blocking object	Input	DPST-1-1	WC
$\begin{array}{\|l\|} \hline 60- \\ 68 \\ \hline \end{array}$	Input 2 (see input 1)			
100	Channel A status automatic or manual	Output	DPST-1-3	R CT
101	Channel A manual long term	Input	DPST-1-10	RWC
102	Channel A manual short term	Input	DPST-1-8	RWC
103	Channel A manual movement position	Input	DPST-5-1	RWC
104	Channel A manual slat position	Input	DPST-5-1	RWC
105	Channel A automatic short term	Input	DPST-1-10	RWC
106	Channel A automatic long term	Input	DPST-1-8	RWC
107	Channel A automatic movement position	Input	DPST-5-1	RWC
108	Channel A automatic slat position	Input	DPST-5-1	RWC
109	Channel A switch from manual to automatic	Input	DPST-1-3	RWC
110	Channel A automatic blocking object	Input	DPST-1-1	RWCT
111	Channel A current movement position	Output	DPST-5-1	R CT
112	Channel A current slat position	Output	DPST-5-1	R CT
113	Channel A status object	Output		R CT
114	Channel A call saving scenes	Input		WC

No.	Name	Function	DPT	Flags
115	Channel A outdoor temperature Blocking object	Input	DPST-1-1	RWC
116	Channel A outdoor temperature blocking measurement value	Input	DPST-9-1	WC
117	Channel A outdoor temperature blocking status	Output	DPST-1-3	R CT
118	Channel A twilight object	Input	DPST-1-1	RWC
119	Channel A twilight measurement value	Input	DPST-9-4	RWC
120	Channel A twilight status	Output	DPST-1-3	R CT
121	Channel A time control	Input	DPST-1-1	RWC
122	Channel A inside temperature release object	Input	DPST-1-1	RWC
123	Channel A inside temperature release measurement value	Input	DPST-9-1	RWC
124	Channel A inside temperature release target value	Input	DPST-9-1	RWC
125	Channel A inside temperature release status	Output	DPST-1-3	R CT
126	Channel A shading object	Input	DPST-1-1	RWC
127	Channel A shading brightness Measurement value 1	Input	DPST-9-4	RWC
128	Channel A shading brightness Measurement value 2	Input	DPST-9-4	RWC
129	Channel A shading brightness Measurement value 3	Input	DPST-9-4	RWC
130	Channel A shading threshold value	Input / output	DPST-9-4	RWCT
131	Channel A shading threshold value 10	Input	DPT-1	RWC
132	Channel A shading threshold value	Input	DPST-1-1	RWC
133	Channel A shading threshold value	Input	DPST-1-1	RWC
134	Channel A shading status	Output	DPST-1-3	R CT
135	Channel A shading position Teaching object	Input	DPST-1-1	RWC
136	Channel A azimuth	Input	DPT-9	RWC
137	Channel A elevation	Input	DPT-9	RWC
138	Channel A cold air supply blocking object	Input	DPST-1-1	RWC
139	Channel A cold air supply outside temperature measurement value	Input	DPST-9-1	RWC
140	Channel A cold supply air blocking status	Output	DPST-1-3	R CT
141	Channel A forced ventilation	Input	DPST-1-1	RWC

No.	Name	Function	DPT	Flags
142	Channel A warm air supply blocking object	Input	DPST-1-1	RWC
143	Channel A warm air supply inside temperature measurement value	Input	DPST-9-1	RWC
144	Channel A warm air supply outside temperature measurement value	Input	DPST-9-1	RWC
145	Channel A warm air supply blocking target value	Input	DPST-9-1	RWC
146	Channel A warm air supply blocking status	Output	DPST-1-3	R CT
147	Channel A inside temperature opening object	Input	DPST-1-1	RWC
148	Channel A inside temperature opening measurement value	Input	DPST-9-1	RWC
149	Channel A inside temperature opening target value	Input	DPST-9-1	RWC
150	Channel A inside temperature opening threshold value	Input / output	DPST-9-1	RWCT
151	Channel A inside temperature opening threshold value 1	Input	DPT-1	RWC
152	Channel A inside temperature opening threshold value	Input	DPST-1-1	RWC
153	Channel A inside temperature opening threshold value	Input	DPST-1-1	RWC
154	Channel A inside temperature opening status	Output	DPST-1-3	R CT
155	Channel A inside humidity opening object	Input	DPST-1-1	RWC
156	Channel A inside humidity opening Measurement value	Input	DPT-9	RWC
157	Channel A inside humidity opening status	Output	DPST-1-3	R CT
160	Channel A zero position reached	Input	DPST-1-2	RWC
161	Channel A zero position sensor malfunctioning	Output	DPST-1-2	R CT
162	Channel A master zero position status	Output	DPST-1-1	R CT
163	Channel A master zero position command	Output	DPST-1-1	R CT
164	Channel A slave zero position status	Input	DPST-1-1	RWC
165	Channel A master zero position status	Input	DPST-1-1	RWC
166	Channel A master zero position command	Input	DPST-1-1	RWC
167	Channel A slave zero position status	Output	DPST-1-1	R CT
168	Channel A drive moving	Output	DPST-1-1	R CT

No.	Name	Function	DPT	Flags
169	Channel A malfunction object	Output	DPST-1-2	R CT
170	Channel A block 1 blocking object	Input	DPST-1-1	RWC
171	Channel A block 1 wind blocking object	Input	DPST-1-1	RWC
172	Channel A block 1 wind blocking Measurement value	Input	DPST-9-5	RWC
173	Channel A block 1 wind blocking status	Output	DPST-1-3	R CT
174	Channel A block 1 rain blocking object	Input	DPST-1-1	RWC
175	Channel A block 2 blocking object	Input	DPST-1-1	RWC
176	Channel A block 2 wind blocking object	Input	DPST-1-1	RWC
177	Channel A block 2 wind blocking Measurement value	Input	DPST-9-5	RWC
178	Channel A block 2 wind blocking status	Output	DPST-1-3	R CT
179	Channel A block 2 rain blocking object	Input	DPST-1-1	RWC
180	Channel A block 3 blocking object	Input	DPST-1-1	RWC
181	Channel A block 3 wind blocking object	Input	DPST-1-1	RWC
182	Channel A block 3 wind blocking Measurement value	Input	DPST-9-5	RWC
183	Channel A block 3 wind blocking status	Output	DPST-1-3	R CT
184	Channel A block 3 rain blocking object	Input	DPST-1-1	RWC
185	Channel A block 4 blocking object	Input	DPST-1-1	RWC
186	Channel A block 4 wind blocking object	Input	DPST-1-1	RWC
187	Channel A block 4 wind blocking Measurement value	Input	DPST-9-5	RWC
188	Channel A block 4 wind blocking status	Output	DPST-1-3	R CT
189	Channel A block 4 rain blocking object	Input	DPST-1-1	RWC
190	Channel A block 5 blocking object	Input	DPST-1-1	RWC
191	Channel A block 5 wind blocking object	Input	DPST-1-1	RWC
192	Channel A block 5 wind blocking Measurement value	Input	DPST-9-5	RWC
193	Channel A block 5 wind blocking status	Output	DPST-1-3	R CT
194	Channel A block 5 rain blocking object	Input	DPST-1-1	RWC
195	Channel A Short time limit	Input	DPST-1-1	RWC
200	Channel A1 switching	Input	DPST-1-1	WC

No.	Name	Function	DPT	Flags
201	Channel A1 feedback	Output	DPST-1-1	R CT
202	Channel A1 status	Readable	DPST-1-1	R C
203	Channel A1 blocking object	Input	DPST-1-1	RWC
205	Channel A1 start stair case light function	Input	DPST-1-10	WC
206	Channel A1 start stop stair case light function	Input	DPST-1-10	WC
209	Channel A1 connection	Input	DPST-1-2	RWC
210	Channel A2 switching	Input	DPST-1-1	WC
211	Channel A2 feedback	Output	DPST-1-1	R CT
212	Channel A2 status	Readable	DPST-1-1	R C
213	Channel A2 blocking object	Input	DPST-1-1	RWC
215	Channel A2 start stair case light function	Input	DPST-1-10	WC
216	Channel A2 start stop stair case light function	Input	DPST-1-10	WC
219	Channel A2 connection	Input	DPST-1-2	RWC
249	Channel A local operation blocking object	Input	DPST-1-1	RWCT
$\begin{aligned} & 250- \\ & 258 \end{aligned}$	Input 3 (see input 1)			
$\begin{aligned} & 260- \\ & 268 \end{aligned}$	Input 4 (see input 1)			
300	Channel B status automatic or manual	Output	DPST-1-3	R CT
301	Channel B manual long term	Input	DPST-1-10	RWC
302	Channel B manual short term	Input	DPST-1-8	RWC
303	Channel B manual movement position	Input	DPST-5-1	RWC
304	Channel B manual slat position	Input	DPST-5-1	RWC
305	Channel B automatic short term	Input	DPST-1-10	RWC
306	Channel B automatic long term	Input	DPST-1-8	RWC
307	Channel B automatic movement position	Input	DPST-5-1	RWC
308	Channel B automatic slat position	Input	DPST-5-1	RWC
309	Channel B switch from manual to automatic	Input	DPST-1-3	RWC
310	Channel B automatic blocking object	Input	DPST-1-1	RWCT
311	Channel B current movement position	Output	DPST-5-1	R CT
312	Channel B current slat position	Output	DPST-5-1	R CT
313	Channel B status object	Output		R CT
314	Channel A call saving scenes	Input		WC

No.	Name	Function	DPT	Flags
315	Channel B outdoor temperature Blocking object	Input	DPST-1-1	RWC
316	Channel B outdoor temperature blocking measurement value	Input	DPST-9-1	WC
317	Channel B outdoor temperature blocking status	Output	DPST-1-3	R CT
318	Channel B twilight object	Input	DPST-1-1	RWC
319	Channel B twilight measurement value	Input	DPST-9-4	RWC
320	Channel B twilight status	Output	DPST-1-3	R CT
321	Channel B time control	Input	DPST-1-1	RWC
322	Channel B inside temperature release object	Input	DPST-1-1	RWC
323	Channel B inside temperature release measurement value	Input	DPST-9-1	RWC
324	Channel B inside temperature release target value	Input	DPST-9-1	RWC
325	Channel B inside temperature release status	Output	DPST-1-3	R CT
326	Channel B shading object	Input	DPST-1-1	RWC
327	Channel B shading brightness Measurement value 1	Input	DPST-9-4	RWC
328	Channel B shading brightness Measurement value 2	Input	DPST-9-4	RWC
329	Channel B shading brightness Measurement value 3	Input	DPST-9-4	RWC
330	Channel B shading threshold value	Input output	DPST-9-4	RWCT
331	Channel B shading threshold value 1 0	Input	DPT-1	RWC
332	Channel B shading threshold value	Input	DPST-1-1	RWC
333	Channel B shading threshold value	Input	DPST-1-1	RWC
334	Channel B shading status	Output	DPST-1-3	R CT
335	Channel B shading position Teaching object	Input	DPST-1-1	RWC
336	Channel B azimuth	Input	DPT-9	RWC
337	Channel B elevation	Input	DPT-9	RWC
338	Channel B cold air supply blocking object	Input	DPST-1-1	RWC
339	Channel B cold air supply outside temperature measurement value	Input	DPST-9-1	RWC
340	Channel B cold air supply blocking status	Output	DPST-1-3	R CT
341	Channel B forced ventilation	Input	DPST-1-1	RWC

No.	Name	Function	DPT	Flags
342	Channel B warm air supply blocking object	Input	DPST-1-1	RWC
343	Channel B warm air supply inside temperature measurement value	Input	DPST-9-1	RWC
344	Channel B warm air supply Outside temperature measurement value	Input	DPST-9-1	RWC
345	Channel B warm air supply blocking target value	Input	DPST-9-1	RWC
346	Channel B warm air supply blocking status	Output	DPST-1-3	R CT
347	Channel B inside temperature opening object	Input	DPST-1-1	RWC
348	Channel B inside temperature opening measurement value	Input	DPST-9-1	RWC
349	Channel B inside temperature opening target value	Input	DPST-9-1	RWC
350	Channel B inside temperature opening threshold value	Input output	DPST-9-1	RWCT
351	Channel B inside temperature opening threshold value 1	Input	DPT-1	RWC
352	Channel B inside temperature opening threshold value	Input	DPST-1-1	RWC
353	Channel B inside temperature opening threshold value	Input	DPST-1-1	RWC
354	Channel B inside temperature opening status	Output	DPST-1-3	R CT
355	Channel B inside humidity opening object	Input	DPST-1-1	RWC
356	Channel B inside humidity opening Measurement value	Input	DPT-9	RWC
357	Channel B inside opening status	Output	DPST-1-3	R CT
360	Channel B zero position reached	Input	DPST-1-2	RWC
361	Channel B zero position sensor malfunctioning	Output	DPST-1-2	R CT
362	Channel B master zero position status	Output	DPST-1-1	R CT
363	Channel B master zero position command	Output	DPST-1-1	R CT
364	Channel B slave zero position status	Input	DPST-1-1	RWC
365	Channel B master zero position status	Input	DPST-1-1	RWC
366	Channel B master zero position command	Input	DPST-1-1	RWC
367	Channel B slave zero position status	Output	DPST-1-1	R CT
368	Channel B drive moving	Output	DPST-1-1	R CT

No.	Name	Function	DPT	Flags
369	Channel B malfunction object	Output	DPST-1-2	R CT
370	Channel A block 1 blocking object	Input	DPST-1-1	RWC
371	Channel B block 1 wind blocking object	Input	DPST-1-1	RWC
372	Channel B block 1 wind blocking Measurement value	Input	DPST-9-5	RWC
373	Channel B block 1 wind blocking status	Output	DPST-1-3	R CT
374	Channel B block 1 rain blocking object	Input	DPST-1-1	RWC
375	Channel B block 2 blocking object	Input	DPST-1-1	RWC
376	Channel B block 2 wind blocking object	Input	DPST-1-1	RWC
377	Channel B block 2 wind blocking Measurement value	Input	DPST-9-5	RWC
378	Channel B block 2 wind blocking status	Output	DPST-1-3	R CT
379	Channel B block 2 rain blocking object	Input	DPST-1-1	RWC
380	Channel B block 3 blocking object	Input	DPST-1-1	RWC
381	Channel B block 3 wind blocking object	Input	DPST-1-1	RWC
382	Channel B block 3 wind blocking Measurement value	Input	DPST-9-5	RWC
383	Channel B block 3 wind blocking status	Output	DPST-1-3	R CT
384	Channel B block 3 rain blocking object	Input	DPST-1-1	RWC
385	Channel B block 4 blocking object	Input	DPST-1-1	RWC
386	Channel B block 4 wind blocking object	Input	DPST-1-1	RWC
387	Channel B block 4 wind blocking Measurement value	Input	DPST-9-5	RWC
388	Channel B block 4 wind blocking status	Output	DPST-1-3	R CT
389	Channel B block 4 rain blocking object	Input	DPST-1-1	RWC
390	Channel B block 5 blocking object	Input	DPST-1-1	RWC
391	Channel B block 5 wind blocking object	Input	DPST-1-1	RWC
392	Channel B block 5 wind blocking Measurement value	Input	DPST-9-5	RWC
393	Channel B block 5 wind blocking status	Output	DPST-1-3	R CT
394	Channel B block 5 rain blocking object	Input	DPST-1-1	RWC
395	Channel B Short time limit	Input	DPST-1-1	RWC
400	Channel B1 switching	Input	DPST-1-1	WC

No.	Name	Function	DPT	Flags
401	Channel B1 feedback	Output	DPST-1-1	R CT
402	Channel B1 status	Readable	DPST-1-1	R C
403	Channel B1 blocking object	Input	DPST-1-1	RWC
405	Channel B1 start stair case light function	Input	DPST-1-10	WC
406	Channel B1 start stop stair case light function	Input	DPST-1-10	WC
409	Channel B1 connection	Input	DPST-1-2	RWC
410	Channel B2 switching	Input	DPST-1-1	WC
411	Channel B2 feedback	Output	DPST-1-1	R CT
412	Channel B2 status	Readable	DPST-1-1	R C
413	Channel B2 blocking object	Input	DPST-1-1	RWC
415	Channel B2 start stair case light function	Input	DPST-1-10	WC
416	Channel B2 start stop stair case light function	Input	DPST-1-10	WC
419	Channel B2 connection	Input	DPST-1-2	RWC
449	Channel B local operation blocking object	Input	DPST-1-1	RWCT
$\begin{aligned} & 450- \\ & 458 \end{aligned}$	Input 5 (see input 1)			
$\begin{aligned} & 460- \\ & 468 \end{aligned}$	Input 6 (see input 1)			
500	Channel C status automatic or manual	Output	DPST-1-3	R CT
501	Channel C manual long term	Input	DPST-1-10	RWC
502	Channel C manual short term	Input	DPST-1-8	RWC
503	Channel C manual movement position	Input	DPST-5-1	RWC
504	Channel C manual slat position	Input	DPST-5-1	RWC
505	Channel C automatic short term	Input	DPST-1-10	RWC
506	Channel C automatic long term	Input	DPST-1-8	RWC
507	Channel C automatic movement position	Input	DPST-5-1	RWC
508	Channel C automatic slat position	Input	DPST-5-1	RWC
509	Channel C switch from manual to automatic	Input	DPST-1-3	RWC
510	Channel C automatic blocking object	Input	DPST-1-1	RWCT
511	Channel C current movement position	Output	DPST-5-1	R CT
512	Channel C current slat position	Output	DPST-5-1	R CT
513	Channel C status object	Output		R CT
514	Channel C call saving scenes	Input		WC

No.	Name	Function	DPT	Flags
515	Channel C outdoor temperature Blocking object	Input	DPST-1-1	RWC
516	Channel C outdoor temperature blocking measurement value	Input	DPST-9-1	WC
517	Channel C outdoor temperature blocking status	Output	DPST-1-3	R CT
518	Channel C twilight object	Input	DPST-1-1	RWC
519	Channel C twilight measurement value	Input	DPST-9-4	RWC
520	Channel C twilight status	Output	DPST-1-3	R CT
521	Channel C time control	Input	DPST-1-1	RWC
522	Channel C inside temperature release object	Input	DPST-1-1	RWC
523	Channel C inside temperature release measurement value	Input	DPST-9-1	RWC
524	Channel C inside temperature release target value	Input	DPST-9-1	RWC
525	Channel C inside temperature release status	Output	DPST-1-3	R CT
526	Channel C shading object	Input	DPST-1-1	RWC
527	Channel C shading brightness Measurement value 1	Input	DPST-9-4	RWC
528	Channel C shading brightness Measurement value 2	Input	DPST-9-4	RWC
529	Channel C shading brightness Measurement value 3	Input	DPST-9-4	RWC
530	Channel C shading threshold value	Input output	DPST-9-4	RWCT
531	Channel C shading threshold value 1 0	Input	DPT-1	RWC
532	Channel C shading threshold value	Input	DPST-1-1	RWC
533	Channel C shading threshold value	Input	DPST-1-1	RWC
534	Channel C shading status	Output	DPST-1-3	R CT
535	Channel C shading position Teaching object	Input	DPST-1-1	RWC
536	Channel C azimuth	Input	DPT-9	RWC
537	Channel C elevation	Input	DPT-9	RWC
538	Channel C cold air supply blocking object	Input	DPST-1-1	RWC
539	Channel C cold air supply outside temperature measurement value	Input	DPST-9-1	RWC
540	Channel C cold air supply blocking status	Output	DPST-1-3	R CT
541	Channel C forced ventilation	Input	DPST-1-1	RWC

No.	Name	Function	DPT	Flags
542	Channel C warm air supply blocking object	Input	DPST-1-1	RWC
543	Channel C warm air supply inside temperature measurement value	Input	DPST-9-1	RWC
544	Channel C warm air supply Outside temperature measurement value	Input	DPST-9-1	RWC
545	Channel C warm air supply blocking target value	Input	DPST-9-1	RWC
546	Channel C warm air supply blocking status	Output	DPST-1-3	R CT
547	Channel C inside temperature opening object	Input	DPST-1-1	RWC
548	Channel C inside temperature opening measurement value	Input	DPST-9-1	RWC
549	Channel C inside temperature opening target value	Input	DPST-9-1	RWC
550	Channel C inside temperature opening threshold value	Input output	DPST-9-1	RWCT
551	Channel C inside temperature opening threshold value 1	Input	DPT-1	RWC
552	Channel C inside temperature opening threshold value	Input	DPST-1-1	RWC
553	Channel C inside temperature opening threshold value	Input	DPST-1-1	RWC
554	Channel C inside temperature opening status	Output	DPST-1-3	R CT
555	Channel C inside humidity opening object	Input	DPST-1-1	RWC
556	Channel C inside humidity opening Measurement value	Input	DPT-9	RWC
557	Channel C inside humidity opening status	Output	DPST-1-3	R CT
560	Channel C zero position reached	Input	DPST-1-2	RWC
561	Channel C zero position sensor malfunctioning	Output	DPST-1-2	R CT
562	Channel C master zero position status	Output	DPST-1-1	R CT
563	Channel C master zero position command	Output	DPST-1-1	R CT
564	Channel C slave zero position status	Input	DPST-1-1	RWC
565	Channel C master zero position status	Input	DPST-1-1	RWC
566	Channel C master zero position command	Input	DPST-1-1	RWC
567	Channel C slave zero position status	Output	DPST-1-1	R CT

