

Sewi KNX AQS/TH-D L-Pr

Combined Indoor Sensor

Item number 70399

1.	Description	. 5
	1.0.1. Scope of delivery	6
1.1.	Technical data	6
	1.1.1. Measuring accuracy	7
2.	Installation and start-up	. 7
2.1.	Installation notes	7
2.2.	Installation location	8
	2.2.1. Coverage area of the motion detector	
2.3.	Construction of the sensor	
	2.3.1. Housing from the outside	
	2.3.2. Printed circuit boards / connections	
	Assembly	
2.5.	Notes on mounting and commissioning	13
3.	Addressing the equipment	13
4.	Maintenance	13
5.	Transfer protocol	15
	List of all communication objects	
6.	Parameter setting	
	Behaviour on power failure/ restoration of power	
	General settings	
	Motion detector	
0.0.	6.3.1. Master 1/2/3/4	
	6.3.2. Align communication between master and slave	
6.4.	Light control	
6.5.	Temperature Measurement	41
6.6.	Temperature threshold values	42
	6.6.1. Threshold value 1, 2, 3, 4	42
6.7.	Temperature PI control	45
	6.7.1. Heating control level 1/2	
	6.7.2. Cooling control level 1/2	
	Summer Compensation	
	Brightness Measurement	
6.10	Brightness threshold values	
	6.10.1. Threshold value 1/2/3/4	
	.Night	
	.Humidity Measurement	
6.13	Humidity threshold values	
6 4 4	6.13.1. Threshold value 1, 2, 3, 4	
	.Humidity PI control	
0.15	6.15.1. Cooling medium temp. monitoring	
6 1 6	6.15.1.Cooling medium temp. monitoring	

6.17.Comfort field	68
6.18.Air Pressure Measurement	69
6.19.Air pressure threshold values	
6.19.1. Air pressure threshold value 1-4	70
6.20.CO2 Measurement	
6.21.CO2 threshold values	73
6.21.1. Threshold value 1, 2, 3, 4	73
6.22.CO2 PI-control	
6.23. Variable comparator	78
6.23.1. Control variable comparator 1/2/3/4	
6.24.Computer	79
6.24.1. Computer 1-8	
6.25.Logic	83
6.25.1. AND logic 1-8 and OR logic outputs 1-8	83
6.25.2. AND logic connection inputs	85
6.25.3. Connection inputs of the OR logic	88

Installation, inspection, commissioning and troubleshooting of the device must only be carried out by a competent electrician.

This manual is amended periodically and will be brought into line with new software releases. The change status (software version and date) can be found in the contents footer. If you have a device with a later software version, please check

www.elsner-elektronik.de in the menu area "Service" to find out whether a more up-todate version of the manual is available.

Clarification of signs used in this manual

Safety advice.

Safety advice for working on electrical connections, components, etc.

DANGER!

... indicates an immediately hazardous situation which will lead to

death or severe injuries if it is not avoided.

WARNING!

... indicates a potentially hazardous situation which may lead to

death or severe injuries if it is not avoided.

CAUTION!

... indicates a potentially hazardous situation which may lead to

trivial or minor injuries if it is not avoided.

ATTENTION! ... indicates a situation which may lead to damage to property if it is

not avoided.

ETS

In the ETS tables, the parameter default settings are marked by

underlining.

1. Description

The **Sensor Sewi KNX AQS/TH-D L-Pr** captures brightness and motion in rooms. It measures the CO2 concentration, the temperature, the air humidity and the air pressure and calculates the dew-point. Via the bus, the indoor sensor can receive external values of temperature, humidity and CO₂ concentration and process it further with its own data to a total value (mixed value, e.g. room average).

All measurement values can be used for the control of limit-dependent switching outputs. States can be linked via AND logic gates and OR logic gates. Multi-function modules change input data as required by means of calculations, querying a condition, or converting the data point type. In addition, an integrated manipulated variable comparator can compare and output variables that were received via communication objects.

Integrated PI-controllers control ventilation (according to humidity or CO₂ concentration) and heating/cooling (according to temperature). The **Sewi KNX AQS/TH-D L-Pr** can output a warning to the bus as soon as the comfort field, as per DIN 1946, is left.

Functions:

- Brightness measurement with brightness regulation
- Motion detection
- Measuring the CO₂ concentration of the air, the temperature and air humidity (relative, absolute), each with mixed value calculation. The share of internal measurement value and external value can be set as a percentage
- Bus message, whether the values for temperature and air humidity are within the comfort field (DIN 1946). Dew point calculation
- Air pressure measurement. Output of the value as normal pressure and optionally as barometric pressure
- Switching outputs for all measured and computed values. Threshold values
 can be adjusted per parameter or via communication objects
- PI-controller for heating (one or two-stage) and cooling (one or two-stage) according to temperature. Regulation according to separate setpoints or basic setpoint temperature
- PI controller for ventilation according to humidity and CO₂ concentration: Ventilate/Air (one-stage) or Ventilate (one or two-stage)
- 8 AND and 8 OR logic gates, each with 4 inputs. All switching events as well
 as 16 logic inputs in the form of communications objects can be used as inputs
 for the logic gates. The output of each gate can be configured optionally as 1bit or 2 x 8-bit
- 8 multi-function modules (computers) for changing the input data by calculations, by querying a condition or by converting the data point type
- 4 manipulated variable comparators to output minimum, maximum or average values. 5 inputs each for values received via communication objects
- Summer compensation for cooling systems. A characteristic curve matches
 the target temperature in the room to the external temperature and sets the
 minimum and maximum target temperature values

Configuration is made using the KNX software ETS. The **product file** can be downloaded from the Elsner Elektronik website on **www.elsner-elektronik.de** in the "Service" menu.

1.0.1. Scope of delivery

Combined sensor

1.1. Technical data

Housing	Plastic
Colour	White (Cover glossy, skirting matt)
Assembly	Surface, wall or ceiling installation
Protection category	IP 30
Dimensions	Ø approx. 105 mm, height approx. 32 mm
Total weight	approx. 100 g
Ambient temperature	Operation -20+55°C, storage -20+70°C
Ambient humidity	max. 95% RH, avoid condensation
Operating voltage	KNX bus voltage
Bus current	max. 10 mA
Data output	KNX +/- bus plug-in terminal
BCU type	Integrated microcontroller
PEI type	0
Group addresses	max. 2000
Assignments	max. 2000
Communication objects	449
CO ₂ sensor:	
Measurement range	02000 ppm
Resolution	1 ppm
Accuracy*	± 50 ppm ± 3% of the measured value
Temperature sensor:	
Measurement range	-20°C +55°C
Resolution	0.1°C
Accuracy*	±0.7°C at -2010°C ±0.5°C at -10+55°C
Humidity sensor:	
Measurement range	0% RH 95% RH
Resolution	0.1% RH
Accuracy	± 7,5% RH at 010% ± 4,5% RH at 1090% ± 7,5% RH at 9095%
Pressure sensor:	
Measurement range	300 mbar 1100 mbar

Resolution	0.1 mbar
Accuracy	±4 mbar
Brightness sensor:	
Measurement range	0 lux 150,000 lux
Resolution	1 lux at 0255 lux 6 lux at 2562,645 lux 96 lux at 2,646128,256 lux 762 lux at 128,257150,000 lux
Accuracy	±15% of the measurement value at 35 lux 150,000 lux
Motion sensor:	
Coverage angle	approx. $100^{\circ} \times 82^{\circ}$ (see also Coverage area of the motion detector, page 9)
Range	approx. 5 m

^{*} Follow the instructions on Measuring accuracy, page 7

The product conforms with the provisions of EU directives.

1.1.1. Measuring accuracy

Deviations in measured values due to interfering sources (see chapter *installation site*) must be corrected in the ETS in order to achieve the specified accuracy of the sensor (offset).

The specified **CO₂ measurement accuracy** is achieved after a run-in of 24 hours (without bus voltage interruption), if the sensor comes into contact with fresh air (350...450 ppm) at least once during this period. During the warm-up phase the reading may not be displayed at all or wrongly, or remain frozen at 2001.

After this, the $\rm CO_2$ -sensor performs a self-calibration every two weeks, in which the lowest $\rm CO_2$ value measured during this period (without bus voltage interruption) is taken as a reference for fresh air.

In order to ensure permanent accuracy, the sensor should be supplied with fresh air at least once every two weeks. This is normally the case during room ventilation.

During **Temperature measurement**, the self-heating of the device is taken into consideration by the electronics. The software compensates the self-heating by reducing the measured temperature by 1.0°C.

2. Installation and start-up

2.1. Installation notes

Installation, testing, operational start-up and troubleshooting should only be performed by an electrician.

CAUTION! Live voltage!

There are unprotected live components inside the device.

- National legal regulations are to be followed.
- Ensure that all lines to be assembled are free of voltage and take precautions against accidental switching on.
- Do not use the device if it is damaged.
- Take the device or system out of service and secure it against unintentional use, if it can be assumed, that risk-free operation is no longer guaranteed.

The device is only to be used for its intended purpose. Any improper modification or failure to follow the operating instructions voids any and all warranty and guarantee claims.

After unpacking the device, check it immediately for possible mechanical damage. If it has been damaged in transport, inform the supplier immediately.

The device may only be used as a fixed-site installation; that means only when assembled and after conclusion of all installation and operational start-up tasks and only in the surroundings designated for it.

Elsner Elektronik is not liable for any changes in norms and standards which may occur after publication of these operating instructions.

