

Sewi KNX TH

Indoor combined sensor

Technical specifications and installation instructions

Item number 70393

1. Description

The **Sensor Sewi KNX TH** measures the temperature and the air humidity and calculates the dew-point. Via the bus, the indoor sensor can receive external values of temperature and humidity and process them further with its own data to a total value (mixed value, e.g. room average).

All measurement values can be used for the control of limit-dependent switching outputs. States can be linked via AND logic gates and OR logic gates. Multi-function modules change input data as required by means of calculations, querying a condition, or converting the data point type. In addition, an integrated manipulated variable comparator can compare and output variables that were received via communication objects.

Integrated PI-controllers control ventilation (according to humidity) and heating/cooling (according to temperature). The **Sewi KNX TH** can output a warning to the bus as soon as the comfort field, as per DIN 1946, is left.

Functions:

- Measuring the temperature and air humidity (relative, absolute), each with mixed value calculation. The share of internal measurement value and external value can be set as a percentage
- Bus message, whether the values for temperature and air humidity are within the comfort field (DIN 1946). Dew point calculation
- Switching outputs for all measured and computed values. Threshold values
 can be adjusted per parameter or via communication objects
- PI-controller for heating (one or two-stage) and cooling (one or two-stage) according to temperature. Regulation according to separate setpoints or basic setpoint temperature
- PI controller for humidity according to humidity: Ventilate/Air (one-stage) or Ventilate (one or two-stage)
- 8 AND and 8 OR logic gates, each with 4 inputs. All switching events as well
 as 16 logic inputs (in the form of communications objects) can be used as
 inputs for the logic gates. The output of each gate can be configured optionally
 as 1-bit or 2 x 8-bit
- 8 multi-function modules (computers) for changing the input data by calculations, by querying a condition or by converting the data point type
- 4 actuating variable comparators to output minimum, maximum or average values. 5 inputs each for values received via communication objects
- Summer compensation for cooling systems. A characteristic curve matches
 the target temperature in the room to the external temperature and sets the
 minimum and maximum target temperature values

Configuration is made using the KNX software ETS. The **product file** can be downloaded from the Elsner Elektronik website on **www.elsner-elektronik.de** in the "Service" menu.

1.0.1. Scope of delivery

Combined sensor

1.1. Technical data

Housing	Plastic
Colour	White (Cover glossy, skirting matt)
Assembly	Surface, wall or ceiling installation
Protection category	IP 30
Dimensions	Ø approx. 105 mm, height approx. 32 mm
Total weight	approx. 80 g
Ambient temperature	Operation -25+80°C, storage -30+70°C
Ambient humidity	max. 95% RH, avoid condensation
Operating voltage	KNX bus voltage
Bus current	max. 10 mA
Data output	KNX +/- bus plug-in terminal
BCU type	Integrated microcontroller
PEI type	0
Group addresses	max. 2000
Assignments	max. 2000
Communication objects	291
Temperature sensor:	
Measurement range	-25°C +80°C
Resolution	0.1°C
Accuracy*	±0,8°C at -2010°C
	±0,5°C at -10+80°C
Humidity sensor:	
Measurement range	0% rH 100% rH
Resolution	0.1% rH
Accuracy	±7,5% rH at 010% rH
	±4,5% rH at 1090% rH
	±7,5% rH at 90100% rH

^{*} Follow the instructions on Measuring accuracy, page 3

The product is compliant with the provisions of the EU guidelines.

1.1.1. Measuring accuracy

Deviations in measured values due to interfering sources (see chapter *installation site*) must be corrected in the ETS in order to achieve the specified accuracy of the sensor (offset).

During the **Temperature measurement**, the self-heating of the device is taken into consideration by the electronics. The software compensates the self-heating by reducing the measured temperature by 1.0°C.

2. Installation and start-up

2.1. Installation notes

Installation, testing, operational start-up and troubleshooting should only be performed by an electrician.

CAUTION!

Live voltage!

There are unprotected live components inside the device.

- National legal regulations are to be followed.
- Ensure that all lines to be assembled are free of voltage and take precautions against accidental switching on.
- Do not use the device if it is damaged.
- Take the device or system out of service and secure it against unintentional use, if it can be assumed, that risk-free operation is no longer guaranteed.

The device is only to be used for its intended purpose. Any improper modification or failure to follow the operating instructions voids any and all warranty and guarantee claims.

After unpacking the device, check it immediately for possible mechanical damage. If it has been damaged in transport, inform the supplier immediately.

The device may only be used as a fixed-site installation; that means only when assembled and after conclusion of all installation and operational start-up tasks and only in the surroundings designated for it.

Elsner Elektronik is not liable for any changes in norms and standards which may occur after publication of these operating instructions.

2.2. Installation location

Install and use only in dry interior rooms! Avoid condensation.

The **Sensor Sewi KNX TH** is installed surface mounted on walls or ceilings.

When selecting an installation location, please ensure that the measurement results of **temperature and humidity** are affected as little as possible by external influences. Possible sources of interference include:

- Direct sunlight
- Drafts from windows and doors
- Draughts from ducts coming from other rooms or the outdoors
- Warming or cooling of the building structure on which the sensor is mounted,
 e.g. due to sunlight, heating or cold water pipes

 Connection lines and empty ducts which lead from warmer or colder areas to the sensor

Measurement variations from such sources of interference must be corrected in the ETS in order to ensure the specified accuracy of the sensor (offset).

2.3. Construction of the sensor

2.3.1. Housing from the outside

Fig. 1
A Recess to open the housing. When closing the housing, the recess aligns to the marking on the skirting

2.3.2. Printed circuit boards / connections

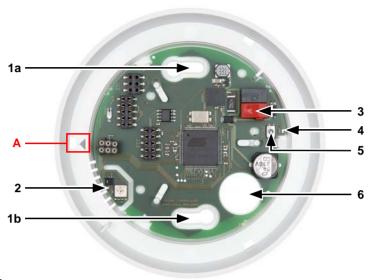


Fig. 2

- 1 a+b Long holes for mounting (hole distance 60 mm)
- 2 Sensors for temperature, humidity
- 3 KNX-terminal BUS +/-
- 4 Programming LED
- 5 Programming button
- 6 Cable bushing

A Mark for aligning the cover

2.4. Assembly

Fig. 3

Open the housing. To do this, carefully lift the cover from the skirting. Start at the recess (Fig. 1: A).

Fig. 4

Lead the bus cable through the cable bushing in the skirting.

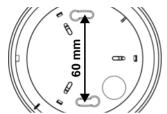


Fig. 5

Screw the skirting to the wall or the ceiling. Hole distance 60 mm.

Fig. 6

Connect the KNX bus to the KNX terminal.

Fig. 7

Close the housing by positioning the cover and snapping it into place. To do this, align the recess on the cover to the marking on the skirting (Fig. 1+2: A).

2.5. Notes on mounting and commissioning

Never expose the device to water (e.g. rain) or dust. This can damage the electronics. You must not exceed a relative humidity of 95%. Avoid condensation.

The air slots on the side must not be closed or covered.

After the bus voltage has been applied, the device will enter an initialisation phase lasting a few seconds. During this phase no information can be received or sent via the bus.

3. Addressing the equipment

The equipment is delivered with the bus address 15.15.250. You can program a different address in the ETS by overwriting the address 15.15.250 or by teaching the device via the programming button.

The programming button is on the inside of the housing (Fig. 2: No. 5).

4. Maintenance

The air slots on the side must not get dirty or covered. As a rule, it is sufficient to wipe the device with a soft, dry cloth twice a year.