No.	Name	Function	DPT	Flags
568	Channel C drive moving	Output	DPST-1-1	R CT
569	Channel C malfunctioning object	Output	DPST-1-2	R CT
570	Channel C block 1 blocking object	Input	DPST-1-1	RWC
571	Channel C block 1 wind blocking object	Input	DPST-1-1	RWC
572	Channel C block 1 wind blocking Measurement value	Input	DPST-9-5	RWC
573	Channel C block 1 wind blocking status	Output	DPST-1-3	R CT
574	Channel C block 1 rain blocking object	Input	DPST-1-1	RWC
575	Channel C block 2 blocking object	Input	DPST-1-1	RWC
576	Channel C block 2 wind blocking object	Input	DPST-1-1	RWC
577	Channel C block 2 wind blocking Measurement value	Input	DPST-9-5	RWC
578	Channel C block 2 wind blocking status	Output	DPST-1-3	R CT
579	Channel C block 2 rain blocking object	Input	DPST-1-1	RWC
580	Channel C block 3 blocking object	Input	DPST-1-1	RWC
581	Channel C block 3 wind blocking object	Input	DPST-1-1	RWC
582	Channel C block 3 wind blocking Measurement value	Input	DPST-9-5	RWC
583	Channel C block 3 wind blocking status	Output	DPST-1-3	R CT
584	Channel C block 3 rain blocking object	Input	DPST-1-1	RWC
585	Channel C block 4 blocking object	Input	DPST-1-1	RWC
586	Channel C block 4 wind blocking object	Input	DPST-1-1	RWC
587	Channel C block 4 wind blocking Measurement value	Input	DPST-9-5	RWC
588	Channel C block 4 wind blocking status	Output	DPST-1-3	R CT
589	Channel C block 4 rain blocking object	Input	DPST-1-1	RWC
590	Channel C block 5 blocking object	Input	DPST-1-1	RWC
591	Channel C block 5 wind blocking object	Input	DPST-1-1	RWC
592	Channel C block 5 wind blocking Measurement value	Input	DPST-9-5	RWC
593	Channel C block 5 wind blocking status	Output	DPST-1-3	R CT
594	Channel C block 5 rain blocking object	Input	DPST-1-1	RWC
595	Channel C Short time limit	Input	DPST-1-1	RWC

No.	Name	Function	DPT	Flags
600	Channel C1 switching	Input	DPST-1-1	WC
601	Channel C1 feedback	Output	DPST-1-1	R CT
602	Channel C1 status	Readable	DPST-1-1	R C
603	Channel C1 blocking object	Input	DPST-1-1	RWC
605	Channel C1 start stair case light function	Input	DPST-1-10	WC
606	Channel C1 start stop stair case light function	Input	DPST-1-10	WC
609	Channel C1 connection	Input	DPST-1-2	RWC
610	Channel C2 switching	Input	DPST-1-1	WC
611	Channel C2 feedback	Output	DPST-1-1	R CT
612	Channel C2 status	Readable	DPST-1-1	R C
613	Channel C2 blocking object	Input	DPST-1-1	RWC
615	Channel C2 start stair case light function	Input	DPST-1-10	WC
616	Channel C2 start stop stair case light function	Input	DPST-1-10	WC
619	Channel C2 connection	Input	DPST-1-2	RWC
649	Channel C local operation blocking object	Input	DPST-1-1	RWCT
$\begin{aligned} & 650- \\ & 658 \end{aligned}$	Input 7 (see input 1)			
$\begin{array}{\|l\|} \hline 660- \\ 668 \\ \hline \end{array}$	Input 8 (see input 1)			
700	Channel D status automatic or manual	Output	DPST-1-3	R CT
701	Channel D manual long term	Input	DPST-1-10	RWC
702	Channel D manual short term	Input	DPST-1-8	RWC
703	Channel D manual movement position	Input	DPST-5-1	RWC
704	Channel D manual slat position	Input	DPST-5-1	RWC
705	Channel D automatic short term	Input	DPST-1-10	RWC
706	Channel D automatic long term	Input	DPST-1-8	RWC
707	Channel D automatic movement position	Input	DPST-5-1	RWC
708	Channel D automatic slat position	Input	DPST-5-1	RWC
709	Channel D switch from manual to automatic	Input	DPST-1-3	RWC
710	Channel D automatic blocking object	Input	DPST-1-1	RWCT
711	Channel D current movement position	Output	DPST-5-1	R CT
712	Channel D current slat position	Output	DPST-5-1	R CT
713	Channel D status object	Output		R CT

No.	Name	Function	DPT	Flags
714	Channel D call saving scenes	Input		WC
715	Channel D outdoor temperature Blocking object	Input	DPST-1-1	RWC
716	Channel D outdoor temperature blocking measurement value	Input	DPST-9-1	WC
717	Channel D outdoor temperature blocking status	Output	DPST-1-3	R CT
718	Channel D twilight object	Input	DPST-1-1	RWC
719	Channel D twilight measurement value	Input	DPST-9-4	RWC
720	Channel D twilight status	Output	DPST-1-3	R CT
721	Channel D time control	Input	DPST-1-1	RWC
722	Channel D inside temperature release object	Input	DPST-1-1	RWC
723	Channel D inside temperature release measurement value	Input	DPST-9-1	RWC
724	Channel D inside temperature release target value	Input	DPST-9-1	RWC
725	Channel D inside temperature release status	Output	DPST-1-3	R CT
726	Channel D shading object	Input	DPST-1-1	RWC
727	Channel D shading brightness Measurement value 1	Input	DPST-9-4	RWC
728	Channel D shading brightness Measurement value 2	Input	DPST-9-4	RWC
729	Channel D shading brightness Measurement value 3	Input	DPST-9-4	RWC
730	Channel D shading threshold value	Input output	DPST-9-4	RWCT
731	Channel D shading threshold value 1 0	Input	DPT-1	RWC
732	Channel D shading threshold value	Input	DPST-1-1	RWC
733	Channel D shading threshold value	Input	DPST-1-1	RWC
734	Channel D shading status	Output	DPST-1-3	R CT
735	Channel D shading position Teaching object	Input	DPST-1-1	RWC
736	Channel D azimuth	Input	DPT-9	RWC
737	Channel D elevation	Input	DPT-9	RWC
738	Channel D cold air supply blocking object	Input	DPST-1-1	RWC
739	Channel D cold air supply outside temperature measurement value	Input	DPST-9-1	RWC
740	Channel D cold air supply blocking status	Output	DPST-1-3	R CT

No.	Name	Function	DPT	Flags
741	Channel D forced ventilation	Input	DPST-1-1	RWC
742	Channel D warm air supply blocking object	Input	DPST-1-1	RWC
743	Channel D warm air supply inside temperature measurement value	Input	DPST-9-1	RWC
744	Channel D warm air supply outside temperature measurement value	Input	DPST-9-1	RWC
745	Channel D warm air supply blocking target value	Input	DPST-9-1	RWC
746	Channel D warm air supply blocking status	Output	DPST-1-3	R CT
747	Channel D inside temperature opening object	Input	DPST-1-1	RWC
748	Channel D inside temperature opening measurement value	Input	DPST-9-1	RWC
749	Channel D inside temperature opening target value	Input	DPST-9-1	RWC
750	Channel D inside temperature opening threshold value	Input output	DPST-9-1	RWCT
751	Channel D inside temperature opening threshold value 1	Input	DPT-1	RWC
752	Channel D inside temperature opening threshold value	Input	DPST-1-1	RWC
753	Channel D inside temperature opening threshold value	Input	DPST-1-1	RWC
754	Channel D inside temperature opening status	Output	DPST-1-3	R CT
755	Channel D inside humidity opening object	Input	DPST-1-1	RWC
756	Channel D inside humidity opening Measurement value	Input	DPT-9	RWC
757	Channel D inside humidity opening status	Output	DPST-1-3	R CT
760	Channel D zero position reached	Input	DPST-1-2	RWC
761	Channel D zero position sensor malfunctioning	Output	DPST-1-2	R CT
762	Channel D master zero position status	Output	DPST-1-1	R CT
763	Channel D master zero position command	Output	DPST-1-1	R CT
764	Channel D slave zero position status	Input	DPST-1-1	RWC
765	Channel D master zero position status	Input	DPST-1-1	RWC

No.	Name	Function	DPT	Flags
766	Channel D master zero position command	Input	DPST-1-1	RWC
767	Channel D slave zero position status	Output	DPST-1-1	R CT
768	Channel D drive moving	Output	DPST-1-1	R CT
769	Channel D malfunctioning object	Output	DPST-1-2	R CT
770	Channel D block 1 blocking object	Input	DPST-1-1	RWC
771	Channel D block 1 wind blocking object	Input	DPST-1-1	RWC
772	Channel D block 1 wind blocking measurement value	Input	DPST-9-5	RWC
773	Channel D block 1 wind blocking status	Output	DPST-1-3	R CT
774	Channel D block 1 rain blocking object	Input	DPST-1-1	RWC
775	Channel D block 2 blocking object	Input	DPST-1-1	RWC
776	Channel D block 2 wind blocking object	Input	DPST-1-1	RWC
777	Channel D block 2 wind blocking measurement value	Input	DPST-9-5	RWC
778	Channel D block 2 wind blocking status	Output	DPST-1-3	R CT
779	Channel D block 2 rain blocking object	Input	DPST-1-1	RWC
780	Channel D block 3 blocking object	Input	DPST-1-1	RWC
781	Channel D block 3 wind blocking object	Input	DPST-1-1	RWC
782	Channel D block 3 wind blocking measurement value	Input	DPST-9-5	RWC
783	Channel D block 3 wind blocking status	Output	DPST-1-3	R CT
784	Channel D block 3 rain blocking object	Input	DPST-1-1	RWC
785	Channel D block 4 blocking object	Input	DPST-1-1	RWC
786	Channel D block 4 wind blocking object	Input	DPST-1-1	RWC
787	Channel D block 4 wind blocking measurement value	Input	DPST-9-5	RWC
788	Channel D block 4 wind blocking status	Output	DPST-1-3	R CT
789	Channel D block 4 rain blocking object	Input	DPST-1-1	RWC
790	Channel D block 5 blocking object	Input	DPST-1-1	RWC
791	Channel D block 5 wind blocking object	Input	DPST-1-1	RWC
792	Channel D block 5 wind blocking measurement value	Input	DPST-9-5	RWC

No.	Name	Function	DPT	Flags
793	Channel D block 5 wind blocking status	Output	DPST-1-3	R CT
794	Channel D block 5 rain blocking object	Input	DPST-1-1	RWC
795	Channel D Short time limit	Input	DPST-1-1	RWC
800	Channel D1 switching	Input	DPST-1-1	WC
801	Channel D1 feedback	Output	DPST-1-1	R CT
802	Channel D1 status	Readable	DPST-1-1	R C
803	Channel D1 blocking object	Input	DPST-1-1	RWC
805	Channel D1 start stair case light function	InpST-1-10	WC	
806	Channel D1 start stop stair case light function	Input	DPST-1-10	WC
809	Channel D1 connection		DPST-1-2	RWC
$810-$ 819	Channel D2 (see Channel D1)	DPST-1-1	RWCT	
849	Channel D local operation blocking object	Input		
$850-$ 858	Input 9 (see input 1)			
$860-$	Input 10 (see input 1)			
868				

4. Parameter setting

The default settings of the parameter are labeled by an underscore.

4.1. General settings

First set the general parameters for the bus communication (telegram rate, transmission delay). Additionally, you can indicate if for the programming of scenes all, or only the changed settings are applied to the bus.

Maximum telegram rate	$\underline{1 \bullet 2 \bullet} \underline{5} \bullet 10 \bullet 20$
Send delegrams per second after voltage returns	$\underline{5 \mathrm{~s}} \ldots 2 \mathrm{~h}$
Send delay of switching and status outputs after voltage returns	$\underline{5 \mathrm{~s}} \ldots 2 \mathrm{~h}$
For the use of scenes:	$\underline{\text { all parameters }}$ • only changed parameters
Application when programming	

4.1.1. Local operation

The Up/Down buttons on the device are firmly assigned to the channels A-D. For blocking manual operation, blocking objects can be set for the button pairs (communication objects "Channel X local operation blocking object").

Local button Channel A Use blocking object	No \cdot Yes
Local button Channel B Use blocking object	No \bullet Yes
Local button Channel C Use blocking object	No \bullet Yes
Local button Channel D Use blocking object	$\underline{\text { No }} \bullet$ Yes

Note: If monitoring periods or movement range limits are used, operation via the local buttons is not possible in case of a bus voltage supply failure.

4.2. Inputs

Set the parameters for inputs 1 and 2 here. The inputs 3 to 10 are designated for operating the devices on the outputs (channels A-D), and are therefore parameterized directly in the settings of the output channels (see Button inputs (drives), page 52 or Button input (switch functions), page 56).

Configuration options for the individual inputs:

Input 1	- Bus button
Input 2	• Bus button

Input 3	- Actuator button for output channel A
	- Bus button
	- For drives also zero position sensor
Input 4	- Actuator button for output channel A
	- Bus button
Input 5	- Actuator button for output channel B
	- Bus button
	- For drives also zero position sensor
Input 6	- Actuator button for output channel B
	- Bus button
Input 7	- Actuator button for output channel C
	- Bus button
	- For drives also zero position sensor
Input 8	- Actuator button for output channel C
	- Bus button
Input 9	- Actuator button for output channel D
	- Bus button
	- For drives also zero position sensor
Input 10	- Actuator button for output channel D

Operating mode	$\underline{\text { No } \bullet} \cdot$ as bus button
Use input 1	$\underline{\text { No }} \bullet$ as bus button
Use input 2	See parameterization channel A - button inputs
Use input 3 and 4	See parameterization channel B - button inputs
Use input 5 and 6	See parameterization channel C - button inputs
Use input 7 and 8	See parameterization channel D - button inputs
Use input 9 and 10	

Input as bus button

If an input is used as a free bus button, it will send a previously set value to the bus when activated. In the program file of the actuator KNX S4-B10 230 V different parameters are integrated for frequently needed bus functions. Thus, the inputs can easily be configured as a switch, drive control, dimmer for sending values and for the scene calls.

Bus function	\bullet Switch
\bullet Selector switch	
	\bullet Shutter
\bullet Blind	
	\bullet Awning
	\bullet Window
	\bullet Dimmer
	$\bullet 8$ bit encoder
	\bullet Temperature encoder
	\bullet Brightness encoder
	\bullet Scenes

Input as switch:

If a button with switch function is assigned to the input, select the bus function "Switch" and specify which value is sent when pressing/releasing the button and when it will be sent.

Bus function	Switch
Command when pressing the button	- send 0 - send 1 - do not send telegram
Command when releasing the button	- send 0 - send 1 - do not send telegram
Send value	- no change - for change to 1 - for change to 0 - for change and cyclical - for change to 1 and cyclical - for change to 0 and cyclical
Send all values (only if sent as "cyclical")	5s... 2 h

The input can be blocked using a blocking object. Set what is transmitted to the bus when (de)activating blocking.
For active blocking there is no cyclical transmission.

Use blocking object	No - Yes
Once when activating the blocking	- send 0 - send 1 - do not send telegram
Once when deactivating the blocking	- send 0 - send 1 - do not send telegram - send current state

Input as selector switch:

If a button with switch function is assigned to the input, select the bus function "Selector switch" and specify if the button should switch when pressed/released.

Bus function	Selector switch
Command when pressing the button	\bullet • selector switch
Command when releasing the button	do not send telegram do not switch telegram

The input can be blocked using a blocking object. For active blocking there is no bus communication.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

Input to shutter, blinds, awning or window control:

If the input to the drive control is used via the bus, select the bus function "shutter", "awning", "blinds" or "window" and specify the button function and control mode.

Bus function	Shutter / blinds / awning / window	
Button function	Up • Down Up •Down•Up/ Down On •Off •On/Off Open •Closed• Open/Closed	(shutter) (blinds) (awning) (window)
Control mode*	- Standard - Standard inverted - Comfort mode - Dead man's switch	

*A detailed description of the setting options for the individual control modi can be found in the general part of chapter Control modi for drive control, page 58.

The input can be blocked using a blocking object. For active blocking there is no bus communication.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

Input as dimmer:

If the input is used as a dimmer, select the bus function "Dimmer" and specify the button function, time interval (switching/dimming) and if requested, the repeat interval for a long button press.

Bus function	Dimmer
Button function	$\underline{\text { brighter }} \bullet$ darker \bullet brighter/darker
Time between switching and dimming in 0.1 seconds	$1 \ldots 50 ; \underline{5}$

Repeat the dimm command	$\underline{\text { no } \bullet \text { yes }}$
Repeat the dimm command for a long button press (only if dimm command is repeated)	every $0.1 \mathrm{~s} \bullet$ every 2 sec ; every 1 sec
Dim by (only if dimm command is repeated)	$1,50 \% \bullet 3 \% \bullet 6 \% \cdot 12,50 \% \bullet 25 \% \bullet 50 \%$

The input can be blocked using a blocking object. For active blocking there is no bus communication.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

Input 8 bit encoder:

If the input is to be used as an 8bit encoder, select the "8 bit encoder" bus function and specify which value will be sent.

Bus function	$\mathbf{8}$ bit encoder
Value	$\underline{0} \ldots 255$

The input can be blocked using a blocking object. For active blocking there is no bus communication.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

Input as temperature encoder:

If the input is used as a temperature encoder, then choose the bus function "Temperature encoder" and specify which value between $-30^{\circ} \mathrm{C}$ and $+80^{\circ} \mathrm{C}$ will be sent. By sending a temperature value, the target value of the temperature control may be changed for example (e.g. Elsner KNX T-UP).

Bus function	Temperature encoder
Temperature in $0.1^{\circ} \mathrm{C}$	$-300 \ldots 800 ; \underline{200}$

The input can be blocked using a blocking object. For active blocking there is no bus communication.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

Input as brightness encoder:

If the input is assigned and shall be used as a brightness encoder (e.g. switch output of a sun sensor), select "brightness encoder" and specify which value will be sent.
By sending a brightness value, the threshold value of the sun sensor may be changed for example (e.g. Elsner KNX L).

Bus function	Brightness encoder
Brightness in klux	$0 \ldots 100 ; \underline{20}$

The input can be blocked using a blocking object. For active blocking there is no bus communication.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

Input for scene control:

If scenes are called and saved with the input, then choose the "Scenes" bus function and specify the saving, time difference (call/save) and scene number.

Bus function	Scenes
Button operation	$\bullet \frac{\text { without saving }}{\bullet \text { with saving }}$
Time between calling and saving in 0.1 seconds (only if selected "with saving")	$1 . . .50 ; 10$
Scene No.	$\underline{0} \ldots 127$

The input can be blocked using a blocking object. For active blocking there is no bus communication.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

4.3. Outputs

State here what is connected to the individual output channels.

Operating mode	
Channel A / B / C / D controls	\bullet shutter
	\bullet blind
	\bullet awning
	\bullet double switch function

Thereafter, the setting options for the individual outputs will appear:

Settings for drives (channel A, B, C, D):

- General specifications for the connected drive (see Channel settings - drives, page 35)
- Control functions: Movement range limit, blocking, type of automatic (see Control (drives), page 37)
- Automatic functions: Automatic can be specified externally or internally (see Automatic for shading (drives), page 43 or Automatic for windows (drives), page 48)
- Scenes: Movement positions (see, page 52)
- Button inputs: Configuration as actuator button, bust button or for zero position sensor (see Button inputs (drives), page 52)

Settings for switch functions

(Channels are divided into two switches A1|A2, B1|B2, C1|C2, D1|D2):

- General specifications for the switch function (see Channel settings - switch functions, page 54)
- Connecting different communication objects (see Connection (switch functions), page 54)
- On/Off switch delays or time switching (see On/Off switch delays, time switching (switch functions), page 54)
- Block function(see Blocking function (switch functions), page 56)
- Button input: Configuration as actuator button or bus button (see Button input (switch functions), page 56)

4.3.1. Channel settings - drives

If a drive is connected to the output channel, set first the general specifications for the drive.

Driving direction:

Up/down, on/off or open/close can be exchanged.

```
Exchange UP/DOWN (shutter, blinds) no ` yes
Exchange ON/OFF (awning)
Exchange OPEN/CLOSE (window)
```


Runtime:

The runtime between the end positions is the basis for moving into intermediate positions (e.g. for movement range limits and scenes). You can enter the runtime numerically (in seconds) or have the runtime determined automatically. The actuator specifies the end positions with help from the greater current on the drive output. For this, regular reference movements (see below) should be set.

Use an automatic runtime measurement	$\underline{\text { no }}$ • yes
	no
Use an automatic runtime measurement	$1 \ldots 320 ; \underline{60}$
Runtime DOWN in sec (shutter, blinds) Runtime OFF in sec (awning) Runtime UP in sec (window)	$1 \ldots 320 ; \underline{65}$
Runtime OPEN in sec (shutter, blinds) Runtime ON in sec (awning) Runtime CLOSE in sec (window)	

If a dead time is observed while starting the curtain, then this can be entered manually at this point or calculated automatically. Obey the manufacturer's instructions for the curtain.

Use dead times	\bullet \bullet no yes, enter by hand \bullet yes, calculate automatically
during the position travel from closed position in 10 ms (only for manual input)	$\underline{0} \ldots 600$

for position movement from all other positions in 10 ms (only for manual input)	$\underline{0} \ldots 600$
for slat movement from closed position in 10 ms (only for manual input)	$\underline{0} \ldots 600$
for movement with change of direction in 10 ms (only for manual input)	$\underline{0} \ldots 600$
for slat movement from all other positions in 10 ms (only for manual input)	$\underline{0} \ldots 600$

Runtime zero position and step setting of slats:

(only for shutters)
Through the runtime in which the drive continues moving in the zero position (i.e. after reaching the top end position), different curtain lengths or assembly positions of the end position switch may be balanced. The shading of a facade is completely retracted by adjusting the zero position runtimes, and thus provides a better overall image.
Step time x step number determines the turning time of the slats.