2.2. Installation location

Install and use only in dry interior rooms! Avoid condensation.

The **Sensor Sewi KNX AQS/TH-D L-Pr** is installed surface mounted on walls or ceilings.

For **capturing movement**, make sure that the desired area is covered by the sensor's coverage angle and that no obstacles obstruct the capturing.

When selecting an installation location, please ensure that the measurement results of **temperature**, **humidity and CO₂** are affected as little as possible by external influences. Possible sources of interference include:

- Direct sunlight
- · Drafts from windows and doors
- Draughts from ducts coming from other rooms or the outdoors
- Warming or cooling of the building structure on which the sensor is mounted,
 e.g. due to sunlight, heating or cold water pipes
- Connection lines and empty ducts which lead from warmer or colder areas to the sensor

Measurement variations from such sources of interference must be corrected in the ETS in order to ensure the specified accuracy of the sensor (offset).

2.2.1. Coverage area of the motion detector

Angle of coverage: approx. $100^{\circ} \times 82^{\circ}$

Range: approx. 5 m

Segmentation of the coverage area

Fig. 1 Distance 2.50 m

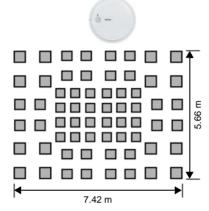
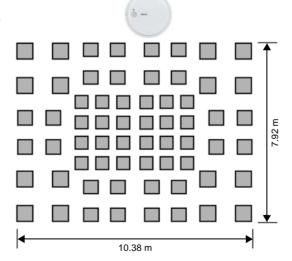



Fig. 2 Distance 3.50 m

Size of the coverage area

Distance	Length Width	
2.50 m	approx. 7.42 m	approx. 5.66 m
3.50 m	approx. 10.38 m	approx. 7.92 m

2.3. Construction of the sensor

2.3.1. Housing from the outside

Fig. 3 1 Brightness sensor 2 Motion sensor

A Recess to open the housing. When closing the housing, the recess aligns to the marking on the skirting

2.3.2. Printed circuit boards / connections

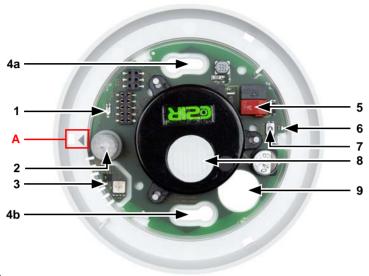


Fig. 4

- 1 Brightness sensor
- 2 Motion sensor
- 3 Sensors for temperature, humidity, pressure
- 4 a+b Long holes for mounting (hole distance 60 mm)
- 5 KNX-terminal BUS +/-
- 6 Programming LED
- 7 Programming button
- 8 CO₂Sensor

ATTENTION!

CO₂ sensor with sensitive membrane!

When handling the device, do not damage the white membrane.

9 Cable bushing

A Mark for aligning the cover

2.4. Assembly

Fig. 5

Open the housing. To do this, carefully lift the cover from the skirting. Start at the recess (Fig. 3: A).

Fig. 6

Lead the bus cable through the cable bushing in the skirting.

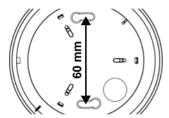


Fig. 7

Screw the skirting to the wall or the ceiling. Hole distance 60 mm.

Fig. 8

Connect the KNX bus to the KNX terminal.

Fig. 9

Close the housing by positioning the cover and snapping it into place. To do this, align the recess on the cover to the marking on the skirting (Fig. 3+4: A).

2.5. Notes on mounting and commissioning

Never expose the device to water (e.g. rain) or dust. This can damage the electronics. You must not exceed a relative humidity of 95%. Avoid condensation.

The air slots on the side must not be closed or covered. The brightness sensor and the motion sensor must not be painted over or covered.

After the bus voltage has been applied, the device will enter an initialisation phase lasting a few seconds. During this phase no information can be received or sent via the bus.

The motion sensor has a start-up phase of approx. 15 seconds during which no motion detection takes place.

3. Addressing the equipment

The equipment is delivered with the bus address 15.15.250. You can program a different address in the ETS by overwriting the address 15.15.250 or by teaching the device via the programming button.

The programming button is on the inside of the housing (Fig. 4: No. 7).

4. Maintenance

The brightness sensor, the motion sensor and the air slots on the side must not get dirty or covered. As a rule, it is sufficient to wipe the device with a soft, dry cloth twice a year.

5. Transfer protocol

Units:

Temperatures in degrees Celsius Brightness in Lux Air pressure in Pascal Air humidity in % Absolute air humidity in g/kg and/or g/m³ CO₂ content in ppm Variables in %

5.1. List of all communication objects

Abbreviation flags:

C Communication

R Read

W Write

T Transfer

U Update

No.	Text	Func- tion	Flags	DPT type	Size
1	Software version	Output	R-CT	[217.1] DPT_Version	2 bytes
41	Temperature sensor: Malfunction	Output	R-CT	[1.1] DPT_Switch	1 bit
42	Temperature sensor: External measurement	Input	-WCT	[9.1] DPT_Val- ue_Temp	2 bytes
43	Temperature sensor: Measured value	Output	R-CT	[9.1] DPT_Val- ue_Temp	2 bytes
44	Temperature sensor: Total measurement	Output	R-CT	[9.1] DPT_Val- ue_Temp	2 bytes
45	Temperature sensor: Min./Max. measurement query	Input	-WC-	[1.017] DPT_Trig- ger	1 bit
46	Temperature sensor: Minimum measurement	Output	R-CT	[9.1] DPT_Val- ue_Temp	2 bytes
47	Temperature sensor: Maximum measurement	Output	R-CT	[9.1] DPT_Val- ue_Temp	2 bytes
48	Temperature sensor: Min./Max. measurement reset	Input	-WC-	[1.017] DPT_Trig- ger	1 bit
51	Temp. threshold value 1: Absolute value	Input/ Output	RWCT	[9.1] DPT_Val- ue_Temp	2 bytes
52	Temp. threshold value 1: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
53	Temp. threshold value 1: Switching delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
54	Temp. threshold value 1: Switching delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes

No.	Text	Func- tion	Flags	DPT type	Size
55	Temp. threshold value 1: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
56	Temp. threshold value 1: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
58	Temp. threshold value 2: Absolute value	Input/ Output	RWCT	[9.1] DPT_Val- ue_Temp	2 bytes
59	Temp. threshold value 2: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
60	Temp. threshold value 2: Switching delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
61	Temp. threshold value 2: Switching delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
62	Temp. threshold value 2: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
63	Temp. threshold value 2: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
65	Temp. threshold value 3: Absolute value	Input/ Output	RWCT	[9.1] DPT_Val- ue_Temp	2 bytes
66	Temp. threshold value 3: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
67	Temp. threshold value 3: Switching delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
68	Temp. threshold value 3: Switching delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
69	Temp. threshold value 3: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
70	Temp. threshold value 3: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
72	Temp. threshold value 4: Absolute value	Input/ Output	RWCT	[9.1] DPT_Val- ue_Temp	2 bytes
73	Temp. threshold value 4: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
74	Temp. threshold value 4: Switching delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
75	Temp. threshold value 4: Switching delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
76	Temp. threshold value 4: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
77	Temp. threshold value 4: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
96	Brightness measurement	Output	R-CT	[9.4] DPT_Val- ue_Lux	2 bytes
99	Brightness correction factor	Input/ Output	RWCT	[14.5] DPT_Val- ue_Amplitude	4 bytes
129	Brightness sensor 2 threshold value 1: Absolute value	Input/ Output	RWCT	[9.4] DPT_Val- ue_Lux	2 bytes

No.	Text	Func- tion	Flags	DPT type	Size
130	Brightness sensor 2 threshold value 1: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
131	Brightness sensor 2 threshold value 1: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
132	Brightness sensor 2 threshold value 1: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
133	Brightness sensor 2 threshold value 1: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
134	Brightness sensor 2 threshold value 1: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
136	Brightness sensor 2 threshold value 2: Absolute value	Input/ Output	RWCT	[9.4] DPT_Val- ue_Lux	2 bytes
137	Brightness sensor 2 threshold value 2: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
138	Brightness sensor 2 threshold value 2: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
139	Brightness sensor 2 threshold value 2: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
140	Brightness sensor 2 threshold value 2: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
141	Brightness sensor 2 threshold value 2: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
143	Brightness sensor 2 threshold value 3: Absolute value	Input/ Output	RWCT	[9.4] DPT_Val- ue_Lux	2 bytes
144	Brightness sensor 2 threshold value 3: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
145	Brightness sensor 2 threshold value 3: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
146	Brightness sensor 2 threshold value 3: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
147	Brightness sensor 2 threshold value 3: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
148	Brightness sensor 2 threshold value 3: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
150	Brightness sensor 2 threshold value 4: Absolute value	Input/ Output	RWCT	[9.4] DPT_Val- ue_Lux	2 bytes
151	Brightness sensor 2 threshold value 4: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
152	Brightness sensor 2 threshold value 4: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
153	Brightness sensor 2 threshold value 4: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes

No.	Text	Func- tion	Flags	DPT type	Size
154	Brightness sensor 2 threshold value 4: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
155	Brightness sensor 2 threshold value 4: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
251	Night: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
252	Night: Switching delay on night	Input	-WC-	[7,005] DPT TimePeriodSec	2 bytes
253	Night: Switching delay on day	Input	-WC-	[7,005] DPT TimePeriodSec	2 bytes
311	Humidity sensor: Malfunction	Output	R-CT	[1.1] DPT_Switch	1 bit
314	Humidity sensor: External measurement	Input	-WCT	[9.7] DPT_Val- ue_Humidity	2 bytes
315	Humidity sensor: Measured value	Output	R-CT	[9.7] DPT_Val- ue_Humidity	2 bytes
316	Humidity sensor: Total measurement	Output	R-CT	[9.7] DPT_Val- ue_Humidity	2 bytes
317	Humidity sensor: Min./Max. measurement query	Input	-WC-	[1.017] DPT_Trig- ger	1 bit
318	Humidity sensor: Minimum measurement	Output	R-CT	[9.7] DPT_Val- ue_Humidity	2 bytes
319	Humidity sensor: Maximum measurement	Output	R-CT	[9.7] DPT_Val- ue_Humidity	2 bytes
320	Humidity sensor: Min./Max. measurement reset	Input	-WC-	[1.017] DPT_Trig- ger	1 bit
331	Humidity threshold value 1: Absolute value	Input/ Output	RWCT	[9.7] DPT_Val- ue_Humidity	2 bytes
332	Humidity threshold value 1: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
333	Humidity threshold value 1: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
334	Humidity threshold value 1: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
335	Humidity threshold value 1: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
336	Humidity threshold value 1: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
337	Humidity threshold value 2: Absolute value	Input/ Output	RWCT	[9.7] DPT_Val- ue_Humidity	2 bytes
338	Humidity threshold value 2: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
339	Humidity threshold value 2: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
340	Humidity threshold value 2: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes

No.	Text	Func- tion	Flags	DPT type	Size
341	Humidity threshold value 2: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
342	Humidity threshold value 2: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
343	Humidity threshold value 3: Absolute value	Input/ Output	RWCT	[9.7] DPT_Val- ue_Humidity	2 bytes
344	Humidity threshold value 3: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
345	Humidity threshold value 3: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
346	Humidity threshold value 3: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
347	Humidity threshold value 3: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
348	Humidity threshold value 3: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
349	Humidity threshold value 4: Absolute value	Input/ Output	RWCT	[9.7] DPT_Val- ue_Humidity	2 bytes
350	Humidity threshold value 4: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
351	Humidity threshold value 4: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
352	Humidity threshold value 4: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
353	Humidity threshold value 4: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
354	Humidity threshold value 4: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
381	Dewpoint: Measured value	Output	R-CT	[9.1] DPT_Val- ue_Temp	2 bytes
382	Coolant temp.: Threshold value	Output	R-CT	[9.1] DPT_Val- ue_Temp	2 bytes
383	Coolant temp.: Actual value	Input	RWCT	[9.1] DPT_Val- ue_Temp	2 bytes
384	Coolant temp.: Offset change (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
385	Coolant temp.: Current offset	Output	R-CT	[9.1] DPT_Val- ue_Temp	2 bytes
386	Coolant temp.: Switching delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
387	Coolant temp.: Switching delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
388	Coolant temp.: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
389	Coolant temp.: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit

No.	Text	Func- tion	Flags	DPT type	Size
391	Absolute humidity [g/kg]	Output	R-CT	[14.5] DPT_Val- ue_Amplitude	4 bytes
392	Absolute humidity [g/m²]	Output	R-CT	[14.17] DPT_Val- ue_Density	4 bytes
394	Ambient climate status: 1 = comfortable 0 = uncomfortable	Output	R-CT	[1.1] DPT_Switch	1 bit
395	Ambient climate status: Text	Output	R-CT	[16.0] DPT_String_ASCII	14 bytes
401	Air pressure sensor: Malfunction	Output	R-CT	[1.1] DPT_Switch	1 bit
402	Air pressure sensor: Normal measurement [Pa]	Output	R-CT	[14.58] DPT_Val- ue_Pressure	4 bytes
403	Air pressure sensor: Barometric measurement [Pa]	Output	R-CT	[14.58] DPT_Val- ue_Pressure	4 bytes
404	Air pressure sensor: Min./Max. measurement query	Input	-WC-	[1.017] DPT_Trig- ger	1 bit
405	Air pressure sensor: Min. normal measurement [Pa]	Output	R-CT	[14.58] DPT_Val- ue_Pressure	4 bytes
406	Air pressure sensor: Min. barometric measurement [Pa]	Output	R-CT	[14.58] DPT_Val- ue_Pressure	4 bytes
407	Air pressure sensor: Max. normal measurement [Pa]	Output	R-CT	[14.58] DPT_Val- ue_Pressure	4 bytes
408	Air pressure sensor: Max. barometric measurement [Pa]	Output	R-CT	[14.58] DPT_Val- ue_Pressure	4 bytes
409	Air pressure sensor: Min./Max. measurement reset	Input	-WC-	[1.017] DPT_Trig- ger	1 bit
410	Air pressure sensor: Pressure range text	Output	R-CT	[16.0] DPT_String_ASCII	14 bytes
411	Air pressure threshold value 1: Absolute value	Input/ Output	RWCT	[14.58] DPT_Val- ue_Pressure	4 bytes
412	Air pressure threshold value 1: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
413	Air pressure threshold value 1: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
414	Air pressure threshold value 1: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
415	Air pressure threshold value 1: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
416	Air pressure threshold value 1: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
417	Air pressure threshold value 2: Absolute value	Input/ Output	RWCT	[14.58] DPT_Val- ue_Pressure	4 bytes
418	Air pressure threshold value 2: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit

No.	Text	Func- tion	Flags	DPT type	Size
419	Air pressure threshold value 2: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
420	Air pressure threshold value 2: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
421	Air pressure threshold value 2: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
422	Air pressure threshold value 2: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
423	Air pressure threshold value 3: Absolute value	Input/ Output	RWCT	[14.58] DPT_Val- ue_Pressure	4 bytes
424	Air pressure threshold value 3: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
425	Air pressure threshold value 3: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
426	Air pressure threshold value 3: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
427	Air pressure threshold value 3: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
428	Air pressure threshold value 3: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
429	Air pressure threshold value 4: Absolute value	Input/ Output	RWCT	[14.58] DPT_Val- ue_Pressure	4 bytes
430	Air pressure threshold value 4: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
431	Air pressure threshold value 4: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
432	Air pressure threshold value 4: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
433	Air pressure threshold value 4: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
434	Air pressure threshold value 4: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
441	CO2 Sensor: Malfunction	Output	R-CT	[1.1] DPT_Switch	1 bit
442	CO2 Sensor: External measurement	Input	-WCT	[9,008] DPT_Value_AirQuality	2 bytes
443	CO2 Sensor: Measured value	Output	R-CT	[9,008] DPT_Value_AirQuality	2 bytes
444	CO2 Sensor: Total measurement	Output	R-CT	[9,008] DPT_Value_AirQuality	2 bytes
445	CO2 Sensor: Max. measurement query	Input	-WC-	[1.017] DPT_Trig- ger	1 bit
446	CO2 Sensor: Maximum measurement	Output	R-CT	[9,008] DPT_Value_AirQuality	2 bytes

No.	Text	Func- tion	Flags	DPT type	Size
447	CO2 Sensor: Max. reset measurement	Input	-WC-	[1.017] DPT_Trig- ger	1 bit
448	CO2 threshold value 1: Absolute value	Input/ Output	RWCT	[9,008] DPT_Value_AirQuality	2 bytes
449	CO2 threshold value 1: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
450	CO2 threshold value 1: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
451	CO2 threshold value 1: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
452	CO2 threshold value 1: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
453	CO2 threshold value 1: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
454	CO2 threshold value 2: Absolute value	Input/ Output	RWCT	[9,008] DPT_Value_AirQuality	2 bytes
455	CO2 threshold value 2: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
456	CO2 threshold value 2: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
457	CO2 threshold value 2: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
458	CO2 threshold value 2: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
459	CO2 threshold value 2: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
460	CO2 threshold value 3: Absolute value	Input/ Output	RWCT	[9,008] DPT_Value_AirQuality	2 bytes
461	CO2 threshold value 3: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
462	CO2 threshold value 3: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
463	CO2 threshold value 3: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
464	CO2 threshold value 3: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
465	CO2 threshold value 3: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
466	CO2 threshold value 4: Absolute value	Input/ Output	RWCT	[9,008] DPT_Value_AirQuality	2 bytes
467	CO2 threshold value 4: (1:+ 0:-)	Input	-WC-	[1.1] DPT_Switch	1 bit
468	CO2 threshold value 4: Delay from 0 to 1	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes
469	CO2 threshold value 4: Delay from 1 to 0	Input	-WC-	[7.5] DPT_Time- PeriodSec	2 bytes

No.	Text	Func- tion	Flags	DPT type	Size
470	CO2 threshold value 4: Switching output	Output	R-CT	[1.1] DPT_Switch	1 bit
471	CO2 threshold value 4: Switching output block	Input	-WC-	[1.1] DPT_Switch	1 bit
472	CO2 controller: Block (1: block)	Input	-WC-	[1.2] DPT_Bool	1 bit
473	CO2 controller: Setpoint value	Input/ Output	RWCT	[9,008] DPT_Value_AirQuality	2 bytes
474	CO2 controller: Setpoint value (1:+ 0:-)	Input	-WC-	[1.2] DPT_Bool	1 bit
475	CO2 controller: Control variable ventilation	Output	R-CT	[5.1] DPT_Scaling	1 byte
476	CO2 controller: Control variable ventilation level 2	Output	R-CT	[5.1] DPT_Scaling	1 byte
477	CO2 controller: Ventilation status (1:ON 0:OFF)	Output	R-CT	[1.1] DPT_Switch	1 bit
478	CO2 controller: Status ventilation level 2 (1:ON 0:OFF)	Output	R-CT	[1.1] DPT_Switch	1 bit
481	Temp. controller: HVAC mode (priority 1)	Input	-WC-	[20.102] DPT_H- VACMode	1 byte
482	Temp. controller: HVAC mode (priority 2)	Input	RWCT	[20.102] DPT_H- VACMode	1 byte
483	Temp. controller: Mode frost/heat protection activation	Input	RWCT	[1.1] DPT_Switch	1 bit
484	Temp. controller: Block (1 = Blocking)	Input	-WC-	[1.1] DPT_Switch	1 bit
485	Temp. controller: Current setpoint	Output	R-CT	[9.1] DPT_Val- ue_Temp	2 bytes
486	Temp. controller: Switching (0: Heating 1: Cooling)	Input	-WC-	[1.1] DPT_Switch	1 bit
487	Temp. controller: Setpoint comfort heating	Input/ Output	RWCT	[9.1] DPT_Val- ue_Temp	2 bytes
488	Temp. controller: Setpoint comfort heating (1:+ 0: -)	Input	-WC-	[1.1] DPT_Switch	1 bit
489	Temp. controller: Setpoint comfort cooling	Input/ Output	RWCT	[9.1] DPT_Val- ue_Temp	2 bytes
490	Temp. controller: Setpoint comfort cooling (1:+ 0: -)	Input	-WC-	[1.1] DPT_Switch	1 bit
491	Temp. controller: Basic 16-bit setpoint shift	Input/ Output	RWCT	[9.1] DPT_Val- ue_Temp	2 bytes
492	Temp. controller: Setpoint standby heating	Input/ Output	RWCT	[9.1] DPT_Val- ue_Temp	2 bytes
493	Temp. controller: Setpoint standby heating (1:+ 0: -)	Input	-WC-	[1.1] DPT_Switch	1 bit

No.	Text	Func- tion	Flags	DPT type	Size
494	Temp. controller: Setpoint standby cooling	Input/ Output	RWCT	[9.1] DPT_Val- ue_Temp	2 bytes
495	Temp. controller: Setpoint standby cooling (1:+ 0: -)	Input	-WC-	[1.1] DPT_Switch	1 bit
496	Temp. controller: Setpoint eco heating	Input/ Output	RWCT	[9.1] DPT_Val- ue_Temp	2 bytes
497	Temp. controller: Setpoint, eco heating (1:+ 0: -)	Input	-WC-	[1.1] DPT_Switch	1 bit
498	Temp. controller: Setpoint eco cooling	Input/ Output	RWCT	[9.1] DPT_Val- ue_Temp	2 bytes
499	Temp. controller: Setpoint, eco cooling (1:+ 0: -)	Input	-WC-	[1.1] DPT_Switch	1 bit
500	Temp. controller: Control variable, heating (level 1)	Output	R-CT	[5.1] DPT_Scaling	1 byte
501	Temp. controller: Control variable, heating (level 2)	Output	R-CT	[5.1] DPT_Scaling	1 byte
502	Temp. controller: Control variable, cooling (level 1)	Output	R-CT	[5.1] DPT_Scaling	1 byte
503	Temp. controller: Control variable, cooling (level 2)	Output	R-CT	[5.1] DPT_Scaling	1 byte
504	Temperature controller: Variable for 4/6-way valve	Output	R-CT	[5.1] DPT_Scaling	1 byte
505	Temp. controller: Status heating level 1 (1:ON 0:OFF)	Output	R-CT	[1.1] DPT_Switch	1 bit
506	Temp. controller: Status heating level 2 (1:ON 0:OFF)	Output	R-CT	[1.1] DPT_Switch	1 bit
507	Temp. controller: Status cooling level 1 (1:ON 0:OFF)	Output	R-CT	[1.1] DPT_Switch	1 bit
508	Temp. controller: Status cooling level 2 (1:ON 0:OFF)	Output	R-CT	[1.1] DPT_Switch	1 bit
509	Temp. controller: Comfort extension status	Input/ Output	RWCT	[1.1] DPT_Switch	1 bit
510	Temp. controller: Comfort extension time	Input	RWCT	[7.5] DPT_Time- PeriodSec	2 bytes
515	European Summer Time: Outside temperature	Input	-WCT	[9.1] DPT_Val- ue_Temp	2 bytes
516	European Summer Time: Setpoint value	Output	R-CT	[9.1] DPT_Val- ue_Temp	2 bytes
517	European Summer Time: Block (1 = Blocking)	Input	-WC-	[1.1] DPT_Switch	1 bit
521	Humidity controller: Block (1: block)	Input	-WC-	[1.2] DPT_Bool	1 bit
522	Humidity controller: Setpoint value	Input/ Output	RWCT	[9,007] DPT_Val- ue_Humidity	2 bytes

No.	Text	Func- tion	Flags	DPT type	Size
523	Humidity controller: Setpoint value (1:+ 0:-)	Input	-WC-	[1.2] DPT_Bool	1 bit
524	Humidity controller: Control variable dehumidification	Output	R-CT	[5.1] DPT_Scaling	1 byte
525	Humidity controller: Control variable dehumidification level 2	Output	R-CT	[5.1] DPT_Scaling	1 byte
526	Humidity controller: Control variable humidification	Output	R-CT	[5.1] DPT_Scaling	1 byte
527	Humidity controller: Dehumidification status (1:ON 0:OFF)	Output	R-CT	[1.1] DPT_Switch	1 bit
528	Humidity controller: Dehumidification 2 status (1:ON 0:OFF)	Output	R-CT	[1.1] DPT_Switch	1 bit
529	Humidity controller: Humidification status (1:ON 0:OFF)	Output	R-CT	[1.1] DPT_Switch	1 bit
1111	Control variable comparator 1: Input 1	Input	-WC-	[5.1] DPT_Scaling	1 byte
1112	Control variable comparator 1: Input 2	Input	-WC-	[5.1] DPT_Scaling	1 byte
1113	Control variable comparator 1: Input 3	Input	-WC-	[5.1] DPT_Scaling	1 byte
1114	Control variable comparator 1: Input 4	Input	-WC-	[5.1] DPT_Scaling	1 byte
1115	Control variable comparator 1: Input 5	Input	-WC-	[5.1] DPT_Scaling	1 byte
1116	Control variable comparator 1: Output	Output	R-CT	[5.1] DPT_Scaling	1 byte
1117	Control variable comparator 1: Block: block)	Output	-WC-	[1.2] DPT_Bool	1 bit
1118	Control variable comparator 2: Input 1	Input	-WC-	[5.1] DPT_Scaling	1 byte
1119	Control variable comparator 2: Input 2	Input	-WC-	[5.1] DPT_Scaling	1 byte
1120	Control variable comparator 2: Input 3	Input	-WC-	[5.1] DPT_Scaling	1 byte
1121	Control variable comparator 2: Input 4	Input	-WC-	[5.1] DPT_Scaling	1 byte
1122	Control variable comparator 2: Input 5	Input	-WC-	[5.1] DPT_Scaling	1 byte
1123	Control variable comparator 2: Output	Output	R-CT	[5.1] DPT_Scaling	1 byte
1124	Control variable comparator 2: Block (1: block)	Output	-WC-	[1.2] DPT_Bool	1 bit

No.	Text	Func- tion	Flags	DPT type	Size
1125	Control variable comparator 3: Input 1	Input	-WC-	[5.1] DPT_Scaling	1 byte
1126	Control variable comparator 3: Input 2	Input	-WC-	[5.1] DPT_Scaling	1 byte
1127	Control variable comparator 3: Input 3	Input	-WC-	[5.1] DPT_Scaling	1 byte
1128	Control variable comparator 3: Input 4	Input	-WC-	[5.1] DPT_Scaling	1 byte
1129	Control variable comparator 3: Input 5	Input	-WC-	[5.1] DPT_Scaling	1 byte
1130	Control variable comparator 3: Output	Output	R-CT	[5.1] DPT_Scaling	1 byte
1131	Control variable comparator 3: Block (1: block)	Output	-WC-	[1.2] DPT_Bool	1 bit
1132	Control variable comparator 4: Input 1	Input	-WC-	[5.1] DPT_Scaling	1 byte
1133	Control variable comparator 4: Input 2	Input	-WC-	[5.1] DPT_Scaling	1 byte
1134	Control variable comparator 4: Input 3	Input	-WC-	[5.1] DPT_Scaling	1 byte
1135	Control variable comparator 4: Input 4	Input	-WC-	[5.1] DPT_Scaling	1 byte
1136	Control variable comparator 4: Input 5	Input	-WC-	[5.1] DPT_Scaling	1 byte
1137	Control variable comparator 4: Output	Output	R-CT	[5.1] DPT_Scaling	1 byte
1138	Control variable comparator 4: Block (1: block)	Output	-WC-	[1.2] DPT_Bool	1 bit
1141	Computer 1: Input I1	Input	RWCT		4 bytes
1142	Computer 1: Input I2	Input	RWCT		4 bytes
1143	Computer 1: Input I3	Input	RWCT		4 bytes
1144	Computer 1: Output O1	Output	R-CT		4 bytes
1145	Computer 1: Output O2	Output	R-CT		4 bytes
1146	Computer 1: Condition text	Output	R-CT	[16.0] DPT_String_ASCII	14 bytes
1147	Computer 1: Monitoring status	Output	R-CT	[1.1] DPT_Switch	1 bit
1148	Computer 1: Block (1: block)	Input	-WC-	[1.1] DPT_Switch	1 bit
1149	Computer 2: Input I1	Input	RWCT		4 bytes
1150	Computer 2: Input I2	Input	RWCT		4 bytes
1151	Computer 2: Input I3	Input	RWCT		4 bytes
1152	Computer 2: Output O1	Output	R-CT		4 bytes
1153	Computer 2: Output O2	Output	R-CT		4 bytes