Runtime zero position in 0.1 sec	$\underline{0} \ldots 255$
Step time in 10 ms	$1 \ldots 100 ; \underline{20}$
Step number slats	$1 \ldots 255 ; \underline{5}$

If the short time command for shutters (step command) is used only for slat adjustment, but not for positioning the curtain, the following parameter is set to "Yes". The parameter appears only for shutters.

```
Allow step commands only for slat
no ` yes
adjustment
```


Break time:

The required break times during a change of direction of the drive should be adjusted according to the specifications of the motor manufacturer.

Break time for a change of direction in 0.1 sec	$5 \ldots 100 ; 10$

Reference movement:

With the regular movement to the two end positions, the runtime and zero position are adjusted again. This is especially important for the automatic runtime determination. Therefore, it can be set here after how many movements before a positioning movement a reference movement will be performed. The reference movement is always in the direction of the secure position (retracting when shading, closing windows).

Perform a reference movement	$\underline{\text { no }} \bullet$ yes
Perform a reference movement yes for more than movements before an auto positioning movement $1 \ldots 255 ; \underline{10}$	

Slat turning:

(only for shutters)
The slat turning should be adjusted according to the specifications of the motor manufacturer.

Turn slats	$\bullet \underline{\text { never }}$
	\bullet only after positioning movement
\bullet after each movement	

Status object and drive position:

The status and current position can be sent to the bus. By sending of 1, the status object indicates that the retracted or closed position has been exited and it is suitable for example for monitoring windows.
The exact drive position can be sent on the bus if required. The variable delay ensures that the bus is not blocked by too many data packets during a longer movement. The position can also be transmitted cyclically.

Use status object	$\underline{\text { no } \bullet \text { yes }}$
Use drive position feedback	$\underline{\text { no }} \bullet$ yes
Position transmit delay after change in 0.1 s (only for feedback)	$0 . . .50 ; \underline{10}$
Transmit drive position cyclically (only for feedback)	$\underline{\text { no }} \bullet 5 \mathrm{~s} \bullet 10 \mathrm{~s} \bullet \ldots \bullet 2 \mathrm{~h}$

Scenes:

Here the scene menu is activated for this output channel.

Use scenes	$\underline{\text { no }} \bullet$ yes

See, page 52.

4.3.1.1. Control (drives)

Set the behavior of the drive here.

Movement range limit:

The operating range limit is used in order to avoid that two units collide with each other (e.g. an awning and a window which is about to open).

One of two drive mechanisms is prioritised and is parameterised as master and the other one as slave. By means of zero position sensors, both actuators know the own current status and the current status of the other one. This one is either "in a safe position" or "not in a safe position". The safe position is reached as soon as the drive mechanism is in a sector where a collision is not possible (for an awning, for example, this might be an extension of 0 to 30%). In order to report the safe position of the drive mechanism, either a zero position sensor (e.g. final position switch or light barrier) may be connected at an input of the actuator, or the actuator receives the message of its zero position sensor by the bus (see graphic in chapter Connection options for zero position sensors in the general part).

Before the drive mechanism of the master actuator is moved, the slave actuator receives the command to move its drive mechanism to the safe position. As a consequence, the slave remains in safe position or it moves back if it is not within the safe range.

The master actuator knows from the communication object „Slave zero position status" whether the drive mechanism connected to the slave actuator is already in a safe position (then the master moves immediately) or not (then the master waits). Only if the master actuator is informed that the slave drive mechanism is in a safe position, it moves its drive mechanism beyond its own safe position.

Example:
The ventilation with the window shall take priority over the shading with the awning. Therefore, the window is parameterised as master, the awning as slave. Both are provided with a zero position sensor which reports whether the drive mechanism is in a safe position or not.

The awning is now extended and the window shall be opened. The window knows the status of the awning ("not safe position") and therefore submits a master command to the awning. This is the signal for the awning, to retract a little bit. As soon as the awning has reached a safe position, there is an according feedback signal of the zero position sensor of the awning. Only now the window opens.

> Master and slave regularly exchange their positions ("safe" or "not safe"). By means of the monitoring period, you may adjust the frequency of information retrieval. The selected period should be shorter than the period which the monitored drive mechanism needs to travel from the limit of the safe range (last reported safe position) to a position where there is risk of collision.

If the drive mechanism does not receive a master/slave or zero position object, it moves to the safe position. The same holds true for a bus voltage breakdown or for a malfunction message from the zero position sensor (is valid for the parameterisation as master and as slave).

Without movement range limitation:

Use movement range limit	no
Behaviour following a failure of the bus power supply	\bullet no action \bullet Stop \bullet Up command (or On/Down) \bullet Down command (or Off/Up)
Behaviour on bus voltage restoration and after programming	\bullet no action \bullet Up command (or On/Down) \bullet - Down command (or Off/Up)

With movement range limit:
Set if the zero position sensor of the drive is directly connected to the actuator (input channel) or if the zero position is received via the bus (communication object).

Use movement range limit	yes
Zero position sensor connected as	\bullet communication object \bullet input channel
Actuator is	$\underline{\text { master } \bullet}$ slave

Actuator as master:

Actuator is	master
Send repetition for master command in sec	$1 \ldots 255 ; 10$
Monitoring period for slave status (and zero position) object in sec	$1 \ldots 255 ; \underline{10}$

Actuator as slave:

Actuator is	slave
Send repetition for slave commands in sec	$1 \ldots 255 ; \underline{10}$
Monitoring period for master status (and zero position) object in sec	$1 \ldots 255 ; \underline{10}$
Movement position for slave in \% if input "Master zero position command" $=1$	$\underline{0} \ldots 100$

Reference travel direction:
If the travel range is limited, the direction of the reference travel is fixed (safe position). The direction can be set without limiting the travel range.

Direction of reference travel	\bullet in safe position
	\bulletin closed position (move out shading) \bullet in open position (window)
	• shortest route

Blocking objects:

The output channel can be blocked in case of rain, wind or other events. The manual operation is then not possible. Blocking and monitoring are configured here first. For setting the individual blocks, separate menu items "Blocking X" will appear (see chapter Block - blocking objects, page 41, Block - wind blocking, page 42 and Block rain blocking, page 43).
The priorities of the blocking objects correspond to the sequence listed (Block 1 has the highest priority, Block 5 the lowest).

Use Block 1 (high priority)	\bullet no \bullet yes, with blocking object \bullet yes, as wind blocking \bullet - es, as rain blocking

Use block 2	- no - yes, with blocking object - yes, as wind blocking - yes, as rain blocking
Use block 3	- no - yes, with blocking object - yes, as wind blocking - yes, as rain blocking
Use block 4	- no - yes, with blocking object - yes, as wind blocking - yes, as rain blocking
Use Block 5 (low priority)	- no - yes, with blocking object - yes, as wind blocking - yes, as rain blocking
Priority is	- Block 5 over Manual - Manual over Block 5
Use monitoring of blocking objects	$\underline{\text { No }}$ - Yes
Monitoring period for blocking objects (only if using monitoring of the blocking objects)	5s... $\cdot 2 \mathrm{~h} ; 5 \mathrm{~min}$
Behaviour if a blocking object is not received (only if blocking object monitoring is used)	- Stop - Up command • Down command (Shutters/roller blinds) - On command • Off command (Awnings) - Close command • Open command (Windows)

Short time restriction (for blinds):

If short time restriction is active, only short time movement commands are still possible manually. If the function "Allow step commands only for blind adjustment" is activated simultaneously, (see Channel settings - drives, page 35) only the slats can still be adjusted by hand but no longer the movement position of the shutter.
Restriction is active for object value 1.

Use short time limit	$\underline{\text { no }} \bullet$ yes
Value of the object in front of 1. Communication and bus voltage restoration (if short time restriction is used)	$\underline{0} \bullet 1$

Automatic reset:

With the manual operation the automatic of the drive is deactivated. Here it is set when the automatic is reactivated.

Manual switches to automatic after	\bullet \bullet expiry of a waiting period receiving an object expiration of a waiting period or receipt of an object
Waiting period in min (if "Expiration of a waiting period" was chosen)	$1 \ldots 255 ; \underline{20}$
Switch to automatic for an object value (if "Receipt of an object" was chosen)	$0 \bullet \underline{1} \bullet 0$ or 1

Automatic blocking object:

With the automatic blocking object, the automatic can be deactivated for a short term (e.g. if present or during speeches in conference rooms).

Here it is also specified in which mode the channel is found when the voltage returns, i.e. after a power failure. The mode (manual or automatic) is send as a status object to the bus.

Use automatic blocking object	$\underline{\text { no }}$ • yes
Operating mode after power returns	\bullet Automatic Manual
Send status object	$\bullet \bullet \frac{1 \text { for automatic } \mid 0 \text { for manual }}{}$- for automatic $\mid 1$ for manual Send delay of the status output Automatic or Manual in 0.1 sec

Type of automatic:

The automatic for the connected drive can be specified externally, however all the settings can also be configured internally. If "internal automatic" is chosen, a separate menu item "Automatic" (see chapter Automatic for shading (drives), page 43 or Automatic for windows (drives), page 48) appears.

Type of automatic	external automatic \bullet internal automatic

Block - blocking objects

The menu item only appears if a block with blocking object was configured for "control". Here it is specified was happens for object value 1 and 0 . Via the free blocking object, a fire alarm scenario may be configured for example (create escape routes by retracting the shading, smoke extraction via windows). This can prevent being locked out on the patio (opened window contact of the patio door blocks the shutter in front of the door).

Designation	[Block 1 ... 5] Enter a designation here!
If blocking object has value =1	- no action - stop - move into position - up-command • down-command (shutter/blind) - retract-command • extend-command (awning) - close-command • open-command (window)
If blocking object has value $=0$	
For manual operation before and after blocking	- no action - move into last position
For automatic operation after blocking	follow automatic
Value of the object before the 1st communication and bus voltage return	$0 . .1$

Block - wind blocking

The menu item only appears if a wind blocking was configured for "control". The input object "wind blocking" is linked with the output object of a wind sensor. The input can be a 1 bit object (smaller or larger than a threshold value), as well as a 16bit object (measurement value).

Designation	$[$ Wind blocking $]$
	Enter a designation here!
Type of input object	$\underline{1 \text { bit } \bullet 16 \text { bit }}$

1 bit input object:

Type of input object	1 bit
If blocking object has value $=1$	- no action - stop - move into position - up-command \bullet down-command (shutter/blind) - retract-command \bullet extend-command (awning) - close-command \bullet open-command (window)
Waiting period in secure position in min after blocking	1...255; $\underline{5}$
Behavior after waiting period	
For manual operation before and after blocking	- no action - move into last position
For automatic operation after blocking	follow automatic

16 bit input object:

Type of input object	16 bit
As of wind speed in m/s blocking	2...30; $\underline{5}$
If blocking is active	- no action - stop - move into position - up-command • down-command (shutter/blind) - retract-command • extend-command (awning) - close-command • open-command (window)
Waiting period in secure position in min after blocking	1...255; $\underline{\square}$
Behavior after waiting period	
For manual operation before and after blocking	- no action - move into last position
For automatic operation after blocking	follow automatic
Send current blocking status	no • yes

Block - rain blocking

The menu item only appears if a rain blocking was configured for "control". The input object "rain blocking" is linked with the output object of a rain sensor.

Designation	[rain blocking] Enter a designation here!
If blocking object has value $=1$	- no action - stop - move into position - up-command - down-command
Waiting period in secure position in min after blocking	1...255; $\underline{5}$
Behavior after waiting period	
For manual operation before and after blocking	- no action - move into last position
For automatic operation after blocking	follow automatic

4.3.1.2. Automatic for shading (drives)

The menu item "Automatic" only appears if internal automatic is selected for "control". The internal automatic functions take into account the brightness/position of the sun, outdoor and indoor temperature and allow a time and dimming control. A shading position can be specified or taught.

To be able to fully utilize the internal shading automatic, information about brightness/ twilight, outdoor and indoor temperature, time and position of the sun must be present in the bus system (e.g. data from the Elsner weather stations Sun tracer KNX or Suntracer KNX-GPS).

Outdoor temperature block:

The input object "outdoor temperature block" is linked with the output object of a temperature sensor. The input object can be a 1bit object (smaller or larger than a threshold value), as well as a 16bit object (measurement value).

Use automatic blocking object	$\underline{\text { no }} \bullet$ yes
Use automatic blocking object	yes
Type of temperature input object	$\underline{1 \mathrm{bit}} \bullet 16$ bit

1 bit input object:

Type of temperature input object	1 bit

Shading is allowed if the bit is 0 and blocked if the bit is 1.
16 bit input object:

Type of temperature input object	$\mathbf{1 6}$ bit
Threshold value in $0.1^{\circ} \mathrm{C}$	$-300 \ldots 800 ; \underline{50}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{20}$
Send current blocking status	$\underline{\text { no }} \bullet$ yes

Shading is allowed
if the measurement value is larger than the threshold value+hysteresis and blocked
if the measurement value is smaller than or equal to the threshold value.

Twilight/time control:

The time control is provided via a communication object. The input object "twilight control" is linked with the output object of a brightness sensor. A 1bit object (smaller or larger than a threshold value), as well as a 16 bit object (measurement value) can be used for the twilight control.

Use twilight/time control	\bullet \bullet \bullet \bullet ono \bullet \bullet bnly twime timh (OR linking)
Use twilight/time control	only twilight control / both
Type of twilight object	$\underline{1 \text { bit } \bullet} 16$ bit

16 bit input object:

Type of twilight object	$\mathbf{1 6}$ bit
Twilight threshold value in lux	$1 \ldots 1000 ; \underline{10}$
Switching delay	1 minute
Send current twilight status	$\underline{\text { no }}$ • yes

Indoor temperature release:

The input object "indoor temperature release" is linked with the output object of a temperature sensor. The input object can be a 1bit object (smaller or larger than a threshold value), as well as a 16bit object (measurement value or target and actual value).

Use inside temperature release	$\underline{\text { no }} \bullet$ yes
Type of input object	$\frac{1 \text { bit } \bullet 16 \text { bit } \bullet 16 \text { bit target/actual }}{\text { temperature }}$

16 bit input object:

Type of input object	$\mathbf{1 6}$ bit
Threshold value in $0.1^{\circ} \mathrm{C}$	$-300 \ldots 800 ; \underline{200}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{20}$
Send current blocking status	$\underline{\text { no }}{ }^{\bullet}$ yes

16 bit input object (target/actual temperature):
For this function the target value and actual value (measurement values) are imported from the 16bit object and evaluated.

Type of input object	$\mathbf{1 6}$ bit target/actual temperature
Target value (SW) - actual value (MW) Difference in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{20}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{20}$
Send current blocking status	$\underline{\text { no }} \bullet$ yes

Shading is allowed if the measurement value is greater than or equal to the target value+difference and blocked if the measurement value is smaller than the target value+hysteresis difference.

Automatic shading:

The automatic shading evaluates the input objects "brightness" and "position of the sun" of a weather station. The moving position for the automatic shading is specified here as well.
Use automatic shading $\quad \underline{\text { no }} \bullet$ yes

Brightness:
For controlling brightness, a 1bit object (smaller or larger than a threshold value), as well as two or three 16bit objects (measurement values, e.g. East, South and West sun) can be used.

```
Type of shading input }\quad\underline{1\times1 bit \bullet 1 < 16 bit \bullet 2 < 16 bit \bullet 3 < 16 bit
```

1×1 bit input object:
Set the delay times for shading (prevents constant opening and closing when light conditions change quickly).

Type of shading input	1×1 bit
Drive up delay in \min	$0 \ldots 255 ; \underline{12}$
Departure delay in \min	$0 \ldots 30 ; \underline{1}$

1×16 bit, 2×16 bit or 3×16 bit as an input object:
The brightness threshold value can be specified per parameter or communication object. For several brightness measurement values (2×16 bit or 3×16 bit) only the maximum brightness value is compared to the threshold value.

Type of shading input	$\mathbf{1 \times 1 6} \mathbf{b i t} \cdot \mathbf{2} \times 16$ bit $\cdot \mathbf{3 \times 1 6}$ bit
Shading threshold specification per	$\underline{\text { parameter }}{ }^{\bullet}$ communication object

Threshold value per parameter:
Set the threshold value and delay times for shading (prevents constant opening and closing when light conditions change quickly).

Shading threshold specification per	Parameter
Shading threshold value in klux	$0 \ldots 100 ; \underline{30}$
Drive up delay in \min	$0 \ldots 255 ; \underline{12}$
Drive down delay in min	$0 \ldots 30 ; \underline{1}$
Send current shading status	$\underline{\text { No }} \bullet$ Yes

Threshold value per communication object:
The threshold value is received via the communication object and can be changed additionally (e.g. button for "more sensitive" and "less sensitive"). Set the delay times for shading here (prevents constant opening and closing when light conditions change quickly).

Shading threshold specification per	communication object
The value communicated last shall be retained	- $\frac{\text { not }}{\text { - }}$ after voltage returns \bullet after voltage returns and programming
Start threshold value in klux valid until 1st communication	$0 \ldots 100 ; \underline{30}$
Type of limit value change	- Absolute value with a 16bit comm. object - Lifting/lowering with a comm. object - Lifting/lowering with two comm. objects

Increments in klux (only when "lifting/lowering with comm. object")	$1 \ldots 5 ; \underline{2}$
Drive up delay in min	$0 \ldots 255 ; \underline{12}$
Drive down delay in min	$0 \ldots 30 ; \underline{1}$
Send current shading status	$\underline{\text { no }} \bullet$ yes

Position of the sun:

Assess position of the sun	$\underline{\text { no }} \bullet$ yes
Assess position of the sun	yes
Position of the sun is defined via	\bullet Discreet value of azimuth and elevation
(regarding azimuth and elevation)	

Defining position of sun via values:
Enter the range (direction and height) in which the sun must be located for the shading to be active.

Position of the sun is defined via	discreet value of azimuth and elevation
Azimuth from	$\underline{0} \ldots 360$
Azimuth to	$\underline{0} \ldots 360$
Elevation from	$\underline{0} \ldots 90$
Elevation to	$\underline{0} \ldots 90$

Defining position of the sun via directions:
Enter the direction in which the sun must be positioned so that the shading is active.
Position of the sun is defined via
Directions
directions
(regarding azimuth and elevation)

- East (azimuth: $0^{\circ} \ldots 180^{\circ}$)
- South east (azimuth: $45^{\circ} \ldots 225^{\circ}$)
- South (azimuth: $90^{\circ} \ldots 270^{\circ}$)
- South west (azimuth: $135^{\circ} \ldots 315^{\circ}$)
- West (azimuth: $180^{\circ} \ldots 360^{\circ}$)

Slats and moving position (for shutters):

For shutters the angle of the slats can be firmly set, or the slats can automatically follow the elevation. This rule applies: Slats are closed at 100%, horizontal at 50%.

Should the slats follow the elevation	$\underline{\text { no }}$ • yes

The slats should not follow the elevation (fixed reversing angle):
Adjust the desired position of the slats and the curtain.

Should the slats follow the elevation	no
Slat position in \%	$0 \ldots 100 ; \underline{75}$
Shutter position in \%	$0 \ldots 100 ; \underline{75}$
Use teaching object for new shading position (curtain and slat positions will be saved, see info below)	$\underline{\text { no }}{ }^{\bullet}$ yes

The slats shall follow the elevation:
Three different elevation ranges can be set. A fixed curtain and slat position is specified for each.

Should the slats follow the elevation	yes
For an elevation less than (in degrees)	$0 \ldots 90 ; \underline{10}$
Slat position in $\%$	$0 \ldots 100 ; \underline{95}$
otherwise	$0 \ldots 100$
Slat position in \%	

Moving position (for awnings and blinds):

Awning position in \% or blind position in \%	$0 \ldots 100 ; 75$
Use teaching object for new shading position	$\underline{\text { no }}$ • yes

Use teaching object for new shading position: The curtain position it can be specified numerically or taught manually. For teaching set "use teaching object: Yes" and the "channel X shading position teaching object" is used for saving the position reached. Saving occurs for value $=1$ and can for example be realized via a button linked to the teaching object. Numerical specifications already set are overwritten by the teaching object.

4.3.1.3. Automatic for windows (drives)

The menu item "Automatic" only appears if internal automatic is selected for "Control". Depending on the setting, the internal automatic functions take the outdoor temperature, indoor temperature and room air humidity into account, and allow forced ventilation via a communication object.

In order to fully utilize the internal ventilation automatic, information about the outdoor and indoor temperature and the inside air humidity must be present in the bus system.

Cold supply air lock:

The input object "cold supply air block" is linked with the output object of a temperature sensor. The input object can be a 1bit object (smaller or larger than a threshold value), as well as a 16bit object (measurement value).

Use cold supply air block	$\underline{\text { no }} \bullet$ yes
Use cold supply air block	yes
Type of temperature input object	$\underline{1 \text { bit } \bullet 16 \text { bit }}$

1bit input object:

Type of temperature input object	$\mathbf{1}$ bit

Ventilation is allowed if the bit is 0 and blocked if the bit is 1.
16bit input object:

Type of temperature input object	$\mathbf{1 6}$ bit
Threshold value in $0.1^{\circ} \mathrm{C}$	$-300 \ldots 800 ; \underline{50}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{20}$
Send current blocking status	$\underline{\text { no }}$ • yes

Ventilation is allowed if the measurement value is larger than the threshold value+hysteresis and blocked if the measurement value is smaller than or equal to the threshold value.

Forced ventilation:

Use forced ventilation	$\underline{\text { no }}$ • yes

If forced ventilation is active ("use forced ventilation: Yes"), ventilation is started as soon as the communication object "forced ventilation" $=1$.

Warm supply air block:

The input object "warm supply air block" is linked with the output object of one or more temperature sensors. The input object can be a 1bit object (smaller or larger than a threshold value), as well as a 16bit object (measurement value indoor/outdoor or target and actual value).