No.	Text	Func-	Flags	DPT type	Size
1154	Computer 2: Condition text	Output	R-CT	[16.0]	14
	John Pater Er Gerranien text	Carpar	•.	DPT_String_ASCII	
1155	Computer 2: Monitoring status	Output	R-CT	[1.1] DPT_Switch	1 bit
1156	Computer 2: Block (1: block)	Input	-WC-	[1.1] DPT_Switch	1 bit
1157	Computer 3: Input I1	Input	RWCT		4 bytes
1158	Computer 3: Input I2	Input	RWCT		4 bytes
1159	Computer 3: Input I3	Input	RWCT		4 bytes
1160	Computer 3: Output O1	Output	R-CT		4 bytes
1161	Computer 3: Output O2	Output	R-CT		4 bytes
1162	Computer 3: Condition text	Output	R-CT	[16.0]	14
				DPT_String_ASCII	bytes
1163	Computer 3: Monitoring status	Output	R-CT	[1.1] DPT_Switch	1 bit
1164	Computer 3: Block (1: block)	Input	-WC-	[1.1] DPT_Switch	1 bit
1165	Computer 4: Input I1	Input	RWCT		4 bytes
1166	Computer 4: Input I2	Input	RWCT		4 bytes
1167	Computer 4: Input I3	Input	RWCT		4 bytes
1168	Computer 4: Output O1	Output	R-CT		4 bytes
1169	Computer 4: Output O2	Output	R-CT		4 bytes
1170	Computer 4: Condition text	Output	R-CT	[16.0]	14
				DPT_String_ASCII	bytes
1171	Computer 4: Monitoring status	Output	R-CT	[1.1] DPT_Switch	1 bit
1172	Computer 4: Block (1: block)	Input	-WC-	[1.1] DPT_Switch	1 bit
1173	Computer 5: Input I1	Input	RWCT		4 bytes
1174	Computer 5: Input I2	Input	RWCT		4 bytes
1175	Computer 5: Input I3	Input	RWCT		4 bytes
1176	Computer 5: Output O1	Output	R-CT		4 bytes
1177	Computer 5: Output O2	Output	R-CT		4 bytes
1178	Computer 5: Condition text	Output	R-CT	[16.0] DPT_String_ASCII	14 bytes
1179	Computer 5: Monitoring status	Output	R-CT	[1.1] DPT_Switch	1 bit
1180	Computer 5: Block (1: block)	Input	-WC-	[1.1] DPT_Switch	1 bit
1181	Computer 6: Input I1	Input	RWCT		4 bytes
1182	Computer 6: Input I2	Input	RWCT		4 bytes
1183	Computer 6: Input I3	Input	RWCT		4 bytes
1184	Computer 6: Output O1	Output	R-CT		4 bytes
1185	Computer 6: Output O2	Output	R-CT		4 bytes
1186	Computer 6: Condition text	Output	R-CT	[16.0] DPT_String_ASCII	14 bytes
1187	Computer 6: Monitoring status	Output	R-CT	[1.1] DPT_Switch	1 bit
1188	Computer 6: Block (1: block)	Input	-WC-	[1.1] DPT_Switch	1 bit

No.	Text	Func- tion	Flags	DPT type	Size
1189	Computer 7: Input I1	Input	RWCT		4 bytes
1190	Computer 7: Input I2	Input	RWCT		4 bytes
1191	Computer 7: Input I3	Input	RWCT		4 bytes
1192	Computer 7: Output O1	Output	R-CT		4 bytes
1193	Computer 7: Output O2	Output	R-CT		4 bytes
1194	Computer 7: Condition text	Output	R-CT	[16.0] DPT_String_ASCII	14 bytes
1195	Computer 7: Monitoring status	Output	R-CT	[1.1] DPT_Switch	1 bit
1196	Computer 7: Block (1: block)	Input	-WC-	[1.1] DPT_Switch	1 bit
1197	Computer 8: Input I1	Input	RWCT		4 bytes
1198	Computer 8: Input I2	Input	RWCT		4 bytes
1199	Computer 8: Input I3	Input	RWCT		4 bytes
1200	Computer 8: Output O1	Output	R-CT		4 bytes
1201	Computer 8: Output O2	Output	R-CT		4 bytes
1202	Computer 8: Condition text	Output	R-CT	[16.0] DPT_String_ASCII	14 bytes
1203	Computer 8: Monitoring status	Output	R-CT	[1.1] DPT_Switch	1 bit
1204	Computer 8: Block (1: block)	Input	-WC-	[1.1] DPT_Switch	1 bit
1391	Logic input 1	Input	-WC-	[1.2] DPT_Bool	1 bit
1392	Logic input 2	Input	-WC-	[1.2] DPT_Bool	1 bit
1393	Logic input 3	Input	-WC-	[1.2] DPT_Bool	1 bit
1394	Logic input 4	Input	-WC-	[1.2] DPT_Bool	1 bit
1395	Logic input 5	Input	-WC-	[1.2] DPT_Bool	1 bit
1396	Logic input 6	Input	-WC-	[1.2] DPT_Bool	1 bit
1397	Logic input 7	Input	-WC-	[1.2] DPT_Bool	1 bit
1398	Logic input 8	Input	-WC-	[1.2] DPT_Bool	1 bit
1399	Logic input 9	Input	-WC-	[1.2] DPT_Bool	1 bit
1400	Logic input 10	Input	-WC-	[1.2] DPT_Bool	1 bit
1401	Logic input 11	Input	-WC-	[1.2] DPT_Bool	1 bit
1402	Logic input 12	Input	-WC-	[1.2] DPT_Bool	1 bit
1403	Logic input 13	Input	-WC-	[1.2] DPT_Bool	1 bit
1404	Logic input 14	Input	-WC-	[1.2] DPT_Bool	1 bit
1405	Logic input 15	Input	-WC-	[1.2] DPT_Bool	1 bit
1406	Logic input 16	Input	-WC-	[1.2] DPT_Bool	1 bit
1411	AND logic 1: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1412	AND logic 1: 8-bit output A	Output	R-CT		1 byte
1413	AND logic 1: 8-bit output B	Output	R-CT		1 byte
1414	AND logic 1: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1415	AND logic 2: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1416	AND logic 2: 8-bit output A	Output	R-CT		1 byte

No.	Text	Func-	Flags	DPT type	Size
1417	AND logic 2: 8-bit output B	Output	R-CT		1 byte
1418	AND logic 2: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1419	AND logic 3: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1420	AND logic 3: 8-bit output A	Output	R-CT		1 byte
1421	AND logic 3: 8-bit output B	Output	R-CT		1 byte
1422	AND logic 3: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1423	AND logic 4: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1424	AND logic 4: 8-bit output A	Output	R-CT		1 byte
1425	AND logic 4: 8-bit output B	Output	R-CT		1 byte
1426	AND logic 4: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1427	AND logic 5: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1428	AND logic 5: 8-bit output A	Output	R-CT		1 byte
1429	AND logic 5: 8-bit output B	Output	R-CT		1 byte
1430	AND logic 5: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1431	AND logic 6: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1432	AND logic 6: 8-bit output A	Output	R-CT		1 byte
1433	AND logic 6: 8-bit output B	Output	R-CT		1 byte
1434	AND logic 6: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1435	AND logic 7: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1436	AND logic 7: 8-bit output A	Output	R-CT		1 byte
1437	AND logic 7: 8-bit output B	Output	R-CT		1 byte
1438	AND logic 7: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1439	AND logic 8: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1440	AND logic 8: 8-bit output A	Output	R-CT		1 byte
1441	AND logic 8: 8-bit output B	Output	R-CT		1 byte
1442	AND logic 8: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1443	OR logic 1: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1444	OR logic 1: 8-bit output A	Output	R-CT		1 byte
1445	OR logic 1: 8-bit output B	Output	R-CT		1 byte
1446	OR logic 1: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1447	OR logic 2: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1448	OR logic 2: 8-bit output A	Output	R-CT		1 byte
1449	OR logic 2: 8-bit output B	Output	R-CT		1 byte
1450	OR logic 2: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1451	OR logic 3: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1452	OR logic 3: 8-bit output A	Output	R-CT		1 byte
1453	OR logic 3: 8-bit output B	Output	R-CT		1 byte
1454	OR logic 3: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1455	OR logic 4: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1456	OR logic 4: 8-bit output A	Output	R-CT		1 byte

No.	Text	Func- tion	Flags	DPT type	Size
1457	OR logic 4: 8-bit output B	Output	R-CT		1 byte
1458	OR logic 4: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1459	OR logic 5: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1460	OR logic 5: 8-bit output A	Output	R-CT		1 byte
1461	OR logic 5: 8-bit output B	Output	R-CT		1 byte
1462	OR logic 5: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1463	OR logic 6: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1464	OR logic 6: 8-bit output A	Output	R-CT		1 byte
1465	OR logic 6: 8-bit output B	Output	R-CT		1 byte
1466	OR logic 6: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1467	OR logic 7: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1468	OR logic 7: 8-bit output A	Output	R-CT		1 byte
1469	OR logic 7: 8-bit output B	Output	R-CT		1 byte
1470	OR logic 7: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1471	OR logic 8: 1-bit switching output	Output	R-CT	[1.2] DPT_Bool	1 bit
1472	OR logic 8: 8-bit output A	Output	R-CT		1 byte
1473	OR logic 8: 8-bit output B	Output	R-CT		1 byte
1474	OR logic 8: Block	Input	-WC-	[1.1] DPT_Switch	1 bit
1520	Motion detector: Test object	Output	R-CT		4 bytes
1521	Motion detector: Test object release (1 = release)	Input	-WC-	[1.1] DPT_Switch	1 bit
1522	Motion detector: Slave: Block (1 = Blocking)	Input	-WC-	[1.1] DPT_Switch	1 bit
1524	Motion detector: Slave: Message	Output	R-CT	[1.1] DPT_Switch	1 bit
1525	Motion detector: Slave: Cycle reset	Input	-WC-		1 byte
1531	Motion detector: Master 1: Brightness threshold value on	Input/ Output	RWCT	[9.4] DPT_Val- ue_Lux	2 bytes
1532	Motion detector: Master 1: Brightness threshold value off	Input/ Output	RWCT	[9.4] DPT_Val- ue_Lux	2 bytes
1533	Motion detector: Master 1: Brightness waiting period	Input	LSK-	[7.5] DPT_Time- PeriodSec	2 bytes
1534	Motion detector: Master 1: Output	Output	R-CT		4 bytes
1535	Motion detector: Master 1: Switch on delay	Input	LSK-	[7.5] DPT_Time- PeriodSec	2 bytes
1536	Motion detector: Master 1: Switch off delay	Input	LSK-	[7.5] DPT_Time- PeriodSec	2 bytes
1537	Motion detector: Master 1: Slave message	Input	-WC-	[1.1] DPT_Switch	1 bit
1538	Motion detector: Master 1: Slave cycle reset	Output	CT		1 byte

No.	Text	Func- tion	Flags	DPT type	Size
1539	Motion detector: Master 1: Block (1 = Blocking)	Input	-WC-	[1.1] DPT_Switch	1 bit
1540	Motion detector: Master 1: Central off	Input	-WC-	[1.1] DPT_Switch	1 bit
1541	Motion detector: Master 2: Brightness threshold value on	Input/ Output	RWCT	[9.4] DPT_Val- ue_Lux	2 bytes
1542	Motion detector: Master 2: Brightness threshold value off	Input/ Output	RWCT	[9.4] DPT_Val- ue_Lux	2 bytes
1543	Motion detector: Master 2: Brightness waiting period	Input	LSK-	[7.5] DPT_Time- PeriodSec	2 bytes
1544	Motion detector: Master 2: Output	Output	R-CT		4 bytes
1545	Motion detector: Master 2: Switch on delay	Input	LSK-	[7.5] DPT_Time- PeriodSec	2 bytes
1546	Motion detector: Master 2: Switch off delay	Input	LSK-	[7.5] DPT_Time- PeriodSec	2 bytes
1547	Motion detector: Master 2: Slave message	Input	-WC-	[1.1] DPT_Switch	1 bit
1548	Motion detector: Master 2: Slave cycle reset	Output	CT		1 byte
1549	Motion detector: Master 2: Block (1 = Blocking)	Input	-WC-	[1.1] DPT_Switch	1 bit
1550	Motion detector: Master 2: Central off	Input	-WC-	[1.1] DPT_Switch	1 bit
1551	Motion detector: Master 3: Brightness threshold value on	Input/ Output	RWCT	[9.4] DPT_Val- ue_Lux	2 bytes
1552	Motion detector: Master 3: Brightness threshold value off	Input/ Output	RWCT	[9.4] DPT_Val- ue_Lux	2 bytes
1553	Motion detector: Master 3: Brightness waiting period	Input	LSK-	[7.5] DPT_Time- PeriodSec	2 bytes
1554	Motion detector: Master 3: Output	Output	R-CT		4 bytes
1555	Motion detector: Master 3: Switch on delay	Input	LSK-	[7.5] DPT_Time- PeriodSec	2 bytes
1556	Motion detector: Master 3: Switch off delay	Input	LSK-	[7.5] DPT_Time- PeriodSec	2 bytes
1557	Motion detector: Master 3: Slave message	Input	-WC-	[1.1] DPT_Switch	1 bit
1558	Motion detector: Master 3: Slave cycle reset	Output	CT		1 byte
1559	Motion detector: Master 3: Block (1 = Blocking)	Input	-WC-	[1.1] DPT_Switch	1 bit
1560	Motion detector: Master 3: Central off	Input	-WC-	[1.1] DPT_Switch	1 bit
1561	Motion detector: Master 4: Brightness threshold value on	Input/ Output	RWCT	[9.4] DPT_Val- ue_Lux	2 bytes
1562	Motion detector: Master 4: Brightness threshold value off	Input/ Output	RWCT	[9.4] DPT_Val- ue_Lux	2 bytes

No.	Text	Func- tion	Flags	DPT type	Size
1563	Motion detector: Master 4: Brightness waiting period	Input	LSK-	[7.5] DPT_Time- PeriodSec	2 bytes
1564	Motion detector: Master 4: Output	Output	R-CT		4 bytes
1565	Motion detector: Master 4: Switch on delay	Input	LSK-	[7.5] DPT_Time- PeriodSec	2 bytes
1566	Motion detector: Master 4: Switch off delay	Input	LSK-	[7.5] DPT_Time- PeriodSec	2 bytes
1567	Motion detector: Master 4: Slave message	Input	-WC-	[1.1] DPT_Switch	1 bit
1568	Motion detector: Master 4: Slave cycle reset	Output	CT		1 byte
1569	Motion detector: Master 4: Block (1 = Blocking)	Input	-WC-	[1.1] DPT_Switch	1 bit
1570	Motion detector: Master 4: Central off	Input	-WC-	[1.1] DPT_Switch	1 bit
1581	Light controller: Brightness setpoint value	Input/ Output	RWCT	[9.4] DPT_Val- ue_Lux	2 bytes
1582	Light controller: Stop delay	Input/ Output	RWCT	[7.5] DPT_Time- PeriodSec	2 bytes
1583	Light controller: Start / Stop (1 = Start 0 = Stop)	Input	-WC-	[1.1] DPT_Switch	1 bit
1584	Light controller: Dimmer increments	Input	RWCT	[5.1] DPT_Scaling	1 byte
1586	Light controller: Target-actual- difference	Input/ Output	RWCT	[9.4] DPT_Val- ue_Lux	2 bytes
1587	Light controller: Reset time	Input/ Output	RWCT	[7.5] DPT_Time- PeriodSec	2 bytes
1588	Light controller: Actuating variable	Input/ Output	R-CT	[5.1] DPT_Scaling	1 byte
1589	Light controller: Switching	Output	R-CT	[1.1] DPT_Switch	1 bit
1590	Light controller: Dimming	Output	R-CT	[3.7] DPT_Con- trol_Dimming	4 bit
1591	Light controller: Brightness in %	Output	R-CT	[5.1] DPT_Scaling	1 byte
1592	Light controller: Switching feedback	Input	-WC-	[1.1] DPT_Switch	1 bit
1593	Light controller: Dim response	Input	-WC-	[3.7] DPT_Con- trol_Dimming	4 bit
1594	Light controller: Brightness in % response	Input	-WCT	[5.1] DPT_Scaling	1 byte
1595	Light controller: Interruption waiting period	Input/ Output	RWCT	[7.5] DPT_Time- PeriodSec	2 bytes
1596	Light controller: Continued	Input	-WC-	[1.1] DPT_Switch	1 bit
1597	Light controller: Block (1 = Blocking)	Input	-WC-	[1.1] DPT_Switch	1 bit

6. Parameter setting

6.1. Behaviour on power failure/ restoration of power

Behaviour following a failure of the bus power supply:

The device sends nothing.

Behaviour on bus restoration of power and following programming or reset:

The device sends all outputs according to their send behaviour set in the parameters with the delays established in the "General settings" parameter block.

6.2. General settings

Set basic characteristics for the data transfer.

Send delay after power-up and programming for:			
Measured values	<u>5 s</u> • • 2 h		
Threshold values and switching outputs	<u>5 s</u> • • 2 h		
Controller objects	<u>5 s</u> • • 2 h		
Comparator and computer objects	<u>5 s</u> • • 2 h		
Logic objects	<u>5 s</u> • • 2 h		
Maximum telegram rate	• 1 message per second		
	•		
	• <u>5 messages per second</u>		
	•		
	• 20 messages per second		

6.3. Motion detector

The motion detector detects movement by means of temperature differences. Please note that the "no movement" message is only sent to the bus after a 5 second delay. After connecting the operating voltage and after a reset, it takes 15 seconds until the sensor is ready for operation.

Activate the **test object** if you would like to test the motion detection while commissioning.

With an active test object, you can enter the settings for analysis of the release object, the value prior to the first communication, and the type and value of the test object.