Use warm supply air block	$\underline{\text { no } \bullet \text { yes }}$
Use warm supply air block	yes
Type of input object	$\frac{1 \text { bit } \bullet 16 \text { bit } \bullet 16 \text { bit target/actual }}{\text { temperature }}$

1bit input object:

Type of input object	$\mathbf{1}$ bit

Ventilation is allowed if the bit is 0 and blocked if the bit is 1.

16bit input object:

Type of input object	$\mathbf{1 6}$ bit
Threshold value in $0.1^{\circ} \mathrm{C}$	$-100 \ldots 200 ; \underline{50}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{0}$
Send current blocking status	$\underline{\text { no }}{ }^{\bullet}$ yes

Ventilation is allowed if the outdoor measurement value is smaller than the indoor measurement value+difference-hysteresis and blocked if the outdoor measurement value is greater than or equal to the indoor measurement value+difference.

16bit input object (target/actual temperature):
For this function the target value and actual value (measurement values) are imported from the 16bit object and evaluated.

Type of input object	$\mathbf{1 6}$ bit target/actual temperature
Close if outdoor temperature exceeds the target value by (in $\left.0.1^{\circ} \mathrm{C}\right)$	$0 \ldots 255 ; \underline{50}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{20}$
Send current blocking status	$\underline{\text { no }}{ }^{\bullet}$ yes

Ventilation is allowed if the outdoor measurement value is smaller than the target value+difference-hysteresis and blocked if the outdoor measurement value is greater than or equal to the target value+difference.

Open by temperature/humidity:

Open window	$\bullet \frac{\text { never }}{}$
	\bullet if too high temperature
	\bullet if too high room air humidity
	\bullet if too high temperature or room air
humidity	

Indoor temperature:

These parameters appear if ventilated at "too high temperature" / "too high temperature or room air humidity". The input object can be a 1 bit object (smaller or larger than a threshold value), as well as a 16bit object (measurement value or target and actual value).

Type of temperature input object	$\frac{1 \mathrm{bit}}{\text { temperature }} 16 \mathrm{bit} \bullet 16$ bit target/actual

1 bit input object:

Type of temperature input object	1 bit

Ventilation is activated if the bit is 0 and blocked if the bit is 1.

16 bit input object:
The threshold value specification can be provided via a parameter or communication object.

Type of temperature input object	$\mathbf{1 6}$ bit
Indoor temperature of threshold specification via	parameter \bullet communication object

Threshold value per parameter:

Indoor temperature of threshold specification via	parameter
Indoor temperature threshold value in $0.1 ?$	$-100 \ldots 500 ; 300$
Hysteresis in $0.1 ?$	$1 \ldots 100 ; \underline{20}$
Send current temperature status	$\underline{\text { no }} \bullet$ yes

Threshold value per communication object:
The threshold value is received via the communication object and can be changed additionally (e.g. button for target temperature + and -).

Indoor temperature threshold specification via	communication object
The value communicated last shall be retained	- not - after voltage returns - after voltage returns and programming
Start threshold value in $0.1^{\circ} \mathrm{C}$ valid until 1st communication	100 ... 500; 300
Type of limit value change	- Absolute value with a 16 bit comm. object - Lifting/lowering with a comm. object - Lifting/lowering with two comm. objects
Increments (only when "lifting/lowering with comm. object")	$0.1{ }^{\circ} \mathrm{C} \ldots 5^{\circ} \mathrm{C} ; 1^{\circ} \mathrm{C}$
Hysteresis in 0.1?	$1 . . .100 ; \underline{20}$
Send current temperature status	no ${ }^{\text {- yes }}$

16 bit input object (target/actual temperature):
For this function the target value and actual value (measurement values) are imported from the 16bit object and evaluated.

Type of temperature input object	$\mathbf{1 6}$ bit target / actual temperature
Open if actual value exceeds the target value (in $0.1^{\circ} \mathrm{C}$)	$0 \ldots .255 ; \underline{20}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{20}$
Send current blocking status	$\underline{\text { no }}{ }^{\bullet}$ yes

Room air humidity:

These parameter appear if ventilated at "too high room air humidity" / "too high temperature or room air humidity". The input object can be a 1bit object (smaller or larger than a threshold value), as well as a 16bit object (measurement value).

Type of humidity input object	$\underline{1 \text { bit } \bullet} 16$ bit

1 bit input object:

Type of humidity input object 1 bit

Ventilation is activated if the bit is 0 and blocked if the bit is 1.
16 bit input object:

Type of humidity input object	$\mathbf{1 6}$ bit
Indoor humidity threshold value in $\%$	$0 \ldots 100 ; \underline{60}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{5}$
Send current humidity status	$\underline{\text { no }} \bullet$ yes

Window opening:
If the ventilation by temperature or humidity is controlled via a 1 bit input object, then enter the opening position in \%.

Window opening in \%	$1 \ldots \underline{100}$

If the ventilation is controlled by temperature and humidity via a 16bit input object, then you can either set an opening position or open the windows incrementally. In the step operation the temperature/humidity deviation is checked after a specified period of time, and may be increased/decreased by one step.

Window opening	absolute in \% - incrementally
Window opening in \% (only if "window opening is absolute in \%")	1... 100
incrementally by (in \%) (only if "window opening is in increments")	1...100; 25
every (in minutes) (only if "window opening is in increments")	1...60; 3

4.3.1.4.Button inputs (drives)

The inputs 3 to 10 are designated for operating the devices on the outputs (channel AD), and are therefore parameterized directly in the settings of the output channels. They can be used as actuator button or bus button, for connected drives the inputs 3, 5, 7 and 9 can be used alternatively for zero position sensors.

Operating mode	
Use input 3 / 5 / 7 / 9	- no - as a bus button - as an actuator switch - as a zero position sensor
Use input 4 / 6 / 8 / 10	- no - as a bus button - as an actuator switch

Input as bus button

The settings correspond to input $1 / 2$ (see Input as bus button, page 30)

Input as actuator button

If this channel is used for the input to the control of the drive, then specify the button function and the control mode.

Button function	$\frac{\text { Up }}{} \bullet$ Down	(shutter) (bp Down \bullet Up/
(blind)		
(awning)		
	$\frac{\text { On }}{} \bullet$ Off \bullet On/Off	(window)
Open \bullet Closed \bullet		
Open/Closed		
Control mode*	\bullet Standard	
	\bullet Standard inverted	
	\bullet Comfort mode	
	\bullet Dead man's switch	

*A detailed description of the setting options for the individual control modi can be found in the general part of chapter Control modi for drive control, page 58.

The input can be blocked using a blocking object. No operation is possible for an active block.

Use blocking object	$\underline{\text { No }} \cdot$ Yes

If monitoring periods or movement range limits are used, no operation via the local button is possible in case of a bus voltage failure.

Input as zero position sensor

The zero position sensor is used for the movement range limit of the respective drive (see Channel settings - drives, page 35). In case of a defect zero position sensor a malfunctioning message can be sent to the bus.

Send malfunction message when zero position sensor is defective	No \bullet Yes

4.3.2. Channel settings - switch functions

If two switchable devices are connected to the output channel, two separate channels will appear (e.g. "Channel A1 - switch function" and "Channel A2 - switch function"). First set the general specifications for the connected device and, if necessary, activate the connections, time functions and blocking objects. A diagram is found in chapter Correlation connection - time switch - block, page 62.

Relay operation	closer - opener
Behavior for bus voltage failure	- no change - opened - closed
Behavior for bus voltage return	- as before bus voltage failure - no change - opened - closed
Behavior after reset and ETS download	- opened - closed
Use status object	- no - as an active feedback object - as a passive status object
Use connection function (see Connection (switch functions), page 54)	no - yes
Use time function (see On/Off switch delays, time switching (switch functions), page 54)	- no - as a switch on delay - as a switch off delay - as a switch on and off delay - as a staircase light timer
Use blocking object	no - yes

4.3.2.1. Connection (switch functions)

The menu item "connection" appears only for the settings for the switch function channel if selected "Use switch functions: Yes".

In the connection object ("Channel X connection") different communication objects can be linked with AND or OR. E.g. a light can only be switched on if the button input is active AND twilight is active.

Connection type	$\underline{\text { AND }} \bullet$ OR
Value of the connection object after bus voltage returns	$\underline{0} \bullet 1$

4.3.2.2. On/Off switch delays, time switching (switch functions)

The menu item appears only for the settings for the switch function channel if a time function is chosen. The menu item has the same name as the selected function.

With the switch on and off delay, a switch can be used for example for a HVAC unit and light. Through the switch on delay the ventilator will only start if the light has already been turned on for a few minutes. The switch off delay effects that the ventilator will follow up if the button was operated again and the light is already off.

The staircase timer function makes sure for example that the light is on for a defined period of time and then turns off automatically.

Switch on delay

The switch on delay is set with a time basis and time factor (e.g. $1 \mathrm{~min} \times 4$ corresponds to 4 minutes). Additionally it is specified if the time interval for a repeat receipt of a switch-on telegram is extended ('triggered again", e.g. by pressing the button again) and what happens when a switch off telegram arrives from the bus.

Time basis
Time factor
Switch on delay cannot
Off telegram during staircase light period affects

$0.1 \mathrm{~s} \bullet 1 \mathrm{~s} \bullet 1 \mathrm{~min} \bullet 1 \mathrm{~h}$
$4 \ldots 255 ; \underline{4}$
be triggered again \bullet can be triggered again
nothing \bullet direct turn off

Switch off delay

The switch off delay is set with a time basis and time factor (e.g. $1 \mathrm{~min} \times 4$ corresponds to 4 minutes). Additionally it is specified if the time interval for a repeat receipt of a switch-off telegram is extended ("can be triggered again", e.g. by pressing the button again) and what happens when a switch off telegram arrives from the bus.

Time basis	$0.1 \mathrm{~s} \bullet 1 \mathrm{~s} \bullet 1 \mathrm{~min} \bullet 1 \mathrm{~h}$
Time factor	$4 \ldots 255 ; \underline{4}$
Switch on delay cannot	be triggered again \bullet can be triggered again
On telegram during staircase light period affects	$\underline{\text { nothing } \bullet \text { direct turn on }}$

Staircase lighting timer

The staircase time switch sets with a time basis and time factor how long the light will remain on (e.g. $1 \mathrm{~s} \times 10$ corresponds to 10 seconds). Additionally it is specified if the time interval for a repeat receipt of a switch-on telegram is extended ("triggered again", e.g. by pressing the button again) and what happens when a switch off telegram arrives from the bus.

Time basis	$0.1 \mathrm{~s} \bullet 1 \mathrm{~s} \bullet 1 \mathrm{~min} \bullet 1 \mathrm{~h}$
Time factor	$4 \ldots 255 ; \underline{10}$
Staircase light time can	not be triggered again $\bullet \underline{\text { can be triggered }}$ again
Off telegram during staircase light period affects	$\underline{\text { nothing } \bullet}$ direct turn off

4.3.2.3. Blocking function (switch functions)

The menu item "blocking function" appears only for the settings for the switch function channel if selected "Use blocking functions: Yes".

The output channel can be blocked by a block telegram. What happens during the blocking, for bus voltage return and after the blocking is set here. The manual operation is then not possible for an active block.
The function can be used for example for a light, which is turned on when pressing a "panic button" (=trigger for blocking function) and cannot be turned off any longer.

Blocking function blocks for	$\mathbf{0} \bullet \underline{1}$
Value of the blocking object after bus voltage returns	$\underline{\mathbf{0}} \boldsymbol{1}$
Response when blocking	no change \bullet opened \bullet closed
Response upon release	$\underline{\text { follows switch command } \bullet \text { opened } \bullet \text { closed }}$

4.3.3. Button input (switch functions)

The inputs 3 to 10 are designated for operating the devices on the outputs (channel AD), and are therefore parameterized directly in the settings of the output channels. They can be used as actuator button or bus button.

Operating mode	
Use input $3 / 4 / 5 / 6 / 7 / 8 / 9 / 10$	- No
	- as a bus button
	-as an actuator switch

Input as bus button

The setting corresponds to input $1 / 2$ (see Input as bus button, page 30)

Input as actuator button

If the input to the control of the device is used at this channel, then specify the button function.

Button function	$\underline{\text { Switch• }}$ • Selector switch

If a button with switch function is assigned to the input, select the button function "Switch" and specify what happens when pressing/releasing the button and when to send.

Button function	Switch
Command when pressing the button	\bullet • $\frac{\text { switch on }}{\text { switch off }}$
	\bullet nothing
Command when releasing the button	\bullet switch on
	\bullet • switch off
	\bullet nothing

The input can be blocked using a blocking object. Set what happens when (de)activating the block. No operation is possible for an active block.

Use blocking object	$\underline{\text { No } \bullet \text { Yes }}$
Use blocking object	Yes
Once when activating the blocking	\bullet switch on \bullet switch off \bullet nothing
Once when deactivating the blocking	\bullet switch on \bullet switch off \bullet
nothing	
\bullet evaluate current state	

If a button with selector switch function is assigned to the input, select the bus function "Selector switch" and specify what happens when pressing and releasing the button.

Button function	Selector switch
Command when pressing the button	\bullet • switch over
Command when releasing the button	\bullet •switch over
	\bullet nothing

The input can be blocked using a blocking object. No operation is possible for an active block.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

5. General part

5.1. Output channel with drive

5.1.1. Control modi for drive control

If inputs are used as buttons for operating shading or windows, then different control modi can be set.

```
Control mode \bullet Standard
- Standard inverted
- Comfort mode
- Dead man's switch
```


Standard:

If briefly operated, the drive will move incrementally or stops. If operated longer, the drive will move up to the end position. The time difference between "short" and "long" is set individually.

Control mode	Standard
Behavior during button operation: short = stop/increment long = Up or Down	
Time between short and long in 0.1 seconds	$1 \ldots 50 ; 10$

Standard inverted:

When pushed shortly, the drive moves up to the end position. When pushed for longer, the drive moves incrementally or stops. The time difference between "short" and "long" and the repeat interval is set individually.

Control mode	Standard inverted
Behavior during button operation: short = Up or Down long = Stop/Step	
Time between short and long in 0.1 seconds	$1 \ldots 50 ; \underline{10}$
Repeat the step command for a long button press	every $0.1 \mathrm{~s} \bullet$ every $2 \mathrm{sec} ;$ every 0.5 sec

Comfort mode:

In the comfort mode pushing the button briefly, a bit longer and long will trigger different responses of the drive. The time intervals are set individually.

By pushing the button (shorter than adjustable time 1) the drive will be positioned (resp. stopped) incrementally.

If the drive is to be moved a bit farther, then a little longer push is needed (longer than time 1 but shorter than time $1+2$). The drive stops immediately when releasing the button.
If the drive must be moved independently into the end position, the button is released only after times 1 and 2 have expired. The move can be stopped by briefly pushing.
Fig. 1
Time interval comfort mode diagram

Dead man's switch:

The drive moves as soon as the button is pushed and stops as soon as the button is released.

Control mode	Dead man's switch
Behavior during button operation:	
Push button = Up or Down command	
Release button = Stop command	

5.1.2. Connection option for zero position sensors

See also section Movement Range Limit in chapter Control (drives), page 37. The examples and the communication object numbers refer to the mutual master-slave coupling of drives at the output channel A and channel B.

Drive channel A is Master, zero position sensor at input 3 of the actuator, drive channel B is Slave, zero position sensor at input 5 of the actuator:

Drive channel A is Master, zero position sensor at input 3 of the actuator, drive channel B is Slave, zero position sensor via bus:

Drive channel A is Master, zero position sensor via bus, drive channel B is Slave, zero position sensor at input 5 of the actuator:

Drive channel A is Master, zero position sensor via bus, drive channel B is Slave, zero position sensor via bus:

5.2. Output channel with switch function

5.2.1. Correlation connection - time switch - block

Application 1: Staircase light at channel A1, that can only be switchable at twilight/ night (linking) and that is turned on during a fire alarm (blocking).

When switching via communication object "Channel A1 switch" (200), the light is turned on or off normally. When switching via object "Channel A1 staircase light function start" (205), the staircase light time function is activated. The time function has priority, i.e. the status triggered by normal switching is overwritten.

Elsner Elektronik GmbH Control and AutomationTechnology
Sohlengrund 16
75395 Ostelsheim Phone $+49(0) 7033 / 30945-0$ info @ elsner-elektronik.de Germany Fax +49(0)7033/30945-20 www.elsner-elektronik.de

1. Description 5
1.1. Technical data 6
2. Installation and start-up 6
2.1. Installation notes 6
2.2. Device design 8
2.2.1. Indication of operation mode with the Power LED 9
2.2.2. Status display by the channel LEDs 9
2.3. Notes on mounting and commissioning 10
2.4. Connection examples for binary inputs 10
2.4.1. Using the internal auxiliary voltage of the actuator 10
2.4.2. Using an external voltage 11
3. Transfer protocol 12
3.1. List of all communication objects 12
4. Parameter setting 29
4.1. General settings 29
4.1.1. Local operation 29
4.2. Inputs 29
Input as bus button 30
4.3. Outputs 34
4.3.1. Channel settings - drives 35
4.3.1.1. Control (drives) 37
Block - blocking objects 41
Block - wind blocking 42
Block - rain blocking 43
4.3.1.2. Automatic for shading (drives) 43
4.3.1.3. Automatic for windows (drives) 48
4.3.1.4. Scenes (drives) 52
4.3.1.5. Button inputs (drives) 53
Input as bus button 53
Input as actuator button 53
Input as zero position sensor 54
4.3.2. Channel settings - switch functions 54
4.3.2.1. Connection (switch functions) 55
4.3.2.2. On/Off switch delays, time switching (switch functions) 55
4.3.2.3. Blocking function (switch functions) 56
4.3.2.4. Button input (switch functions) 56
Input as bus button 56
Input as actuator button 57
5. General part 58
5.1. Output channel with drive 58
5.1.1. Control modi for drive control 58
5.1.2. Connection option for zero position sensors 59
5.2. Output channel with switch function 62
5.2.1. Correlation connection - time switch - block .. 62

Elsner Elektronik GmbH • Sohlengrund 16 • D-75395 Ostelsheim • Germany

Installation, inspection, commissioning and troubleshooting of the device
141 must only be carried out by a competent electrician.

This manual is amended periodically and will be brought into line with new software releases. The change status (software version and date) can be found in the contents footer. If you have a device with a later software version, please check
www.elsner-elektronik.de in the menu area "Service" to find out whether a more up-todate version of the manual is available.

Clarification of signs used in this manual

Safety advice.

DANGER!

WARNING!

CAUTION!

Safety advice for working on electrical connections, components, etc.
... indicates an immediately hazardous situation which will lead to death or severe injuries if it is not avoided.
... indicates a potentially hazardous situation which may lead to death or severe injuries if it is not avoided.
... indicates a potentially hazardous situation which may lead to trivial or minor injuries if it is not avoided.

ATTENTION! ... indicates a situation which may lead to damage to property if it is not avoided.

ETS
In the ETS tables, the parameter default settings are marked by underlining.

1. Description

The KNX S4-B10 230 V Actuator with integrated facade control has 4 multifunctional outputs, 4 pairs of buttons and monitoring LEDs. Each of the four multifunctional outputs can connect to either a drive with Up/Down control (blinds, awnings, shutters, windows) or two switchable devices (On/Off for light and ventilation). The connected drives and devices can be operated directly on
KNX S4-B10 230 V and via hand switches.
The automation can be specified externally or internally. Internally, there are numerous options available for blocking, locking (e.g. master-slave) and priority definition (e.g. manual-automatic). Scenes can be saved and called up via the bus (scene control with 16 scenes per drive).
Ten binary inputs can be used either for direct operation (e.g. hand switches) or as bus switches (or also for e.g. alarm notifications). The desired behaviour can be defined precisely through selection of the response times in Standard, Comfort or Deadman mode.

Functions:

- $\mathbf{4}$ multifunctional outputs each for a $\mathbf{2 3 0}$ V drive (shade, window) or for connecting two switchable devices (light, fan)
- Keypad with 4 button pairs and status LEDs
- 10 binary inputs for use as hand switches or as bus switches with variable voltage (6... 80 V DC, $6 . . .240 \mathrm{~V}$ AC)
- Automatic runtime measurement of the drives for positioning (including fault notification object)
- Position feedback (movement position, also slat position for blinds)
- Position storage (movement position) via 1-bit object (storage and call-up e.g. via button)
- Control via internal or external automation
- Integrated shade control for each drive output (with slat tracking according to sun position for blinds)
- Scene control for movement position with 16 scenes per drive (also slat position for blinds)
- Mutual locking of two drives using zero position sensors prevents collisions e.g. of shade and window (master-slave)
- Blocking objects and alarm notifications have different priorities, so safety functions always take precedence (e.g. wind block)
- Manual or automatic priority setting via time or communication object

Configuration is made using the KNX software ETS. The product file can be downloaded from the Elsner Elektronik homepage on www.elsner-elektronik.de in the "Service" menu.

1.1. Technical data

Housing	Plastic
Colour	White
Assembly	Series installation on mounting rails
Protection Category	IP 20
Dimensions	approx. $107 \times 88 \times 60(\mathrm{~W} \times \mathrm{H} \times \mathrm{D}, \mathrm{mm})$ 6 width units
Weight	approx. 360 g
Ambient temperature	Operation $-20 \ldots+70^{\circ} \mathrm{C}$, Storage $-55 \ldots+90^{\circ} \mathrm{C}$
Ambient humidity	max. 95\% rF, avoid condensation
Operating voltage	$230 \mathrm{~V} \mathrm{AC}$,
Power consumption	Operation max. approx. 3.5 W Standby max. approx. 0.6 W
Current	on bus: 10 mA
Outputs	$4 \times$ outputs each with 2 connections for drive up/down or 2 devices, 230 V (PE/N/1/2), total. max 10 A and max. 4 A per connection
Inputs	$10 \times$ binary inputs, universal voltage ($6 . . .80 \mathrm{~V}$ DC, $6 \ldots 240 \mathrm{~V}$ AC)
Max. cable length Binary inputs	50 m
Data output	KNX +/- Bus connector terminal
BCU type	own microcontroller
PEI type	0
Group addresses	max. 1024
Assignments	max. 1024
Communication objects	535

The product conforms with the provisions of EU guidelines.

2. Installation and start-up

2.1. Installation notes

Installation, testing, operational start-up and troubleshooting should only be performed by an electrician.

DANGER!

Risk to life from live voltage (mains voltage)!

There are unprotected live components within the device.

- VDE regulations and national regulations are to be followed.
- Ensure that all lines to be assembled are free of voltage and take precautions against accidental switching on.
- Do not use the device if it is damaged.
- Take the device or system out of service and secure it against unintentional use, if it can be assumed, that risk-free operation is no longer guaranteed.

The device is only to be used for its intended purpose. Any improper modification or failure to follow the operating instructions voids any and all warranty and guarantee claims.

After unpacking the device, check it immediately for possible mechanical damage. If it has been damaged in transport, inform the supplier immediately.

The device may only be used as a fixed-site installation; that means only when assembled and after conclusion of all installation and operational start-up tasks and only in the surroundings designated for it.

Elsner Elektronik is not liable for any changes in norms and standards which may occur after publication of these operating instructions.

2.2. Device design

The device is designed for series installation on mounting rails and occupies 6TE.

1) $-/ \mathrm{N}$ (bridged internally with terminal No. 5). When an external auxiliary voltage is used ($6 \ldots 80$ V DC, $6 \ldots 240 \mathrm{~V}$ AC), one of the $-/ \mathrm{N}$ terminals is to be assigned with - or N
2) Free contacts (bridged internally)
3) Programmer LED and programmer buttons (PRG)
4) Bus terminal slot ($K N X+$ +-)
5) $-/ \mathrm{N}$ (bridged internally with terminal No. 1).
6) Binary inputs 1-6 (1 and 2: two bridged connections)
7) Internal auxiliary voltage +24 V DC. Only for binary inputs!

Do not assign any external voltage!
8) Binary inputs 7-10
9) Up/Down button pairs and LEDs channel A-D
10) Power LED, Indication of operation mode. See "Indication of operation mode with the Power LED" on page 9.
11) Operating voltage input 230 V AC L/N/PE
12) Output A1-A2: "Up"-"Down" or "Device1"-"Device2", max. 4 A
13) Output B1 - B2: "Up"-"Down" or "Device1"-"Device2", max. 4 A
14) Output C1-C2: "Up"-"Down" or "Device1"-"Device2", max. 4 A
15) Output D1-D2: "Up"-"Down" or "Device1"-"Device2", max. 4 A

N ${ }^{\circ}$ 12-15 together max. 10 A
16) All terminals $L, N, P E$ of the lower connection strip are bridged internally with "Main L, N, PE".

A mix of different auxiliary voltages for the binary inputs is not permitted.

2.2.1. Indication of operation mode with the Power LED

Behaviour	Colour	
On	Green	Normal operation. Bus connection/bus voltage available.
Flashes	Green	Normal operation. No bus connection/bus voltage available.
On	Orange	Device starts up or is beeing programmed via the ETS. No automatic functions are executed.
Flashes	Green (on), Orange (flashing)	Programming mode active.

2.2.2. Status display by the channel LEDs

Behaviour	LED	
To	top	Drive in top end position/device on.
To	bottom	Drive in bottom end position/drive on.
Flashes slowly	top	Drive moves up.
Flashes slowly	bottom	Drive moves down.
Flashes quickly	top	Drive in top end position, blocking active.
Flashes quickly	bottom	Drive in bottom position, blocking active.
Flashes quickly	both simultaneously	Drive in intermediate position, blocking active.
Extend	both	Drive in intermediate position.
Flashes	both alternately	Automatic runtime determination error. If the drive can be moved, drive it into the end position by hand (drive in/drive out completely or open/close) in order to restart the runtime determination. If the drive cannot be moved, check the connections.
"Runlight" above all LEDs	all channels	Incorrect application version was loaded. Use the version compatible with the device!

2.3. Notes on mounting and commissioning

Device must not be exposed to water (rain). This could result in the electronic being damaged.
A relative air humidity of 95% must not be exceeded. Avoid bedewing.
After the operating voltage has been applied, the device will enter an initialisation phase lasting a few seconds. During this phase no information can be received or sent via the bus.

For KNX devices with safety functions (e.g. wind or rain blocks), periodical monitoring of the safety objects must be set up. The optimal ratio is $1: 3$ (example: if the weather station sends a value every 5 minutes, the actuator must be configured for a monitoring period of 15 minutes).

2.4. Connection examples for binary inputs

2.4.1. Using the internal auxiliary voltage of the actuator

2.4.2. Using an external voltage

3. Transfer protocol

3.1. List of all communication objects

Abbreviations:

R Read
W Write
C Communication
T Transfer
DPT Data Point Type

No.	Name	Function	DPT	Flags
1	Software version	Readable		
50	Input 1 long term	Input / output	DPST-1-8	RWCT
51	Input 1 short term	Output	DPST-1-10	R CT
52	Input 1 switching	Input / output	DPST-1-1	RWCT
53	Input 1 dim relative	Input / output	DPST-3-7	RWCT
54	Input 1 encoder 8 bit	Output	DPT-5	R CT
55	Input 1 encoder temperature	Output	DPST-9-1	R CT
56	Input 1 encoder brightness	Output	DPST-9-4	R CT
57	Input 1 scene	Output		R CT
58	Input 1 blocking object	Input	DPST-1-1	WC
$\begin{array}{\|l\|} \hline 60- \\ 68 \\ \hline \end{array}$	Input 2 (see input 1)			
100	Channel A status automatic or manual	Output	DPST-1-3	R CT
101	Channel A manual long term	Input	DPST-1-10	RWC
102	Channel A manual short term	Input	DPST-1-8	RWC
103	Channel A manual movement position	Input	DPST-5-1	RWC
104	Channel A manual slat position	Input	DPST-5-1	RWC
105	Channel A automatic short term	Input	DPST-1-10	RWC
106	Channel A automatic long term	Input	DPST-1-8	RWC
107	Channel A automatic movement position	Input	DPST-5-1	RWC
108	Channel A automatic slat position	Input	DPST-5-1	RWC
109	Channel A switch from manual to automatic	Input	DPST-1-3	RWC
110	Channel A automatic blocking object	Input	DPST-1-1	RWCT
111	Channel A current movement position	Output	DPST-5-1	R CT
112	Channel A current slat position	Output	DPST-5-1	R CT
113	Channel A status object	Output		R CT
114	Channel A call saving scenes	Input		WC

No.	Name	Function	DPT	Flags
115	Channel A outdoor temperature Blocking object	Input	DPST-1-1	RWC
116	Channel A outdoor temperature blocking measurement value	Input	DPST-9-1	WC
117	Channel A outdoor temperature blocking status	Output	DPST-1-3	R CT
118	Channel A twilight object	Input	DPST-1-1	RWC
119	Channel A twilight measurement value	Input	DPST-9-4	RWC
120	Channel A twilight status	Output	DPST-1-3	R CT
121	Channel A time control	Input	DPST-1-1	RWC
122	Channel A inside temperature release object	Input	DPST-1-1	RWC
123	Channel A inside temperature release measurement value	Input	DPST-9-1	RWC
124	Channel A inside temperature release target value	Input	DPST-9-1	RWC
125	Channel A inside temperature release status	Output	DPST-1-3	R CT
126	Channel A shading object	Input	DPST-1-1	RWC
127	Channel A shading brightness Measurement value 1	Input	DPST-9-4	RWC
128	Channel A shading brightness Measurement value 2	Input	DPST-9-4	RWC
129	Channel A shading brightness Measurement value 3	Input	DPST-9-4	RWC
130	Channel A shading threshold value	Input / output	DPST-9-4	RWCT
131	Channel A shading threshold value 10	Input	DPT-1	RWC
132	Channel A shading threshold value	Input	DPST-1-1	RWC
133	Channel A shading threshold value	Input	DPST-1-1	RWC
134	Channel A shading status	Output	DPST-1-3	R CT
135	Channel A shading position Teaching object	Input	DPST-1-1	RWC
136	Channel A azimuth	Input	DPT-9	RWC
137	Channel A elevation	Input	DPT-9	RWC
138	Channel A cold air supply blocking object	Input	DPST-1-1	RWC
139	Channel A cold air supply outside temperature measurement value	Input	DPST-9-1	RWC
140	Channel A cold supply air blocking status	Output	DPST-1-3	R CT
141	Channel A forced ventilation	Input	DPST-1-1	RWC

No.	Name	Function	DPT	Flags
142	Channel A warm air supply blocking object	Input	DPST-1-1	RWC
143	Channel A warm air supply inside temperature measurement value	Input	DPST-9-1	RWC
144	Channel A warm air supply outside temperature measurement value	Input	DPST-9-1	RWC
145	Channel A warm air supply blocking target value	Input	DPST-9-1	RWC
146	Channel A warm air supply blocking status	Output	DPST-1-3	R CT
147	Channel A inside temperature opening object	Input	DPST-1-1	RWC
148	Channel A inside temperature opening measurement value	Input	DPST-9-1	RWC
149	Channel A inside temperature opening target value	Input	DPST-9-1	RWC
150	Channel A inside temperature opening threshold value	Input / output	DPST-9-1	RWCT
151	Channel A inside temperature opening threshold value 1	Input	DPT-1	RWC
152	Channel A inside temperature opening threshold value	Input	DPST-1-1	RWC
153	Channel A inside temperature opening threshold value	Input	DPST-1-1	RWC
154	Channel A inside temperature opening status	Output	DPST-1-3	R CT
155	Channel A inside humidity opening object	Input	DPST-1-1	RWC
156	Channel A inside humidity opening Measurement value	Input	DPT-9	RWC
157	Channel A inside humidity opening status	Output	DPST-1-3	R CT
160	Channel A zero position reached	Input	DPST-1-2	RWC
161	Channel A zero position sensor malfunctioning	Output	DPST-1-2	R CT
162	Channel A master zero position status	Output	DPST-1-1	R CT
163	Channel A master zero position command	Output	DPST-1-1	R CT
164	Channel A slave zero position status	Input	DPST-1-1	RWC
165	Channel A master zero position status	Input	DPST-1-1	RWC
166	Channel A master zero position command	Input	DPST-1-1	RWC
167	Channel A slave zero position status	Output	DPST-1-1	R CT
168	Channel A drive moving	Output	DPST-1-1	R CT

No.	Name	Function	DPT	Flags
169	Channel A malfunction object	Output	DPST-1-2	R CT
170	Channel A block 1 blocking object	Input	DPST-1-1	RWC
171	Channel A block 1 wind blocking object	Input	DPST-1-1	RWC
172	Channel A block 1 wind blocking Measurement value	Input	DPST-9-5	RWC
173	Channel A block 1 wind blocking status	Output	DPST-1-3	R CT
174	Channel A block 1 rain blocking object	Input	DPST-1-1	RWC
175	Channel A block 2 blocking object	Input	DPST-1-1	RWC
176	Channel A block 2 wind blocking object	Input	DPST-1-1	RWC
177	Channel A block 2 wind blocking Measurement value	Input	DPST-9-5	RWC
178	Channel A block 2 wind blocking status	Output	DPST-1-3	R CT
179	Channel A block 2 rain blocking object	Input	DPST-1-1	RWC
180	Channel A block 3 blocking object	Input	DPST-1-1	RWC
181	Channel A block 3 wind blocking object	Input	DPST-1-1	RWC
182	Channel A block 3 wind blocking Measurement value	Input	DPST-9-5	RWC
183	Channel A block 3 wind blocking status	Output	DPST-1-3	R CT
184	Channel A block 3 rain blocking object	Input	DPST-1-1	RWC
185	Channel A block 4 blocking object	Input	DPST-1-1	RWC
186	Channel A block 4 wind blocking object	Input	DPST-1-1	RWC
187	Channel A block 4 wind blocking Measurement value	Input	DPST-9-5	RWC
188	Channel A block 4 wind blocking status	Output	DPST-1-3	R CT
189	Channel A block 4 rain blocking object	Input	DPST-1-1	RWC
190	Channel A block 5 blocking object	Input	DPST-1-1	RWC
191	Channel A block 5 wind blocking object	Input	DPST-1-1	RWC
192	Channel A block 5 wind blocking Measurement value	Input	DPST-9-5	RWC
193	Channel A block 5 wind blocking status	Output	DPST-1-3	R CT
194	Channel A block 5 rain blocking object	Input	DPST-1-1	RWC
195	Channel A Short time limit	Input	DPST-1-1	RWC
200	Channel A1 switching	Input	DPST-1-1	WC

No.	Name	Function	DPT	Flags
201	Channel A1 feedback	Output	DPST-1-1	R CT
202	Channel A1 status	Readable	DPST-1-1	R C
203	Channel A1 blocking object	Input	DPST-1-1	RWC
205	Channel A1 start stair case light function	Input	DPST-1-10	WC
206	Channel A1 start stop stair case light function	Input	DPST-1-10	WC
209	Channel A1 connection	Input	DPST-1-2	RWC
210	Channel A2 switching	Input	DPST-1-1	WC
211	Channel A2 feedback	Output	DPST-1-1	R CT
212	Channel A2 status	Readable	DPST-1-1	R C
213	Channel A2 blocking object	Input	DPST-1-1	RWC
215	Channel A2 start stair case light function	Input	DPST-1-10	WC
216	Channel A2 start stop stair case light function	Input	DPST-1-10	WC
219	Channel A2 connection	Input	DPST-1-2	RWC
249	Channel A local operation blocking object	Input	DPST-1-1	RWCT
$\begin{aligned} & 250- \\ & 258 \end{aligned}$	Input 3 (see input 1)			
$\begin{aligned} & 260- \\ & 268 \end{aligned}$	Input 4 (see input 1)			
300	Channel B status automatic or manual	Output	DPST-1-3	R CT
301	Channel B manual long term	Input	DPST-1-10	RWC
302	Channel B manual short term	Input	DPST-1-8	RWC
303	Channel B manual movement position	Input	DPST-5-1	RWC
304	Channel B manual slat position	Input	DPST-5-1	RWC
305	Channel B automatic short term	Input	DPST-1-10	RWC
306	Channel B automatic long term	Input	DPST-1-8	RWC
307	Channel B automatic movement position	Input	DPST-5-1	RWC
308	Channel B automatic slat position	Input	DPST-5-1	RWC
309	Channel B switch from manual to automatic	Input	DPST-1-3	RWC
310	Channel B automatic blocking object	Input	DPST-1-1	RWCT
311	Channel B current movement position	Output	DPST-5-1	R CT
312	Channel B current slat position	Output	DPST-5-1	R CT
313	Channel B status object	Output		R CT
314	Channel A call saving scenes	Input		WC

No.	Name	Function	DPT	Flags
315	Channel B outdoor temperature Blocking object	Input	DPST-1-1	RWC
316	Channel B outdoor temperature blocking measurement value	Input	DPST-9-1	WC
317	Channel B outdoor temperature blocking status	Output	DPST-1-3	R CT
318	Channel B twilight object	Input	DPST-1-1	RWC
319	Channel B twilight measurement value	Input	DPST-9-4	RWC
320	Channel B twilight status	Output	DPST-1-3	R CT
321	Channel B time control	Input	DPST-1-1	RWC
322	Channel B inside temperature release object	Input	DPST-1-1	RWC
323	Channel B inside temperature release measurement value	Input	DPST-9-1	RWC
324	Channel B inside temperature release target value	Input	DPST-9-1	RWC
325	Channel B inside temperature release status	Output	DPST-1-3	R CT
326	Channel B shading object	Input	DPST-1-1	RWC
327	Channel B shading brightness Measurement value 1	Input	DPST-9-4	RWC
328	Channel B shading brightness Measurement value 2	Input	DPST-9-4	RWC
329	Channel B shading brightness Measurement value 3	Input	DPST-9-4	RWC
330	Channel B shading threshold value	Input output	DPST-9-4	RWCT
331	Channel B shading threshold value 1 0	Input	DPT-1	RWC
332	Channel B shading threshold value	Input	DPST-1-1	RWC
333	Channel B shading threshold value	Input	DPST-1-1	RWC
334	Channel B shading status	Output	DPST-1-3	R CT
335	Channel B shading position Teaching object	Input	DPST-1-1	RWC
336	Channel B azimuth	Input	DPT-9	RWC
337	Channel B elevation	Input	DPT-9	RWC
338	Channel B cold air supply blocking object	Input	DPST-1-1	RWC
339	Channel B cold air supply outside temperature measurement value	Input	DPST-9-1	RWC
340	Channel B cold air supply blocking status	Output	DPST-1-3	R CT
341	Channel B forced ventilation	Input	DPST-1-1	RWC

No.	Name	Function	DPT	Flags
342	Channel B warm air supply blocking object	Input	DPST-1-1	RWC
343	Channel B warm air supply inside temperature measurement value	Input	DPST-9-1	RWC
344	Channel B warm air supply Outside temperature measurement value	Input	DPST-9-1	RWC
345	Channel B warm air supply blocking target value	Input	DPST-9-1	RWC
346	Channel B warm air supply blocking status	Output	DPST-1-3	R CT
347	Channel B inside temperature opening object	Input	DPST-1-1	RWC
348	Channel B inside temperature opening measurement value	Input	DPST-9-1	RWC
349	Channel B inside temperature opening target value	Input	DPST-9-1	RWC
350	Channel B inside temperature opening threshold value	Input output	DPST-9-1	RWCT
351	Channel B inside temperature opening threshold value 1	Input	DPT-1	RWC
352	Channel B inside temperature opening threshold value	Input	DPST-1-1	RWC
353	Channel B inside temperature opening threshold value	Input	DPST-1-1	RWC
354	Channel B inside temperature opening status	Output	DPST-1-3	R CT
355	Channel B inside humidity opening object	Input	DPST-1-1	RWC
356	Channel B inside humidity opening Measurement value	Input	DPT-9	RWC
357	Channel B inside opening status	Output	DPST-1-3	R CT
360	Channel B zero position reached	Input	DPST-1-2	RWC
361	Channel B zero position sensor malfunctioning	Output	DPST-1-2	R CT
362	Channel B master zero position status	Output	DPST-1-1	R CT
363	Channel B master zero position command	Output	DPST-1-1	R CT
364	Channel B slave zero position status	Input	DPST-1-1	RWC
365	Channel B master zero position status	Input	DPST-1-1	RWC
366	Channel B master zero position command	Input	DPST-1-1	RWC
367	Channel B slave zero position status	Output	DPST-1-1	R CT
368	Channel B drive moving	Output	DPST-1-1	R CT

No.	Name	Function	DPT	Flags
369	Channel B malfunction object	Output	DPST-1-2	R CT
370	Channel A block 1 blocking object	Input	DPST-1-1	RWC
371	Channel B block 1 wind blocking object	Input	DPST-1-1	RWC
372	Channel B block 1 wind blocking Measurement value	Input	DPST-9-5	RWC
373	Channel B block 1 wind blocking status	Output	DPST-1-3	R CT
374	Channel B block 1 rain blocking object	Input	DPST-1-1	RWC
375	Channel B block 2 blocking object	Input	DPST-1-1	RWC
376	Channel B block 2 wind blocking object	Input	DPST-1-1	RWC
377	Channel B block 2 wind blocking Measurement value	Input	DPST-9-5	RWC
378	Channel B block 2 wind blocking status	Output	DPST-1-3	R CT
379	Channel B block 2 rain blocking object	Input	DPST-1-1	RWC
380	Channel B block 3 blocking object	Input	DPST-1-1	RWC
381	Channel B block 3 wind blocking object	Input	DPST-1-1	RWC
382	Channel B block 3 wind blocking Measurement value	Input	DPST-9-5	RWC
383	Channel B block 3 wind blocking status	Output	DPST-1-3	R CT
384	Channel B block 3 rain blocking object	Input	DPST-1-1	RWC
385	Channel B block 4 blocking object	Input	DPST-1-1	RWC
386	Channel B block 4 wind blocking object	Input	DPST-1-1	RWC
387	Channel B block 4 wind blocking Measurement value	Input	DPST-9-5	RWC
388	Channel B block 4 wind blocking status	Output	DPST-1-3	R CT
389	Channel B block 4 rain blocking object	Input	DPST-1-1	RWC
390	Channel B block 5 blocking object	Input	DPST-1-1	RWC
391	Channel B block 5 wind blocking object	Input	DPST-1-1	RWC
392	Channel B block 5 wind blocking Measurement value	Input	DPST-9-5	RWC
393	Channel B block 5 wind blocking status	Output	DPST-1-3	R CT
394	Channel B block 5 rain blocking object	Input	DPST-1-1	RWC
395	Channel B Short time limit	Input	DPST-1-1	RWC
400	Channel B1 switching	Input	DPST-1-1	WC