Use test object	<u>No</u> • Yes
If test object is used:	
Release object analysis	at value 1: release at value 0: block at value 0: release at value 1: block

Value prior to first communication	0 • <u>1</u>
Type of test object	1 bit 1 byte (0255) 1 byte (0%100%) 1 byte (0°360°) 1 byte 063) scenario call-up 2 byte counter without math. symbol 2 byte counter with math. symbol 2 byte floating point 4 byte counter without math. symbol 4 byte counter with math. symbol 4 byte floating point
Test object value for movement	e.g. 0 • 1 [depending on the type of test object]
Test object value without movement	e.g. <u>0</u> • 1 [depending on the type of test object]

Select whether the motion detector is operated as master or slave.

For a master device, the reactions to motion detection are filed in the master settings 1 to 4. The master can thus control up to four different lamps, scenarios etc. and, as an option, also observe incoming motion messages from slave devices.

A slave device sends a motion message to the master via the bus.

Mode	Slave • Master

Motion detector as slave:

Activate the slave in order to use it.

Use slave	<u>No</u> • Yes
-----------	-----------------

When a motion is detected, the device periodically sends a 1 to the master via the bus.

Information on setting the slave sending cycle and the cycle reset can be found in chapter *Align communication between master and slave*, Seite 38.

Set the **sending cycle** shorter than the master's switch-off delay.

Sending cycle in the event of movement	1240; <u>2</u>
(in seconds)	

Set the **object type and value** for the cycle reset input for the slave in the same way as for the cycle reset output for the master.

Cycle reset object type	• 1 bit • 1 byte (0%100%)
Cycle reset at value	0 • <u>1</u> and/or 0100; <u>1</u>

The slave can be blocked via the bus.

Use block	<u>No</u> • Yes
Analysis of the blocking object	at value 1: block at value 0: release at value 0: block at value 1: release
Value prior to first communication	<u>0</u> • 1

6.3.1. Master 1/2/3/4

If the device is set as a master, the additional master settings 1 to 4 will appear. This enables the **Indoor Sensor Sewi KNX AQS/TH-D L-Pr** to perform four different control functions for motion detection. Activate the master in order to use it.

1	Use master 1/2/3/4	No • Yes	

Set, in which cases **threshold values and delay times** received via object are to be retained. The parameter is only taken into consideration if the setting via object is activated below. Please note that the setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the 1st communication (setting via objects is ignored).

Maintain the	
threshold values and delays received via communication objects	never after power supply restoration after power supply restoration and programming

Select, whether motion is to be detected constantly or brightness dependent.

Motion detection	constantly • brightness dependent
------------------	-----------------------------------

Settings for brightness dependent motion detection:

The **brightness dependent motion detection** can be used via separate threshold values for switch-on and switch-off or dependent on daylight. The separate threshold values are ideal for controlling the light in rooms which are only illuminated by artificial light. The daylight dependent control is ideal for rooms with daylight and artificial light.

Motion detection	brightness dependent
Type of brightness dependency	• separate switch-on and switch-off values
	daylight dependent

For daylight dependent motion detection with separate switch-on and switch-off threshold values activate, as required, the objects for setting the threshold values. Then specify the switch-on and switch-off values (brightness range). The switch-on value is the value, below which the room should be lit in the event of

movement. The switch-off value should be higher than the brightness value of the artificially lit room.

Type of brightness dependency	• separate switch-on and switch-off values
Threshold values can be set via objects	<u>No</u> • Yes
Switch on sensor below Lux	15000; <u>200</u>
Switch off sensor below Lux	15000; <u>500</u>

For the **daylight dependent motion detection** activate, as required, the objects for setting the threshold values/hysteresis and waiting period. Then specify the switch-on value. This is the value, below which the room should be lit in the event of movement.

The switch-off value is derived from the brightness measurement that is performed by the sensor at the end of the waiting period. Set the waiting period such that after it all lamps are set to the final brightness. The hysteresis is added to the measured brightness value. If the room brightness later exceeds this total value because the room is illuminated by daylight, the motion control is switched off.

Type of brightness dependency	Daylight dependent
Threshold values and hysteresis can be set via objects	<u>No</u> • Yes
Waiting period can be set via objects	<u>No</u> • Yes
Switch on sensor below Lux	15000; <u>200</u>
Switch off sensor, at the earliest after a waiting period of seconds	0600; <u>5</u>
after motion detection and above measured brightness plus hysteresis	4 5000 000
in Lux	15000; <u>200</u>

Settings for all types of motion detection:

The following settings can be made, independent of the motion detection type, i.e. for "constant" and "brightness dependent" motion recognition.

Define the **output type and value**. As a result of the different types, switchable lights (1 bit), dimmer (1 Byte 0-100%), scenarios (1 Byte 0...63 scenario call-up) and other functions can be controlled.

Output type	1 bit 1 byte (0255) 1 byte (0%100%) 1 byte (0°360°) 1 byte (063) scenario call-up 2 byte counter without math. symbol 2 byte counter with math. symbol byte floating point 4 byte counter without math. symbol byte counter without math. symbol byte floating point byte counter with math. symbol byte floating point
Output value in the event of motion	e.g. 0 • 1 [depending on the output type]
Output value without motion	e.g. <u>0</u> • 1 [depending on the output type]
Output value when blocked	e.g. <u>0</u> • 1 [depending on the output type]

Select whether delays can be set via objects and specify the **switching delays**. By setting a **blocking time** after switch-off, you prevent sensors from recognising a switched-off lamp in their detection zone as a temperature change, and sending a motion message.

Delays can be set via objects (in seconds)	<u>No</u> • Yes
Switch on delay (for setting via objects: valid until 1st communication)	0 s • 5 s • 10 s • 2 h (for daylight dependent motion detection: fixed value 0s)
Switch off delay (for setting via objects: valid until 1st communication)	0 s • 5 s • <u>10 s</u> • 2 h
Blocking time for motion detection after switch off delay in seconds	0600 ; <u>2</u>

Set the master's output sending pattern.

Sending pattern	on change on change to movement on change to no movement on change and periodically on change to movement and periodically on change to no movement periodically
Cycle (if sent periodically)	1s • <u>5 s</u> • 2 h

In addition, you can refer to a **slave signal**, i.e. a signal from an additional motion detector, for controlling purposes.

1	Use slave signal	No • Yes	
	Ose slave signal	<u>100</u> • 165	

The slave device periodically sends a 1 to the bus, as long as a motion is detected. The master receives this at the input object "master: slave message" and evaluates the slave message as an own sensor message.

Furthermore, the master has the possibility of triggering a reset of the slave sending cycle.

Information on setting the slave sending cycle and the cycle reset can be found in chapter *Align communication between master and slave*, Seite 38.

Set the **object type and value** for the master's slave cycle reset output in the same way, as the cycle reset input for the slave.

Slave cycle reset object type	• 1 bit • 1 byte (0%100%)
Cycle reset at value	0 • <u>1</u> and/or 0100; <u>1</u>

The master can be blocked via the bus.

Use block	No • Yes
Analysis of the blocking object	at value 1: block at value 0: release at value 0: block at value 1: release
Value prior to first communication	<u>0</u> • 1
Output pattern	
On block	do not send anything Send value
For release	as for transmission pattern send current value immediately

6.3.2. Align communication between master and slave

Sending cycle slave - switch-off delay master

Set the slave's **sending cycle** shorter than the master's switch-off delay. Thereby it is ensured that the master does not perform a switch-off action, while the slave is still detecting a motion.

Slave cycle reset

The cycle reset for the slave is required, if a master switch action by the "master: central off" object was triggered.

When the master performs a switch-off action, it simultaneously sends a message to the bus via the "master: slave cycle reset". This message can be received by the slave via the "slave: cycle reset" in order to *immediately* send a message to the bus in the event of a motion detection. The master receives the motion message without having to wait for the next slave transmission cycle.

Please note that object type and value for the slave's cycle reset input and the master's cycle reset output must be set the same.

Application Example:

A person steps into a corridor, the master recognises this movement and switches on the corridor lighting. When leaving the corridor, the person wants to switch off the light using a switch.

However, in the meantime a second person has entered the corridor who is detected by a slave. This person would be in darkness and would have to wait for the slave's next transmission cycle before the light would be switched on again.

To prevent this, the switch command is connected to the "master: central off" object. As a result, the master sends a cycle reset command to the slave if the light is switched off manually. In the present example, the master would immediately switch the light back on.

6.4. Light control

For light control, the **Indoor Sensor Sewi KNX AQS/TH-D L-Pr** detects the brightness in the room. Activate the light control.

Use control	No • Yes	

Set, in which cases the **data** received via object for setpoint value, setpoint value-actual difference, dimming increment and times are to be retained. Please note that the setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first communication.

Maintain the	
data received via object for setpoint, set- point-actual difference, dimming increment and times	never after power supply restoration after power supply restoration and programming

Set the **setpoint value for the brightness in the room** and specify whether, besides the dimming information defined below, a switching object should also be sent.

Setpoint value in Lux	060000; <u>500</u>
Send switching object	<u>No</u> • Yes

Specify, whether the light control is activated by movement and/or by a start/ stop object. For a regulation by movement, the device's internal motion detector is analysed.

Set the object evaluation and the object value prior to the first communication. Define, for how many seconds the regulation is to continue to run after the end of the movement.

At the end of the regulation, either "nothing" (status remains unchanged), an on or off command (via the activated switching object) or a dim value can be sent.