No.	Name	Function	DPT	Flags
401	Channel B1 feedback	Output	DPST-1-1	R CT
402	Channel B1 status	Readable	DPST-1-1	R C
403	Channel B1 blocking object	Input	DPST-1-1	RWC
405	Channel B1 start stair case light function	Input	DPST-1-10	WC
406	Channel B1 start stop stair case light function	Input	DPST-1-10	WC
409	Channel B1 connection	Input	DPST-1-2	RWC
410	Channel B2 switching	Input	DPST-1-1	WC
411	Channel B2 feedback	Output	DPST-1-1	R CT
412	Channel B2 status	Readable	DPST-1-1	R C
413	Channel B2 blocking object	Input	DPST-1-1	RWC
415	Channel B2 start stair case light function	Input	DPST-1-10	WC
416	Channel B2 start stop stair case light function	Input	DPST-1-10	WC
419	Channel B2 connection	Input	DPST-1-2	RWC
449	Channel B local operation blocking object	Input	DPST-1-1	RWCT
$\begin{aligned} & 450- \\ & 458 \end{aligned}$	Input 5 (see input 1)			
$\begin{aligned} & 460- \\ & 468 \end{aligned}$	Input 6 (see input 1)			
500	Channel C status automatic or manual	Output	DPST-1-3	R CT
501	Channel C manual long term	Input	DPST-1-10	RWC
502	Channel C manual short term	Input	DPST-1-8	RWC
503	Channel C manual movement position	Input	DPST-5-1	RWC
504	Channel C manual slat position	Input	DPST-5-1	RWC
505	Channel C automatic short term	Input	DPST-1-10	RWC
506	Channel C automatic long term	Input	DPST-1-8	RWC
507	Channel C automatic movement position	Input	DPST-5-1	RWC
508	Channel C automatic slat position	Input	DPST-5-1	RWC
509	Channel C switch from manual to automatic	Input	DPST-1-3	RWC
510	Channel C automatic blocking object	Input	DPST-1-1	RWCT
511	Channel C current movement position	Output	DPST-5-1	R CT
512	Channel C current slat position	Output	DPST-5-1	R CT
513	Channel C status object	Output		R CT
514	Channel C call saving scenes	Input		WC

No.	Name	Function	DPT	Flags
515	Channel C outdoor temperature Blocking object	Input	DPST-1-1	RWC
516	Channel C outdoor temperature blocking measurement value	Input	DPST-9-1	WC
517	Channel C outdoor temperature blocking status	Output	DPST-1-3	R CT
518	Channel C twilight object	Input	DPST-1-1	RWC
519	Channel C twilight measurement value	Input	DPST-9-4	RWC
520	Channel C twilight status	Output	DPST-1-3	R CT
521	Channel C time control	Input	DPST-1-1	RWC
522	Channel C inside temperature release object	Input	DPST-1-1	RWC
523	Channel C inside temperature release measurement value	Input	DPST-9-1	RWC
524	Channel C inside temperature release target value	Input	DPST-9-1	RWC
525	Channel C inside temperature release status	Output	DPST-1-3	R CT
526	Channel C shading object	Input	DPST-1-1	RWC
527	Channel C shading brightness Measurement value 1	Input	DPST-9-4	RWC
528	Channel C shading brightness Measurement value 2	Input	DPST-9-4	RWC
529	Channel C shading brightness Measurement value 3	Input	DPST-9-4	RWC
530	Channel C shading threshold value	Input output	DPST-9-4	RWCT
531	Channel C shading threshold value 1 0	Input	DPT-1	RWC
532	Channel C shading threshold value	Input	DPST-1-1	RWC
533	Channel C shading threshold value	Input	DPST-1-1	RWC
534	Channel C shading status	Output	DPST-1-3	R CT
535	Channel C shading position Teaching object	Input	DPST-1-1	RWC
536	Channel C azimuth	Input	DPT-9	RWC
537	Channel C elevation	Input	DPT-9	RWC
538	Channel C cold air supply blocking object	Input	DPST-1-1	RWC
539	Channel C cold air supply outside temperature measurement value	Input	DPST-9-1	RWC
540	Channel C cold air supply blocking status	Output	DPST-1-3	R CT
541	Channel C forced ventilation	Input	DPST-1-1	RWC

No.	Name	Function	DPT	Flags
542	Channel C warm air supply blocking object	Input	DPST-1-1	RWC
543	Channel C warm air supply inside temperature measurement value	Input	DPST-9-1	RWC
544	Channel C warm air supply Outside temperature measurement value	Input	DPST-9-1	RWC
545	Channel C warm air supply blocking target value	Input	DPST-9-1	RWC
546	Channel C warm air supply blocking status	Output	DPST-1-3	R CT
547	Channel C inside temperature opening object	Input	DPST-1-1	RWC
548	Channel C inside temperature opening measurement value	Input	DPST-9-1	RWC
549	Channel C inside temperature opening target value	Input	DPST-9-1	RWC
550	Channel C inside temperature opening threshold value	Input output	DPST-9-1	RWCT
551	Channel C inside temperature opening threshold value 1	Input	DPT-1	RWC
552	Channel C inside temperature opening threshold value	Input	DPST-1-1	RWC
553	Channel C inside temperature opening threshold value	Input	DPST-1-1	RWC
554	Channel C inside temperature opening status	Output	DPST-1-3	R CT
555	Channel C inside humidity opening object	Input	DPST-1-1	RWC
556	Channel C inside humidity opening Measurement value	Input	DPT-9	RWC
557	Channel C inside humidity opening status	Output	DPST-1-3	R CT
560	Channel C zero position reached	Input	DPST-1-2	RWC
561	Channel C zero position sensor malfunctioning	Output	DPST-1-2	R CT
562	Channel C master zero position status	Output	DPST-1-1	R CT
563	Channel C master zero position command	Output	DPST-1-1	R CT
564	Channel C slave zero position status	Input	DPST-1-1	RWC
565	Channel C master zero position status	Input	DPST-1-1	RWC
566	Channel C master zero position command	Input	DPST-1-1	RWC
567	Channel C slave zero position status	Output	DPST-1-1	R CT

No.	Name	Function	DPT	Flags
568	Channel C drive moving	Output	DPST-1-1	R CT
569	Channel C malfunctioning object	Output	DPST-1-2	R CT
570	Channel C block 1 blocking object	Input	DPST-1-1	RWC
571	Channel C block 1 wind blocking object	Input	DPST-1-1	RWC
572	Channel C block 1 wind blocking Measurement value	Input	DPST-9-5	RWC
573	Channel C block 1 wind blocking status	Output	DPST-1-3	R CT
574	Channel C block 1 rain blocking object	Input	DPST-1-1	RWC
575	Channel C block 2 blocking object	Input	DPST-1-1	RWC
576	Channel C block 2 wind blocking object	Input	DPST-1-1	RWC
577	Channel C block 2 wind blocking Measurement value	Input	DPST-9-5	RWC
578	Channel C block 2 wind blocking status	Output	DPST-1-3	R CT
579	Channel C block 2 rain blocking object	Input	DPST-1-1	RWC
580	Channel C block 3 blocking object	Input	DPST-1-1	RWC
581	Channel C block 3 wind blocking object	Input	DPST-1-1	RWC
582	Channel C block 3 wind blocking Measurement value	Input	DPST-9-5	RWC
583	Channel C block 3 wind blocking status	Output	DPST-1-3	R CT
584	Channel C block 3 rain blocking object	Input	DPST-1-1	RWC
585	Channel C block 4 blocking object	Input	DPST-1-1	RWC
586	Channel C block 4 wind blocking object	Input	DPST-1-1	RWC
587	Channel C block 4 wind blocking Measurement value	Input	DPST-9-5	RWC
588	Channel C block 4 wind blocking status	Output	DPST-1-3	R CT
589	Channel C block 4 rain blocking object	Input	DPST-1-1	RWC
590	Channel C block 5 blocking object	Input	DPST-1-1	RWC
591	Channel C block 5 wind blocking object	Input	DPST-1-1	RWC
592	Channel C block 5 wind blocking Measurement value	Input	DPST-9-5	RWC
593	Channel C block 5 wind blocking status	Output	DPST-1-3	R CT
594	Channel C block 5 rain blocking object	Input	DPST-1-1	RWC
595	Channel C Short time limit	Input	DPST-1-1	RWC

No.	Name	Function	DPT	Flags
600	Channel C1 switching	Input	DPST-1-1	WC
601	Channel C1 feedback	Output	DPST-1-1	R CT
602	Channel C1 status	Readable	DPST-1-1	R C
603	Channel C1 blocking object	Input	DPST-1-1	RWC
605	Channel C1 start stair case light function	Input	DPST-1-10	WC
606	Channel C1 start stop stair case light function	Input	DPST-1-10	WC
609	Channel C1 connection	Input	DPST-1-2	RWC
610	Channel C2 switching	Input	DPST-1-1	WC
611	Channel C2 feedback	Output	DPST-1-1	R CT
612	Channel C2 status	Readable	DPST-1-1	R C
613	Channel C2 blocking object	Input	DPST-1-1	RWC
615	Channel C2 start stair case light function	Input	DPST-1-10	WC
616	Channel C2 start stop stair case light function	Input	DPST-1-10	WC
619	Channel C2 connection	Input	DPST-1-2	RWC
649	Channel C local operation blocking object	Input	DPST-1-1	RWCT
$\begin{aligned} & 650- \\ & 658 \end{aligned}$	Input 7 (see input 1)			
$\begin{array}{\|l\|} \hline 660- \\ 668 \\ \hline \end{array}$	Input 8 (see input 1)			
700	Channel D status automatic or manual	Output	DPST-1-3	R CT
701	Channel D manual long term	Input	DPST-1-10	RWC
702	Channel D manual short term	Input	DPST-1-8	RWC
703	Channel D manual movement position	Input	DPST-5-1	RWC
704	Channel D manual slat position	Input	DPST-5-1	RWC
705	Channel D automatic short term	Input	DPST-1-10	RWC
706	Channel D automatic long term	Input	DPST-1-8	RWC
707	Channel D automatic movement position	Input	DPST-5-1	RWC
708	Channel D automatic slat position	Input	DPST-5-1	RWC
709	Channel D switch from manual to automatic	Input	DPST-1-3	RWC
710	Channel D automatic blocking object	Input	DPST-1-1	RWCT
711	Channel D current movement position	Output	DPST-5-1	R CT
712	Channel D current slat position	Output	DPST-5-1	R CT
713	Channel D status object	Output		R CT

No.	Name	Function	DPT	Flags
714	Channel D call saving scenes	Input		WC
715	Channel D outdoor temperature Blocking object	Input	DPST-1-1	RWC
716	Channel D outdoor temperature blocking measurement value	Input	DPST-9-1	WC
717	Channel D outdoor temperature blocking status	Output	DPST-1-3	R CT
718	Channel D twilight object	Input	DPST-1-1	RWC
719	Channel D twilight measurement value	Input	DPST-9-4	RWC
720	Channel D twilight status	Output	DPST-1-3	R CT
721	Channel D time control	Input	DPST-1-1	RWC
722	Channel D inside temperature release object	Input	DPST-1-1	RWC
723	Channel D inside temperature release measurement value	Input	DPST-9-1	RWC
724	Channel D inside temperature release target value	Input	DPST-9-1	RWC
725	Channel D inside temperature release status	Output	DPST-1-3	R CT
726	Channel D shading object	Input	DPST-1-1	RWC
727	Channel D shading brightness Measurement value 1	Input	DPST-9-4	RWC
728	Channel D shading brightness Measurement value 2	Input	DPST-9-4	RWC
729	Channel D shading brightness Measurement value 3	Input	DPST-9-4	RWC
730	Channel D shading threshold value	Input output	DPST-9-4	RWCT
731	Channel D shading threshold value 1 0	Input	DPT-1	RWC
732	Channel D shading threshold value	Input	DPST-1-1	RWC
733	Channel D shading threshold value	Input	DPST-1-1	RWC
734	Channel D shading status	Output	DPST-1-3	R CT
735	Channel D shading position Teaching object	Input	DPST-1-1	RWC
736	Channel D azimuth	Input	DPT-9	RWC
737	Channel D elevation	Input	DPT-9	RWC
738	Channel D cold air supply blocking object	Input	DPST-1-1	RWC
739	Channel D cold air supply outside temperature measurement value	Input	DPST-9-1	RWC
740	Channel D cold air supply blocking status	Output	DPST-1-3	R CT

No.	Name	Function	DPT	Flags
741	Channel D forced ventilation	Input	DPST-1-1	RWC
742	Channel D warm air supply blocking object	Input	DPST-1-1	RWC
743	Channel D warm air supply inside temperature measurement value	Input	DPST-9-1	RWC
744	Channel D warm air supply outside temperature measurement value	Input	DPST-9-1	RWC
745	Channel D warm air supply blocking target value	Input	DPST-9-1	RWC
746	Channel D warm air supply blocking status	Output	DPST-1-3	R CT
747	Channel D inside temperature opening object	Input	DPST-1-1	RWC
748	Channel D inside temperature opening measurement value	Input	DPST-9-1	RWC
749	Channel D inside temperature opening target value	Input	DPST-9-1	RWC
750	Channel D inside temperature opening threshold value	Input output	DPST-9-1	RWCT
751	Channel D inside temperature opening threshold value 1	Input	DPT-1	RWC
752	Channel D inside temperature opening threshold value	Input	DPST-1-1	RWC
753	Channel D inside temperature opening threshold value	Input	DPST-1-1	RWC
754	Channel D inside temperature opening status	Output	DPST-1-3	R CT
755	Channel D inside humidity opening object	Input	DPST-1-1	RWC
756	Channel D inside humidity opening Measurement value	Input	DPT-9	RWC
757	Channel D inside humidity opening status	Output	DPST-1-3	R CT
760	Channel D zero position reached	Input	DPST-1-2	RWC
761	Channel D zero position sensor malfunctioning	Output	DPST-1-2	R CT
762	Channel D master zero position status	Output	DPST-1-1	R CT
763	Channel D master zero position command	Output	DPST-1-1	R CT
764	Channel D slave zero position status	Input	DPST-1-1	RWC
765	Channel D master zero position status	Input	DPST-1-1	RWC

No.	Name	Function	DPT	Flags
766	Channel D master zero position command	Input	DPST-1-1	RWC
767	Channel D slave zero position status	Output	DPST-1-1	R CT
768	Channel D drive moving	Output	DPST-1-1	R CT
769	Channel D malfunctioning object	Output	DPST-1-2	R CT
770	Channel D block 1 blocking object	Input	DPST-1-1	RWC
771	Channel D block 1 wind blocking object	Input	DPST-1-1	RWC
772	Channel D block 1 wind blocking measurement value	Input	DPST-9-5	RWC
773	Channel D block 1 wind blocking status	Output	DPST-1-3	R CT
774	Channel D block 1 rain blocking object	Input	DPST-1-1	RWC
775	Channel D block 2 blocking object	Input	DPST-1-1	RWC
776	Channel D block 2 wind blocking object	Input	DPST-1-1	RWC
777	Channel D block 2 wind blocking measurement value	Input	DPST-9-5	RWC
778	Channel D block 2 wind blocking status	Output	DPST-1-3	R CT
779	Channel D block 2 rain blocking object	Input	DPST-1-1	RWC
780	Channel D block 3 blocking object	Input	DPST-1-1	RWC
781	Channel D block 3 wind blocking object	Input	DPST-1-1	RWC
782	Channel D block 3 wind blocking measurement value	Input	DPST-9-5	RWC
783	Channel D block 3 wind blocking status	Output	DPST-1-3	R CT
784	Channel D block 3 rain blocking object	Input	DPST-1-1	RWC
785	Channel D block 4 blocking object	Input	DPST-1-1	RWC
786	Channel D block 4 wind blocking object	Input	DPST-1-1	RWC
787	Channel D block 4 wind blocking measurement value	Input	DPST-9-5	RWC
788	Channel D block 4 wind blocking status	Output	DPST-1-3	R CT
789	Channel D block 4 rain blocking object	Input	DPST-1-1	RWC
790	Channel D block 5 blocking object	Input	DPST-1-1	RWC
791	Channel D block 5 wind blocking object	Input	DPST-1-1	RWC
792	Channel D block 5 wind blocking measurement value	Input	DPST-9-5	RWC

No.	Name	Function	DPT	Flags
793	Channel D block 5 wind blocking status	Output	DPST-1-3	R CT
794	Channel D block 5 rain blocking object	Input	DPST-1-1	RWC
795	Channel D Short time limit	Input	DPST-1-1	RWC
800	Channel D1 switching	Input	DPST-1-1	WC
801	Channel D1 feedback	Output	DPST-1-1	R CT
802	Channel D1 status	Readable	DPST-1-1	R C
803	Channel D1 blocking object	Input	DPST-1-1	RWC
805	Channel D1 start stair case light function	InpST-1-10	WC	
806	Channel D1 start stop stair case light function	Input	DPST-1-10	WC
809	Channel D1 connection		DPST-1-2	RWC
$810-$ 819	Channel D2 (see Channel D1)	DPST-1-1	RWCT	
849	Channel D local operation blocking object	Input		
$850-$ 858	Input 9 (see input 1)			
$860-$	Input 10 (see input 1)			
868				

4. Parameter setting

The default settings of the parameter are labeled by an underscore.

4.1. General settings

First set the general parameters for the bus communication (telegram rate, transmission delay). Additionally, you can indicate if for the programming of scenes all, or only the changed settings are applied to the bus.

Maximum telegram rate	$\underline{1 \bullet 2 \bullet} \underline{5} \bullet 10 \bullet 20$
Send delegrams per second after voltage returns	$\underline{5 \mathrm{~s}} \ldots 2 \mathrm{~h}$
Send delay of switching and status outputs after voltage returns	$\underline{5 \mathrm{~s}} \ldots 2 \mathrm{~h}$
For the use of scenes:	$\underline{\text { all parameters }}$ • only changed parameters
Application when programming	

4.1.1. Local operation

The Up/Down buttons on the device are firmly assigned to the channels A-D. For blocking manual operation, blocking objects can be set for the button pairs (communication objects "Channel X local operation blocking object").

Local button Channel A Use blocking object	No \cdot Yes
Local button Channel B Use blocking object	No \bullet Yes
Local button Channel C Use blocking object	No \bullet Yes
Local button Channel D Use blocking object	$\underline{\text { No }} \bullet$ Yes

Note: If monitoring periods or movement range limits are used, operation via the local buttons is not possible in case of a bus voltage supply failure.

4.2. Inputs

Set the parameters for inputs 1 and 2 here. The inputs 3 to 10 are designated for operating the devices on the outputs (channels A-D), and are therefore parameterized directly in the settings of the output channels (see Button inputs (drives), page 52 or Button input (switch functions), page 56).

Configuration options for the individual inputs:

Input 1	- Bus button
Input 2	• Bus button

Input 3	- Actuator button for output channel A
	- Bus button
	- For drives also zero position sensor
Input 4	- Actuator button for output channel A
	- Bus button
Input 5	- Actuator button for output channel B
	- Bus button
	- For drives also zero position sensor
Input 6	- Actuator button for output channel B
	- Bus button
Input 7	- Actuator button for output channel C
	- Bus button
	- For drives also zero position sensor
Input 8	- Actuator button for output channel C
	- Bus button
Input 9	- Actuator button for output channel D
	- Bus button
	- For drives also zero position sensor
Input 10	- Actuator button for output channel D

Operating mode	$\underline{\text { No } \bullet} \cdot$ as bus button
Use input 1	$\underline{\text { No }} \bullet$ as bus button
Use input 2	See parameterization channel A - button inputs
Use input 3 and 4	See parameterization channel B - button inputs
Use input 5 and 6	See parameterization channel C - button inputs
Use input 7 and 8	See parameterization channel D - button inputs
Use input 9 and 10	

Input as bus button

If an input is used as a free bus button, it will send a previously set value to the bus when activated. In the program file of the actuator KNX S4-B10 230 V different parameters are integrated for frequently needed bus functions. Thus, the inputs can easily be configured as a switch, drive control, dimmer for sending values and for the scene calls.

Bus function	\bullet Switch
\bullet Selector switch	
	\bullet Shutter
\bullet Blind	
	\bullet Awning
	\bullet Window
	\bullet Dimmer
	$\bullet 8$ bit encoder
	\bullet Temperature encoder
	\bullet Brightness encoder
	\bullet Scenes

Input as switch:

If a button with switch function is assigned to the input, select the bus function "Switch" and specify which value is sent when pressing/releasing the button and when it will be sent.

Bus function	Switch
Command when pressing the button	- send 0 - send 1 - do not send telegram
Command when releasing the button	- send 0 - send 1 - do not send telegram
Send value	- no change - for change to 1 - for change to 0 - for change and cyclical - for change to 1 and cyclical - for change to 0 and cyclical
Send all values (only if sent as "cyclical")	5s... 2 h

The input can be blocked using a blocking object. Set what is transmitted to the bus when (de)activating blocking.
For active blocking there is no cyclical transmission.

Use blocking object	No - Yes
Once when activating the blocking	- send 0 - send 1 - do not send telegram
Once when deactivating the blocking	- send 0 - send 1 - do not send telegram - send current state

Input as selector switch:

If a button with switch function is assigned to the input, select the bus function "Selector switch" and specify if the button should switch when pressed/released.

Bus function	Selector switch
Command when pressing the button	\bullet • selector switch
Command when releasing the button	do not send telegram do not switch telegram

The input can be blocked using a blocking object. For active blocking there is no bus communication.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

Input to shutter, blinds, awning or window control:

If the input to the drive control is used via the bus, select the bus function "shutter", "awning", "blinds" or "window" and specify the button function and control mode.

Bus function	Shutter / blinds / awning / window	
Button function	Up • Down Up •Down•Up/ Down On •Off •On/Off Open •Closed• Open/Closed	(shutter) (blinds) (awning) (window)
Control mode*	- Standard - Standard inverted - Comfort mode - Dead man's switch	

*A detailed description of the setting options for the individual control modi can be found in the general part of chapter Control modi for drive control, page 58.

The input can be blocked using a blocking object. For active blocking there is no bus communication.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

Input as dimmer:

If the input is used as a dimmer, select the bus function "Dimmer" and specify the button function, time interval (switching/dimming) and if requested, the repeat interval for a long button press.

Bus function	Dimmer
Button function	$\underline{\text { brighter }} \bullet$ darker \bullet brighter/darker
Time between switching and dimming in 0.1 seconds	$1 \ldots 50 ; \underline{5}$

Repeat the dimm command	$\underline{\text { no } \bullet \text { yes }}$
Repeat the dimm command for a long button press (only if dimm command is repeated)	every $0.1 \mathrm{~s} \bullet$ every 2 sec ; every 1 sec
Dim by (only if dimm command is repeated)	$1,50 \% \bullet 3 \% \bullet 6 \% \cdot 12,50 \% \bullet 25 \% \bullet 50 \%$

The input can be blocked using a blocking object. For active blocking there is no bus communication.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

Input 8 bit encoder:

If the input is to be used as an 8bit encoder, select the "8 bit encoder" bus function and specify which value will be sent.

Bus function	$\mathbf{8}$ bit encoder
Value	$\underline{0} \ldots 255$

The input can be blocked using a blocking object. For active blocking there is no bus communication.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

Input as temperature encoder:

If the input is used as a temperature encoder, then choose the bus function "Temperature encoder" and specify which value between $-30^{\circ} \mathrm{C}$ and $+80^{\circ} \mathrm{C}$ will be sent. By sending a temperature value, the target value of the temperature control may be changed for example (e.g. Elsner KNX T-UP).

Bus function	Temperature encoder
Temperature in $0.1^{\circ} \mathrm{C}$	$-300 \ldots 800 ; \underline{200}$

The input can be blocked using a blocking object. For active blocking there is no bus communication.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

Input as brightness encoder:

If the input is assigned and shall be used as a brightness encoder (e.g. switch output of a sun sensor), select "brightness encoder" and specify which value will be sent.
By sending a brightness value, the threshold value of the sun sensor may be changed for example (e.g. Elsner KNX L).

Bus function	Brightness encoder
Brightness in klux	$0 \ldots 100 ; \underline{20}$

The input can be blocked using a blocking object. For active blocking there is no bus communication.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

Input for scene control:

If scenes are called and saved with the input, then choose the "Scenes" bus function and specify the saving, time difference (call/save) and scene number.

Bus function	Scenes
Button operation	$\bullet \frac{\text { without saving }}{\bullet \text { with saving }}$
Time between calling and saving in 0.1 seconds (only if selected "with saving")	$1 . . .50 ; 10$
Scene No.	$\underline{0} \ldots 127$

The input can be blocked using a blocking object. For active blocking there is no bus communication.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

4.3. Outputs

State here what is connected to the individual output channels.

Operating mode	
Channel A / B / C / D controls	\bullet shutter
	\bullet blind
	\bullet awning
	\bullet double switch function

Thereafter, the setting options for the individual outputs will appear:

Settings for drives (channel A, B, C, D):

- General specifications for the connected drive (see Channel settings - drives, page 35)
- Control functions: Movement range limit, blocking, type of automatic (see Control (drives), page 37)
- Automatic functions: Automatic can be specified externally or internally (see Automatic for shading (drives), page 43 or Automatic for windows (drives), page 48)
- Scenes: Movement positions (see, page 52)
- Button inputs: Configuration as actuator button, bust button or for zero position sensor (see Button inputs (drives), page 52)

Settings for switch functions

(Channels are divided into two switches A1|A2, B1|B2, C1|C2, D1|D2):

- General specifications for the switch function (see Channel settings - switch functions, page 54)
- Connecting different communication objects (see Connection (switch functions), page 54)
- On/Off switch delays or time switching (see On/Off switch delays, time switching (switch functions), page 54)
- Block function(see Blocking function (switch functions), page 56)
- Button input: Configuration as actuator button or bus button (see Button input (switch functions), page 56)

4.3.1. Channel settings - drives

If a drive is connected to the output channel, set first the general specifications for the drive.

Driving direction:

Up/down, on/off or open/close can be exchanged.

```
Exchange UP/DOWN (shutter, blinds) no ` yes
Exchange ON/OFF (awning)
Exchange OPEN/CLOSE (window)
```


Runtime:

The runtime between the end positions is the basis for moving into intermediate positions (e.g. for movement range limits and scenes). You can enter the runtime numerically (in seconds) or have the runtime determined automatically. The actuator specifies the end positions with help from the greater current on the drive output. For this, regular reference movements (see below) should be set.

Use an automatic runtime measurement	$\underline{\text { no }}$ • yes
	no
Use an automatic runtime measurement	$1 \ldots 320 ; \underline{60}$
Runtime DOWN in sec (shutter, blinds) Runtime OFF in sec (awning) Runtime UP in sec (window)	$1 \ldots 320 ; \underline{65}$
Runtime OPEN in sec (shutter, blinds) Runtime ON in sec (awning) Runtime CLOSE in sec (window)	

If a dead time is observed while starting the curtain, then this can be entered manually at this point or calculated automatically. Obey the manufacturer's instructions for the curtain.

Use dead times	\bullet \bullet no yes, enter by hand \bullet yes, calculate automatically
during the position travel from closed position in 10 ms (only for manual input)	$\underline{0} \ldots 600$

for position movement from all other positions in 10 ms (only for manual input)	$\underline{0} \ldots 600$
for slat movement from closed position in 10 ms (only for manual input)	$\underline{0} \ldots 600$
for movement with change of direction in 10 ms (only for manual input)	$\underline{0} \ldots 600$
for slat movement from all other positions in 10 ms (only for manual input)	$\underline{0} \ldots 600$

Runtime zero position and step setting of slats:

(only for shutters)
Through the runtime in which the drive continues moving in the zero position (i.e. after reaching the top end position), different curtain lengths or assembly positions of the end position switch may be balanced. The shading of a facade is completely retracted by adjusting the zero position runtimes, and thus provides a better overall image.
Step time x step number determines the turning time of the slats.

Runtime zero position in 0.1 sec	$\underline{0} \ldots 255$
Step time in 10 ms	$1 \ldots 100 ; \underline{20}$
Step number slats	$1 \ldots 255 ; \underline{5}$

If the short time command for shutters (step command) is used only for slat adjustment, but not for positioning the curtain, the following parameter is set to "Yes". The parameter appears only for shutters.

```
Allow step commands only for slat
no ` yes
adjustment
```


Break time:

The required break times during a change of direction of the drive should be adjusted according to the specifications of the motor manufacturer.

Break time for a change of direction in 0.1 sec	$5 \ldots 100 ; 10$

Reference movement:

With the regular movement to the two end positions, the runtime and zero position are adjusted again. This is especially important for the automatic runtime determination. Therefore, it can be set here after how many movements before a positioning movement a reference movement will be performed. The reference movement is always in the direction of the secure position (retracting when shading, closing windows).

Perform a reference movement	$\underline{\text { no }} \bullet$ yes
Perform a reference movement yes for more than movements before an auto positioning movement $1 \ldots 255 ; \underline{10}$	

Slat turning:

(only for shutters)
The slat turning should be adjusted according to the specifications of the motor manufacturer.

Turn slats	$\bullet \underline{\text { never }}$
	\bullet only after positioning movement
\bullet after each movement	

Status object and drive position:

The status and current position can be sent to the bus. By sending of 1, the status object indicates that the retracted or closed position has been exited and it is suitable for example for monitoring windows.
The exact drive position can be sent on the bus if required. The variable delay ensures that the bus is not blocked by too many data packets during a longer movement. The position can also be transmitted cyclically.

Use status object	$\underline{\text { no } \bullet \text { yes }}$
Use drive position feedback	$\underline{\text { no }} \bullet$ yes
Position transmit delay after change in 0.1 s (only for feedback)	$0 . . .50 ; \underline{10}$
Transmit drive position cyclically (only for feedback)	$\underline{\text { no }} \bullet 5 \mathrm{~s} \bullet 10 \mathrm{~s} \bullet \ldots \bullet 2 \mathrm{~h}$

Scenes:

Here the scene menu is activated for this output channel.

Use scenes	$\underline{\text { no }} \bullet$ yes

See, page 52.

4.3.1.1. Control (drives)

Set the behavior of the drive here.

Movement range limit:

The operating range limit is used in order to avoid that two units collide with each other (e.g. an awning and a window which is about to open).

One of two drive mechanisms is prioritised and is parameterised as master and the other one as slave. By means of zero position sensors, both actuators know the own current status and the current status of the other one. This one is either "in a safe position" or "not in a safe position". The safe position is reached as soon as the drive mechanism is in a sector where a collision is not possible (for an awning, for example, this might be an extension of 0 to 30%). In order to report the safe position of the drive mechanism, either a zero position sensor (e.g. final position switch or light barrier) may be connected at an input of the actuator, or the actuator receives the message of its zero position sensor by the bus (see graphic in chapter Connection options for zero position sensors in the general part).

Before the drive mechanism of the master actuator is moved, the slave actuator receives the command to move its drive mechanism to the safe position. As a consequence, the slave remains in safe position or it moves back if it is not within the safe range.

The master actuator knows from the communication object „Slave zero position status" whether the drive mechanism connected to the slave actuator is already in a safe position (then the master moves immediately) or not (then the master waits). Only if the master actuator is informed that the slave drive mechanism is in a safe position, it moves its drive mechanism beyond its own safe position.

Example:
The ventilation with the window shall take priority over the shading with the awning. Therefore, the window is parameterised as master, the awning as slave. Both are provided with a zero position sensor which reports whether the drive mechanism is in a safe position or not.

The awning is now extended and the window shall be opened. The window knows the status of the awning ("not safe position") and therefore submits a master command to the awning. This is the signal for the awning, to retract a little bit. As soon as the awning has reached a safe position, there is an according feedback signal of the zero position sensor of the awning. Only now the window opens.

> Master and slave regularly exchange their positions ("safe" or "not safe"). By means of the monitoring period, you may adjust the frequency of information retrieval. The selected period should be shorter than the period which the monitored drive mechanism needs to travel from the limit of the safe range (last reported safe position) to a position where there is risk of collision.

If the drive mechanism does not receive a master/slave or zero position object, it moves to the safe position. The same holds true for a bus voltage breakdown or for a malfunction message from the zero position sensor (is valid for the parameterisation as master and as slave).

Without movement range limitation:

Use movement range limit	no
Behaviour following a failure of the bus power supply	\bullet no action \bullet Stop \bullet Up command (or On/Down) \bullet Down command (or Off/Up)
Behaviour on bus voltage restoration and after programming	\bullet no action \bullet Up command (or On/Down) \bullet - Down command (or Off/Up)

With movement range limit:
Set if the zero position sensor of the drive is directly connected to the actuator (input channel) or if the zero position is received via the bus (communication object).

Use movement range limit	yes
Zero position sensor connected as	\bullet communication object \bullet input channel
Actuator is	$\underline{\text { master } \bullet}$ slave

Actuator as master:

Actuator is	master
Send repetition for master command in sec	$1 \ldots 255 ; 10$
Monitoring period for slave status (and zero position) object in sec	$1 \ldots 255 ; \underline{10}$

Actuator as slave:

Actuator is	slave
Send repetition for slave commands in sec	$1 \ldots 255 ; \underline{10}$
Monitoring period for master status (and zero position) object in sec	$1 \ldots 255 ; \underline{10}$
Movement position for slave in \% if input "Master zero position command" $=1$	$\underline{0} \ldots 100$

Reference travel direction:
If the travel range is limited, the direction of the reference travel is fixed (safe position). The direction can be set without limiting the travel range.

Direction of reference travel	\bullet in safe position
	\bulletin closed position (move out shading) \bullet in open position (window)
	• shortest route

Blocking objects:

The output channel can be blocked in case of rain, wind or other events. The manual operation is then not possible. Blocking and monitoring are configured here first. For setting the individual blocks, separate menu items "Blocking X" will appear (see chapter Block - blocking objects, page 41, Block - wind blocking, page 42 and Block rain blocking, page 43).
The priorities of the blocking objects correspond to the sequence listed (Block 1 has the highest priority, Block 5 the lowest).

Use Block 1 (high priority)	\bullet no \bullet yes, with blocking object \bullet yes, as wind blocking \bullet - es, as rain blocking

Use block 2	- no - yes, with blocking object - yes, as wind blocking - yes, as rain blocking
Use block 3	- no - yes, with blocking object - yes, as wind blocking - yes, as rain blocking
Use block 4	- no - yes, with blocking object - yes, as wind blocking - yes, as rain blocking
Use Block 5 (low priority)	- no - yes, with blocking object - yes, as wind blocking - yes, as rain blocking
Priority is	- Block 5 over Manual - Manual over Block 5
Use monitoring of blocking objects	$\underline{\text { No }}$ - Yes
Monitoring period for blocking objects (only if using monitoring of the blocking objects)	5s... $\cdot 2 \mathrm{~h} ; 5 \mathrm{~min}$
Behaviour if a blocking object is not received (only if blocking object monitoring is used)	- Stop - Up command • Down command (Shutters/roller blinds) - On command • Off command (Awnings) - Close command • Open command (Windows)

Short time restriction (for blinds):

If short time restriction is active, only short time movement commands are still possible manually. If the function "Allow step commands only for blind adjustment" is activated simultaneously, (see Channel settings - drives, page 35) only the slats can still be adjusted by hand but no longer the movement position of the shutter.
Restriction is active for object value 1.

Use short time limit	$\underline{\text { no }} \bullet$ yes
Value of the object in front of 1. Communication and bus voltage restoration (if short time restriction is used)	$\underline{0} \bullet 1$

Automatic reset:

With the manual operation the automatic of the drive is deactivated. Here it is set when the automatic is reactivated.

Manual switches to automatic after	\bullet \bullet expiry of a waiting period receiving an object expiration of a waiting period or receipt of an object
Waiting period in min (if "Expiration of a waiting period" was chosen)	$1 \ldots 255 ; \underline{20}$
Switch to automatic for an object value (if "Receipt of an object" was chosen)	$0 \bullet \underline{1} \bullet 0$ or 1

Automatic blocking object:

With the automatic blocking object, the automatic can be deactivated for a short term (e.g. if present or during speeches in conference rooms).

Here it is also specified in which mode the channel is found when the voltage returns, i.e. after a power failure. The mode (manual or automatic) is send as a status object to the bus.

Use automatic blocking object	$\underline{\text { no }}$ • yes
Operating mode after power returns	\bullet Automatic Manual
Send status object	$\bullet \bullet \frac{1 \text { for automatic } \mid 0 \text { for manual }}{}$- for automatic $\mid 1$ for manual Send delay of the status output Automatic or Manual in 0.1 sec

Type of automatic:

The automatic for the connected drive can be specified externally, however all the settings can also be configured internally. If "internal automatic" is chosen, a separate menu item "Automatic" (see chapter Automatic for shading (drives), page 43 or Automatic for windows (drives), page 48) appears.

Type of automatic	external automatic \bullet internal automatic

Block - blocking objects

The menu item only appears if a block with blocking object was configured for "control". Here it is specified was happens for object value 1 and 0 . Via the free blocking object, a fire alarm scenario may be configured for example (create escape routes by retracting the shading, smoke extraction via windows). This can prevent being locked out on the patio (opened window contact of the patio door blocks the shutter in front of the door).

Designation	[Block 1 ... 5] Enter a designation here!
If blocking object has value =1	- no action - stop - move into position - up-command • down-command (shutter/blind) - retract-command • extend-command (awning) - close-command • open-command (window)
If blocking object has value $=0$	
For manual operation before and after blocking	- no action - move into last position
For automatic operation after blocking	follow automatic
Value of the object before the 1st communication and bus voltage return	$0 . .1$

Block - wind blocking

The menu item only appears if a wind blocking was configured for "control". The input object "wind blocking" is linked with the output object of a wind sensor. The input can be a 1 bit object (smaller or larger than a threshold value), as well as a 16bit object (measurement value).

Designation	$[$ Wind blocking $]$
	Enter a designation here!
Type of input object	$\underline{1 \text { bit } \bullet 16 \text { bit }}$

1 bit input object:

Type of input object	1 bit
If blocking object has value $=1$	- no action - stop - move into position - up-command \bullet down-command (shutter/blind) - retract-command \bullet extend-command (awning) - close-command \bullet open-command (window)
Waiting period in secure position in min after blocking	1...255; $\underline{5}$
Behavior after waiting period	
For manual operation before and after blocking	- no action - move into last position
For automatic operation after blocking	follow automatic

16 bit input object:

Type of input object	16 bit
As of wind speed in m/s blocking	2...30; $\underline{5}$
If blocking is active	- no action - stop - move into position - up-command • down-command (shutter/blind) - retract-command • extend-command (awning) - close-command • open-command (window)
Waiting period in secure position in min after blocking	1...255; $\underline{\square}$
Behavior after waiting period	
For manual operation before and after blocking	- no action - move into last position
For automatic operation after blocking	follow automatic
Send current blocking status	no • yes

Block - rain blocking

The menu item only appears if a rain blocking was configured for "control". The input object "rain blocking" is linked with the output object of a rain sensor.

Designation	[rain blocking] Enter a designation here!
If blocking object has value $=1$	- no action - stop - move into position - up-command - down-command
Waiting period in secure position in min after blocking	1...255; $\underline{5}$
Behavior after waiting period	
For manual operation before and after blocking	- no action - move into last position
For automatic operation after blocking	follow automatic

4.3.1.2. Automatic for shading (drives)

The menu item "Automatic" only appears if internal automatic is selected for "control". The internal automatic functions take into account the brightness/position of the sun, outdoor and indoor temperature and allow a time and dimming control. A shading position can be specified or taught.

To be able to fully utilize the internal shading automatic, information about brightness/ twilight, outdoor and indoor temperature, time and position of the sun must be present in the bus system (e.g. data from the Elsner weather stations Sun tracer KNX or Suntracer KNX-GPS).

Outdoor temperature block:

The input object "outdoor temperature block" is linked with the output object of a temperature sensor. The input object can be a 1bit object (smaller or larger than a threshold value), as well as a 16bit object (measurement value).

Use automatic blocking object	$\underline{\text { no }} \bullet$ yes
Use automatic blocking object	yes
Type of temperature input object	$\underline{1 \mathrm{bit}} \bullet 16$ bit

1 bit input object:

Type of temperature input object	1 bit

Shading is allowed if the bit is 0 and blocked if the bit is 1.
16 bit input object:

Type of temperature input object	$\mathbf{1 6}$ bit
Threshold value in $0.1^{\circ} \mathrm{C}$	$-300 \ldots 800 ; \underline{50}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{20}$
Send current blocking status	$\underline{\text { no }} \bullet$ yes

Shading is allowed
if the measurement value is larger than the threshold value+hysteresis and blocked
if the measurement value is smaller than or equal to the threshold value.

Twilight/time control:

The time control is provided via a communication object. The input object "twilight control" is linked with the output object of a brightness sensor. A 1bit object (smaller or larger than a threshold value), as well as a 16 bit object (measurement value) can be used for the twilight control.

Use twilight/time control	\bullet \bullet \bullet \bullet ono \bullet \bullet bnly twime timh (OR linking)
Use twilight/time control	only twilight control / both
Type of twilight object	$\underline{1 \text { bit } \bullet} 16$ bit

16 bit input object:

Type of twilight object	$\mathbf{1 6}$ bit
Twilight threshold value in lux	$1 \ldots 1000 ; \underline{10}$
Switching delay	1 minute
Send current twilight status	$\underline{\text { no }}$ • yes

Indoor temperature release:

The input object "indoor temperature release" is linked with the output object of a temperature sensor. The input object can be a 1bit object (smaller or larger than a threshold value), as well as a 16bit object (measurement value or target and actual value).

Use inside temperature release	$\underline{\text { no }} \bullet$ yes
Type of input object	$\frac{1 \text { bit } \bullet 16 \text { bit } \bullet 16 \text { bit target/actual }}{\text { temperature }}$

16 bit input object:

Type of input object	$\mathbf{1 6}$ bit
Threshold value in $0.1^{\circ} \mathrm{C}$	$-300 \ldots 800 ; \underline{200}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{20}$
Send current blocking status	$\underline{\text { no }}{ }^{\bullet}$ yes

16 bit input object (target/actual temperature):
For this function the target value and actual value (measurement values) are imported from the 16bit object and evaluated.

Type of input object	$\mathbf{1 6}$ bit target/actual temperature
Target value (SW) - actual value (MW) Difference in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{20}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{20}$
Send current blocking status	$\underline{\text { no }} \bullet$ yes

Shading is allowed if the measurement value is greater than or equal to the target value+difference and blocked if the measurement value is smaller than the target value+hysteresis difference.

Automatic shading:

The automatic shading evaluates the input objects "brightness" and "position of the sun" of a weather station. The moving position for the automatic shading is specified here as well.
Use automatic shading $\quad \underline{\text { no }} \bullet$ yes

Brightness:
For controlling brightness, a 1bit object (smaller or larger than a threshold value), as well as two or three 16bit objects (measurement values, e.g. East, South and West sun) can be used.

```
Type of shading input }\quad\underline{1\times1 bit \bullet 1 < 16 bit \bullet 2 < 16 bit \bullet 3 < 16 bit
```

1×1 bit input object:
Set the delay times for shading (prevents constant opening and closing when light conditions change quickly).

Type of shading input	1×1 bit
Drive up delay in \min	$0 \ldots 255 ; \underline{12}$
Departure delay in \min	$0 \ldots 30 ; \underline{1}$

1×16 bit, 2×16 bit or 3×16 bit as an input object:
The brightness threshold value can be specified per parameter or communication object. For several brightness measurement values (2×16 bit or 3×16 bit) only the maximum brightness value is compared to the threshold value.

Type of shading input	$\mathbf{1 \times 1 6} \mathbf{b i t} \cdot \mathbf{2} \times 16$ bit $\cdot \mathbf{3 \times 1 6}$ bit
Shading threshold specification per	$\underline{\text { parameter }}{ }^{\bullet}$ communication object

Threshold value per parameter:
Set the threshold value and delay times for shading (prevents constant opening and closing when light conditions change quickly).

Shading threshold specification per	Parameter
Shading threshold value in klux	$0 \ldots 100 ; \underline{30}$
Drive up delay in \min	$0 \ldots 255 ; \underline{12}$
Drive down delay in min	$0 \ldots 30 ; \underline{1}$
Send current shading status	$\underline{\text { No }} \bullet$ Yes

Threshold value per communication object:
The threshold value is received via the communication object and can be changed additionally (e.g. button for "more sensitive" and "less sensitive"). Set the delay times for shading here (prevents constant opening and closing when light conditions change quickly).

Shading threshold specification per	communication object
The value communicated last shall be retained	- $\frac{\text { not }}{\text { - }}$ after voltage returns \bullet after voltage returns and programming
Start threshold value in klux valid until 1st communication	$0 \ldots 100 ; \underline{30}$
Type of limit value change	- Absolute value with a 16bit comm. object - Lifting/lowering with a comm. object - Lifting/lowering with two comm. objects

Increments in klux (only when "lifting/lowering with comm. object")	$1 \ldots 5 ; \underline{2}$
Drive up delay in min	$0 \ldots 255 ; \underline{12}$
Drive down delay in min	$0 \ldots 30 ; \underline{1}$
Send current shading status	$\underline{\text { no }} \bullet$ yes

Position of the sun:

Assess position of the sun	$\underline{\text { no }} \bullet$ yes
Assess position of the sun	yes
Position of the sun is defined via	\bullet Discreet value of azimuth and elevation
(regarding azimuth and elevation)	

Defining position of sun via values:
Enter the range (direction and height) in which the sun must be located for the shading to be active.

Position of the sun is defined via	discreet value of azimuth and elevation
Azimuth from	$\underline{0} \ldots 360$
Azimuth to	$\underline{0} \ldots 360$
Elevation from	$\underline{0} \ldots 90$
Elevation to	$\underline{0} \ldots 90$

Defining position of the sun via directions:
Enter the direction in which the sun must be positioned so that the shading is active.
Position of the sun is defined via
Directions
directions
(regarding azimuth and elevation)

- East (azimuth: $0^{\circ} \ldots 180^{\circ}$)
- South east (azimuth: $45^{\circ} \ldots 225^{\circ}$)
- South (azimuth: $90^{\circ} \ldots 270^{\circ}$)
- South west (azimuth: $135^{\circ} \ldots 315^{\circ}$)
- West (azimuth: $180^{\circ} \ldots 360^{\circ}$)

Slats and moving position (for shutters):

For shutters the angle of the slats can be firmly set, or the slats can automatically follow the elevation. This rule applies: Slats are closed at 100%, horizontal at 50%.

Should the slats follow the elevation	$\underline{\text { no }}$ • yes

The slats should not follow the elevation (fixed reversing angle):
Adjust the desired position of the slats and the curtain.

Should the slats follow the elevation	no
Slat position in \%	$0 \ldots 100 ; \underline{75}$
Shutter position in \%	$0 \ldots 100 ; \underline{75}$
Use teaching object for new shading position (curtain and slat positions will be saved, see info below)	$\underline{\text { no }}{ }^{\bullet}$ yes

The slats shall follow the elevation:
Three different elevation ranges can be set. A fixed curtain and slat position is specified for each.

Should the slats follow the elevation	yes
For an elevation less than (in degrees)	$0 \ldots 90 ; \underline{10}$
Slat position in $\%$	$0 \ldots 100 ; \underline{95}$
otherwise	$0 \ldots 100$
Slat position in \%	

Moving position (for awnings and blinds):

Awning position in \% or blind position in \%	$0 \ldots 100 ; 75$
Use teaching object for new shading position	$\underline{\text { no }}$ • yes

Use teaching object for new shading position: The curtain position it can be specified numerically or taught manually. For teaching set "use teaching object: Yes" and the "channel X shading position teaching object" is used for saving the position reached. Saving occurs for value $=1$ and can for example be realized via a button linked to the teaching object. Numerical specifications already set are overwritten by the teaching object.

4.3.1.3. Automatic for windows (drives)

The menu item "Automatic" only appears if internal automatic is selected for "Control". Depending on the setting, the internal automatic functions take the outdoor temperature, indoor temperature and room air humidity into account, and allow forced ventilation via a communication object.

In order to fully utilize the internal ventilation automatic, information about the outdoor and indoor temperature and the inside air humidity must be present in the bus system.

Cold supply air lock:

The input object "cold supply air block" is linked with the output object of a temperature sensor. The input object can be a 1bit object (smaller or larger than a threshold value), as well as a 16bit object (measurement value).

Use cold supply air block	$\underline{\text { no }} \bullet$ yes
Use cold supply air block	yes
Type of temperature input object	$\underline{1 \text { bit } \bullet 16 \text { bit }}$

1bit input object:

Type of temperature input object	$\mathbf{1}$ bit

Ventilation is allowed if the bit is 0 and blocked if the bit is 1.
16bit input object:

Type of temperature input object	$\mathbf{1 6}$ bit
Threshold value in $0.1^{\circ} \mathrm{C}$	$-300 \ldots 800 ; \underline{50}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{20}$
Send current blocking status	$\underline{\text { no }}$ • yes

Ventilation is allowed if the measurement value is larger than the threshold value+hysteresis and blocked if the measurement value is smaller than or equal to the threshold value.

Forced ventilation:

Use forced ventilation	$\underline{\text { no }}$ • yes

If forced ventilation is active ("use forced ventilation: Yes"), ventilation is started as soon as the communication object "forced ventilation" $=1$.

Warm supply air block:

The input object "warm supply air block" is linked with the output object of one or more temperature sensors. The input object can be a 1bit object (smaller or larger than a threshold value), as well as a 16bit object (measurement value indoor/outdoor or target and actual value).

Use warm supply air block	$\underline{\text { no } \bullet \text { yes }}$
Use warm supply air block	yes
Type of input object	$\frac{1 \text { bit } \bullet 16 \text { bit } \bullet 16 \text { bit target/actual }}{\text { temperature }}$

1bit input object:

Type of input object	$\mathbf{1}$ bit

Ventilation is allowed if the bit is 0 and blocked if the bit is 1.

16bit input object:

Type of input object	$\mathbf{1 6}$ bit
Threshold value in $0.1^{\circ} \mathrm{C}$	$-100 \ldots 200 ; \underline{50}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{0}$
Send current blocking status	$\underline{\text { no }}{ }^{\bullet}$ yes

Ventilation is allowed if the outdoor measurement value is smaller than the indoor measurement value+difference-hysteresis and blocked if the outdoor measurement value is greater than or equal to the indoor measurement value+difference.

16bit input object (target/actual temperature):
For this function the target value and actual value (measurement values) are imported from the 16bit object and evaluated.

Type of input object	$\mathbf{1 6}$ bit target/actual temperature
Close if outdoor temperature exceeds the target value by (in $\left.0.1^{\circ} \mathrm{C}\right)$	$0 \ldots 255 ; \underline{50}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{20}$
Send current blocking status	$\underline{\text { no }}{ }^{\bullet}$ yes

Ventilation is allowed if the outdoor measurement value is smaller than the target value+difference-hysteresis and blocked if the outdoor measurement value is greater than or equal to the target value+difference.

Open by temperature/humidity:

Open window	$\bullet \frac{\text { never }}{}$
	\bullet if too high temperature
	\bullet if too high room air humidity
	\bullet if too high temperature or room air
humidity	

Indoor temperature:

These parameters appear if ventilated at "too high temperature" / "too high temperature or room air humidity". The input object can be a 1 bit object (smaller or larger than a threshold value), as well as a 16bit object (measurement value or target and actual value).

Type of temperature input object	$\frac{1 \mathrm{bit}}{\text { temperature }} 16 \mathrm{bit} \bullet 16$ bit target/actual

1 bit input object:

Type of temperature input object	1 bit

Ventilation is activated if the bit is 0 and blocked if the bit is 1.

16 bit input object:
The threshold value specification can be provided via a parameter or communication object.

Type of temperature input object	$\mathbf{1 6}$ bit
Indoor temperature of threshold specification via	parameter \bullet communication object

Threshold value per parameter:

Indoor temperature of threshold specification via	parameter
Indoor temperature threshold value in $0.1 ?$	$-100 \ldots 500 ; 300$
Hysteresis in $0.1 ?$	$1 \ldots 100 ; \underline{20}$
Send current temperature status	$\underline{\text { no }} \bullet$ yes

Threshold value per communication object:
The threshold value is received via the communication object and can be changed additionally (e.g. button for target temperature + and -).

Indoor temperature threshold specification via	communication object
The value communicated last shall be retained	- not - after voltage returns - after voltage returns and programming
Start threshold value in $0.1^{\circ} \mathrm{C}$ valid until 1st communication	100 ... 500; 300
Type of limit value change	- Absolute value with a 16 bit comm. object - Lifting/lowering with a comm. object - Lifting/lowering with two comm. objects
Increments (only when "lifting/lowering with comm. object")	$0.1{ }^{\circ} \mathrm{C} \ldots 5^{\circ} \mathrm{C} ; 1^{\circ} \mathrm{C}$
Hysteresis in 0.1?	$1 . . .100 ; \underline{20}$
Send current temperature status	no ${ }^{\text {- yes }}$

16 bit input object (target/actual temperature):
For this function the target value and actual value (measurement values) are imported from the 16bit object and evaluated.

Type of temperature input object	$\mathbf{1 6}$ bit target / actual temperature
Open if actual value exceeds the target value (in $0.1^{\circ} \mathrm{C}$)	$0 \ldots .255 ; \underline{20}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{20}$
Send current blocking status	$\underline{\text { no }}{ }^{\bullet}$ yes

Room air humidity:

These parameter appear if ventilated at "too high room air humidity" / "too high temperature or room air humidity". The input object can be a 1bit object (smaller or larger than a threshold value), as well as a 16bit object (measurement value).

Type of humidity input object	$\underline{1 \text { bit } \bullet} 16$ bit

1 bit input object:

Type of humidity input object 1 bit

Ventilation is activated if the bit is 0 and blocked if the bit is 1.
16 bit input object:

Type of humidity input object	$\mathbf{1 6}$ bit
Indoor humidity threshold value in $\%$	$0 \ldots 100 ; \underline{60}$
Hysteresis in $0.1^{\circ} \mathrm{C}$	$1 \ldots 100 ; \underline{5}$
Send current humidity status	$\underline{\text { no }} \bullet$ yes

Window opening:
If the ventilation by temperature or humidity is controlled via a 1 bit input object, then enter the opening position in \%.

Window opening in \%	$1 \ldots \underline{100}$

If the ventilation is controlled by temperature and humidity via a 16bit input object, then you can either set an opening position or open the windows incrementally. In the step operation the temperature/humidity deviation is checked after a specified period of time, and may be increased/decreased by one step.

Window opening	absolute in \% - incrementally
Window opening in \% (only if "window opening is absolute in \%")	1... 100
incrementally by (in \%) (only if "window opening is in increments")	1...100; 25
every (in minutes) (only if "window opening is in increments")	1...60; 3

4.3.1.4.Button inputs (drives)

The inputs 3 to 10 are designated for operating the devices on the outputs (channel AD), and are therefore parameterized directly in the settings of the output channels. They can be used as actuator button or bus button, for connected drives the inputs 3, 5, 7 and 9 can be used alternatively for zero position sensors.

Operating mode	
Use input 3 / 5 / 7 / 9	- no - as a bus button - as an actuator switch - as a zero position sensor
Use input 4 / 6 / 8 / 10	- no - as a bus button - as an actuator switch

Input as bus button

The settings correspond to input $1 / 2$ (see Input as bus button, page 30)

Input as actuator button

If this channel is used for the input to the control of the drive, then specify the button function and the control mode.

Button function	$\frac{\text { Up }}{} \bullet$ Down	(shutter) (bp Down \bullet Up/
(blind)		
(awning)		
	$\frac{\text { On }}{} \bullet$ Off \bullet On/Off	(window)
Open \bullet Closed \bullet		
Open/Closed		
Control mode*	\bullet Standard	
	\bullet Standard inverted	
	\bullet Comfort mode	
	\bullet Dead man's switch	

*A detailed description of the setting options for the individual control modi can be found in the general part of chapter Control modi for drive control, page 58.

The input can be blocked using a blocking object. No operation is possible for an active block.

Use blocking object	$\underline{\text { No }} \cdot$ Yes

If monitoring periods or movement range limits are used, no operation via the local button is possible in case of a bus voltage failure.

Input as zero position sensor

The zero position sensor is used for the movement range limit of the respective drive (see Channel settings - drives, page 35). In case of a defect zero position sensor a malfunctioning message can be sent to the bus.

Send malfunction message when zero position sensor is defective	No \bullet Yes

4.3.2. Channel settings - switch functions

If two switchable devices are connected to the output channel, two separate channels will appear (e.g. "Channel A1 - switch function" and "Channel A2 - switch function"). First set the general specifications for the connected device and, if necessary, activate the connections, time functions and blocking objects. A diagram is found in chapter Correlation connection - time switch - block, page 62.

Relay operation	closer - opener
Behavior for bus voltage failure	- no change - opened - closed
Behavior for bus voltage return	- as before bus voltage failure - no change - opened - closed
Behavior after reset and ETS download	- opened - closed
Use status object	- no - as an active feedback object - as a passive status object
Use connection function (see Connection (switch functions), page 54)	no - yes
Use time function (see On/Off switch delays, time switching (switch functions), page 54)	- no - as a switch on delay - as a switch off delay - as a switch on and off delay - as a staircase light timer
Use blocking object	no - yes

4.3.2.1. Connection (switch functions)

The menu item "connection" appears only for the settings for the switch function channel if selected "Use switch functions: Yes".

In the connection object ("Channel X connection") different communication objects can be linked with AND or OR. E.g. a light can only be switched on if the button input is active AND twilight is active.

Connection type	$\underline{\text { AND }} \bullet$ OR
Value of the connection object after bus voltage returns	$\underline{0} \bullet 1$

4.3.2.2. On/Off switch delays, time switching (switch functions)

The menu item appears only for the settings for the switch function channel if a time function is chosen. The menu item has the same name as the selected function.

With the switch on and off delay, a switch can be used for example for a HVAC unit and light. Through the switch on delay the ventilator will only start if the light has already been turned on for a few minutes. The switch off delay effects that the ventilator will follow up if the button was operated again and the light is already off.

The staircase timer function makes sure for example that the light is on for a defined period of time and then turns off automatically.

Switch on delay

The switch on delay is set with a time basis and time factor (e.g. $1 \mathrm{~min} \times 4$ corresponds to 4 minutes). Additionally it is specified if the time interval for a repeat receipt of a switch-on telegram is extended ('triggered again", e.g. by pressing the button again) and what happens when a switch off telegram arrives from the bus.

Time basis
Time factor
Switch on delay cannot
Off telegram during staircase light period affects

$0.1 \mathrm{~s} \bullet 1 \mathrm{~s} \bullet 1 \mathrm{~min} \bullet 1 \mathrm{~h}$
$4 \ldots 255 ; \underline{4}$
be triggered again \bullet can be triggered again
nothing \bullet direct turn off

Switch off delay

The switch off delay is set with a time basis and time factor (e.g. $1 \mathrm{~min} \times 4$ corresponds to 4 minutes). Additionally it is specified if the time interval for a repeat receipt of a switch-off telegram is extended ("can be triggered again", e.g. by pressing the button again) and what happens when a switch off telegram arrives from the bus.

Time basis	$0.1 \mathrm{~s} \bullet 1 \mathrm{~s} \bullet 1 \mathrm{~min} \bullet 1 \mathrm{~h}$
Time factor	$4 \ldots 255 ; \underline{4}$
Switch on delay cannot	be triggered again \bullet can be triggered again
On telegram during staircase light period affects	$\underline{\text { nothing } \bullet \text { direct turn on }}$

Staircase lighting timer

The staircase time switch sets with a time basis and time factor how long the light will remain on (e.g. $1 \mathrm{~s} \times 10$ corresponds to 10 seconds). Additionally it is specified if the time interval for a repeat receipt of a switch-on telegram is extended ("triggered again", e.g. by pressing the button again) and what happens when a switch off telegram arrives from the bus.

Time basis	$0.1 \mathrm{~s} \bullet 1 \mathrm{~s} \bullet 1 \mathrm{~min} \bullet 1 \mathrm{~h}$
Time factor	$4 \ldots 255 ; \underline{10}$
Staircase light time can	not be triggered again $\bullet \underline{\text { can be triggered }}$ again
Off telegram during staircase light period affects	$\underline{\text { nothing } \bullet}$ direct turn off

4.3.2.3. Blocking function (switch functions)

The menu item "blocking function" appears only for the settings for the switch function channel if selected "Use blocking functions: Yes".

The output channel can be blocked by a block telegram. What happens during the blocking, for bus voltage return and after the blocking is set here. The manual operation is then not possible for an active block.
The function can be used for example for a light, which is turned on when pressing a "panic button" (=trigger for blocking function) and cannot be turned off any longer.

Blocking function blocks for	$\mathbf{0} \bullet \underline{1}$
Value of the blocking object after bus voltage returns	$\underline{\mathbf{0}} \boldsymbol{1}$
Response when blocking	no change \bullet opened \bullet closed
Response upon release	$\underline{\text { follows switch command } \bullet \text { opened } \bullet \text { closed }}$

4.3.3. Button input (switch functions)

The inputs 3 to 10 are designated for operating the devices on the outputs (channel AD), and are therefore parameterized directly in the settings of the output channels. They can be used as actuator button or bus button.

Operating mode	
Use input $3 / 4 / 5 / 6 / 7 / 8 / 9 / 10$	- No
	- as a bus button
	-as an actuator switch

Input as bus button

The setting corresponds to input $1 / 2$ (see Input as bus button, page 30)

Input as actuator button

If the input to the control of the device is used at this channel, then specify the button function.

Button function	$\underline{\text { Switch• }}$ • Selector switch

If a button with switch function is assigned to the input, select the button function "Switch" and specify what happens when pressing/releasing the button and when to send.

Button function	Switch
Command when pressing the button	\bullet • $\frac{\text { switch on }}{\text { switch off }}$
	\bullet nothing
Command when releasing the button	\bullet switch on
	\bullet • switch off
	\bullet nothing

The input can be blocked using a blocking object. Set what happens when (de)activating the block. No operation is possible for an active block.

Use blocking object	$\underline{\text { No } \bullet \text { Yes }}$
Use blocking object	Yes
Once when activating the blocking	\bullet switch on \bullet switch off \bullet nothing
Once when deactivating the blocking	\bullet switch on \bullet switch off \bullet
nothing	
\bullet evaluate current state	

If a button with selector switch function is assigned to the input, select the bus function "Selector switch" and specify what happens when pressing and releasing the button.

Button function	Selector switch
Command when pressing the button	\bullet • switch over
Command when releasing the button	\bullet •switch over
	\bullet nothing

The input can be blocked using a blocking object. No operation is possible for an active block.

Use blocking object	$\underline{\text { No }} \bullet$ Yes

5. General part

5.1. Output channel with drive

5.1.1. Control modi for drive control

If inputs are used as buttons for operating shading or windows, then different control modi can be set.

```
Control mode \bullet Standard
- Standard inverted
- Comfort mode
- Dead man's switch
```


Standard:

If briefly operated, the drive will move incrementally or stops. If operated longer, the drive will move up to the end position. The time difference between "short" and "long" is set individually.

Control mode	Standard
Behavior during button operation: short = stop/increment long = Up or Down	
Time between short and long in 0.1 seconds	$1 \ldots 50 ; 10$

Standard inverted:

When pushed shortly, the drive moves up to the end position. When pushed for longer, the drive moves incrementally or stops. The time difference between "short" and "long" and the repeat interval is set individually.

Control mode	Standard inverted
Behavior during button operation: short = Up or Down long = Stop/Step	
Time between short and long in 0.1 seconds	$1 \ldots 50 ; \underline{10}$
Repeat the step command for a long button press	every $0.1 \mathrm{~s} \bullet$ every $2 \mathrm{sec} ;$ every 0.5 sec

Comfort mode:

In the comfort mode pushing the button briefly, a bit longer and long will trigger different responses of the drive. The time intervals are set individually.

By pushing the button (shorter than adjustable time 1) the drive will be positioned (resp. stopped) incrementally.

If the drive is to be moved a bit farther, then a little longer push is needed (longer than time 1 but shorter than time $1+2$). The drive stops immediately when releasing the button.
If the drive must be moved independently into the end position, the button is released only after times 1 and 2 have expired. The move can be stopped by briefly pushing.
Fig. 1
Time interval comfort mode diagram

Dead man's switch:

The drive moves as soon as the button is pushed and stops as soon as the button is released.

Control mode	Dead man's switch
Behavior during button operation:	
Push button = Up or Down command	
Release button = Stop command	

5.1.2. Connection option for zero position sensors

See also section Movement Range Limit in chapter Control (drives), page 37. The examples and the communication object numbers refer to the mutual master-slave coupling of drives at the output channel A and channel B.

Drive channel A is Master, zero position sensor at input 3 of the actuator, drive channel B is Slave, zero position sensor at input 5 of the actuator:

Drive channel A is Master, zero position sensor at input 3 of the actuator, drive channel B is Slave, zero position sensor via bus:

Drive channel A is Master, zero position sensor via bus, drive channel B is Slave, zero position sensor at input 5 of the actuator:

Drive channel A is Master, zero position sensor via bus, drive channel B is Slave, zero position sensor via bus:

5.2. Output channel with switch function

5.2.1. Correlation connection - time switch - block

Application 1: Staircase light at channel A1, that can only be switchable at twilight/ night (linking) and that is turned on during a fire alarm (blocking).

When switching via communication object "Channel A1 switch" (200), the light is turned on or off normally. When switching via object "Channel A1 staircase light function start" (205), the staircase light time function is activated. The time function has priority, i.e. the status triggered by normal switching is overwritten.

Elsner Elektronik GmbH Control and AutomationTechnology
Sohlengrund 16
75395 Ostelsheim Phone $+49(0) 7033 / 30945-0$ info @ elsner-elektronik.de Germany Fax +49(0)7033/30945-20 www.elsner-elektronik.de