Regulation starts on	movement reception of a start/stop-object reception of a start/stop-object or movement
Regulation stops on	movement reception of a start/stop-object reception of a start/stop-object or movement
Object evaluation	• 1 = start 0 = stop • 0 = start 1 = stop
Object value prior to initial communication	0 • <u>1</u>
Stop delay in seconds after the movement has ended	01800; <u>120</u>
Reaction to stop	send nothingsend off commandsend on commandsend value
Value in %	<u>0</u> 100

Set, at which deviation from the setpoint value a **dim command is to be sent**. Specify the **dimming increment** and the **repetition cycle** for the dim command. Define, up to which **response value** the dim actuator sends a brighter or darker command. On the one hand, this defines the range of use for the lamp, on the other hand, once the minimum or maximum value has been reached, no unnecessary messages are sent to the bus.

Send the dim command, if	the actual value deviates from the set- point value by more than X%
	•the actual value deviates from the setpoint value by more than X Lux
Target / actual difference in % (for a deviation in %)	1100; <u>20</u>
Target / actual difference in Lux (for a deviation in Lux)	12500; <u>100</u>
Dimmer increments	100.00% • 50.00% • 25.00% • <u>12.5%</u> • 6.25% • 3.13% • 1.56%
Repetition of the dim command in seconds	1600; <u>6</u>
Dim brighter with response value in %	1 <u>100</u>
Dim darker with response value in %	<u>0</u> 99

The light regulation can be **interrupted during switching or dimming** by response objects, i.e. nothing else is transmitted via the dim-output. This results in the manual light operation having priority.

Set, which objects will trigger interruption and when the regulation is to be continued.

Use interruptions	<u>No</u> • Yes
Interrupt regulation when	
Reception from response switching object	<u>No</u> • Yes
Reception from response dimming object	<u>No</u> • Yes
Continue regulation	 after a waiting period at movement after waiting period at object reception after waiting period at object reception or after waiting period at movement after object reception at object reception or movement after waiting period
Waiting period in seconds	572000 (Standard value depending on the setting of "continue regulation")
Object value	0 • <u>1</u> • 0 or 1

Note: If the criteria for the continuation of the regulation are fulfilled, the regulation, however, has just been stopped by an object or is blocked, then the end of the interruption has no effect on the behaviour of the light.

The light regulation can be **blocked** via the bus. In contrast to the interruption, when blocking, a switching command or brightness value can be sent. Upon release, the output behaviour follows the rule.

Use block	<u>No</u> • Yes
Analysis of the blocking object	• at value 1: block at value 0: release • at value 0: block at value 1: release
Value prior to initial communication	<u>0</u> • 1
Output pattern	
On block	send nothing send off command send on command send value

6.5. Temperature Measurement

Select, whether a **malfunction object** is to be sent if the sensor is faulty.

Use malfunction object	<u>No</u> • Yes
------------------------	-----------------

Use **Offsets** to adjust the readings to be sent.

Offset in 0.1°C	-5050; 0	
Onest in on o	0000, <u>0</u>	

The unit can calculate a **mixed value** from its own reading and an external value. Set the mixed value calculation if desired. If an external portion is used, all of the following settings (threshold values, etc.) are related to the overall reading.

Use external measured value	<u>No</u> • Yes
Ext. Reading proportion of the total reading	5% • 10% • • <u>50%</u> • • 100%
Sending pattern for internal and total measured value	 never periodically on change on change and periodically
At and above change of (if sent on change)	0.1°C • 0.2°C • <u>0.5°C</u> • • 5.0°C
Send cycle (if sent periodically)	5 s • <u>10 s</u> • • 2 h

The **minimum and maximum readings** can be saved and sent to the bus. Use the "Reset temperature min/max, value" objects to reset the values to the current readings. The values are not retained after a reset.

Use minimum and maximum value	<u>No</u> • Yes	
-------------------------------	-----------------	--

6.6. Temperature threshold values

Activate the required temperature threshold values. The menus for setting the threshold values are displayed.

Use threshold value 1/2/3/4	Yes • No
-----------------------------	----------

6.6.1. Threshold value 1, 2, 3, 4

Threshold value

Set, in which cases **threshold values and delay times** received via object are to be retained. The parameter is only taken into consideration if the setting via object is activated below. Please note that the setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first communication (setting via objects is ignored).

Maintain the	
threshold values and delays received via communication objects	never after power supply restoration after power supply restoration and programming

Set the threshold value directly in the application program using parameters, or define them via the bus using a communication object.

Threshold value setting via parameter:

Set the threshold values and hysteresis directly.

Threshold value setting via	Parameter • Communication objects
Threshold value in 0.1°C	-300 800; <u>200</u>

Threshold value setting via a communication object:

Define, how the threshold value is to be received from the bus. Basically, a new value can be received, or simply a command to increase or decrease.

During initial commissioning, a threshold value must be defined, which will be valid until the first communication with a new threshold value. For units which have already been taken into service, the last communicated threshold value can be used. Basically, a temperature range is given, in which the threshold value can be changed (object value limit).

A set threshold value will be retained until a new value or a change is transferred. The current value is saved, so that it is retained in the event of a power supply failure and will be available once the power supply is restored.

Threshold value setting via	Parameter • Communication objects
Start threshold value in 0.1°C valid until first communication	-300 800; <u>200</u>
Object value limit (min) in 0.1°C	<u>-300</u> 800
Object value limit (max) in 0.1°C	-300 <u>800</u>
Type of threshold value change	Absolute value • Increase/decrease
Increment (upon increase/decrease change)	<u>0.1°C</u> • • 5°C

Set the **hysteresis** independent of the type of threshold value specification.

Hysteresis setting	in % • absolute
Hysteresis in 0.1°	01100; <u>50</u>
Hysteresis in % of the threshold value	0 50; 20

Switching output

Set the behaviour of the switching output when a threshold value is exceeded/undercut. The output switching delay can be set using objects or directly as a parameter.

When the following conditions apply, the output is (TV = Threshold value)	 TV above = 1 TV - hyst. below = 0 TV above = 0 TV - hyst. below = 1 TV below = 1 TV + hyst. above = 0 TV below = 0 TV + hyst. above = 1
Delays can be set via objects (in seconds)	<u>No</u> • Yes
Switching delay from 0 to 1 (If delay can be set via objects: valid until 1st communication)	<u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h

Switching delay from 1 to 0 (If delay can be set via objects: valid until 1st communication)	<u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Switching output sends	on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Cycle (only if sending periodically is selected)	<u>5 s</u> • 10 s • 30 s • 2 h

Block

The switching output can be blocked using an object.

Use switching output block No • Yes	Use switching output block	No • Yes
-------------------------------------	----------------------------	----------

If the block is activated, define specifications here for the behaviour of the output when blocked.

Analysis of the blocking object	At value 1: block At value 0: release At value 0: block At value 1: release
Blocking object value before 1st communication	<u>0</u> • 1
Behaviour of the switching output	
On block	Do not send message send 0 send 1
On release (with 2 seconds release delay)	[Dependent on the "Switching output sends" setting]

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output sends" (see "Switching output")

Switching output sends on change	Do not send messageSend switching output status
Switching output sends on change to 1	 Do not send message if switching output = 1 → send 1
Switching output sends on change to 0	 Do not send message if switching output = 0 → send 0
Switching output sends on change and periodically	Send switching output status
Switching output sends on change to 1 and periodically	if switching output = 1 → send 1
Switching output sends on change to 0 and periodically	if switching output = 0 → send 0

6.7. Temperature PI control

Activate the control if you want to use it.

Use control	<u>No</u> • Yes
-------------	-----------------

General control

Set, in which cases **setpoint values and extension time** received via object are to be retained. The parameter is only taken into consideration if the setting via object is activated below. Please note that the setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the 1st communication (setting via objects is ignored).

Maintain the	
Target values and extension time received via communication objects	never after power supply restoration after power supply restoration and programming

For an adequate regulation of the ambient temperature, comfort, standby, eco and building protection modes may be used.

Comfort when present,

Standby during short absences,

Eco as a night-time mode and

Frost/heat protection (building protection) e. g. with the window open.

The settings for the temperature control include the setpoint temperatures for the individual modes. Objects are used to determine which mode is to be selected. A change of mode may be triggered manually or automatically (e.g. by a timer, window contact).

The mode may be switched with two 8 bit objects of different priority. Objects

- "... HVAC mode (Prio 2)" for switching in everyday operation and
- "... HVAC mode (Prio 1)" for central switching with higher priority.

The objects are coded as follows:

- 0 = Auto
- 1 = Comfort
- 2 = Standby
- 3 = Eco
- 4 = Building Protection

Alternatively, you can use three objects, with one object switching between eco and standby mode and the two others activating comfort mode and frost/heat protection mode respectively. The comfort object blocks the eco/standby object, and the frost/heat protection object has the highest priority. Objects

- "... Mode (1: Eco, 0: Standby)",
- "... comfort activation mode" and
- "... frost/heat protection activation mode"

Switch mode via	• two 8 Bit objects (HVAC Modes)
	• three 1 bit objects

Select the **mode to be activated after reset** (e.g. power failure, reset of the line via the bus) (Default).

Then configure a temperature control block via the blocking object.

Mode after reset	Comfort
	• Standby
	• Eco
	Building protection
Behaviour of the blocking object with value	• <u>1</u> = Block 0 = release
	• 0 = block 1 = release
Value of the blocking object after reset	<u>0</u> • 1

Specify when the current **control variables** of the controller are to be **sent** to the bus. Periodic sending is safer, in case a message does not reach a recipient. You may also set up periodical monitoring by the actuator with this setting.

Send control variable	• on change • on change and periodically
from change (in % absolute)	110; <u>2</u>
Cycle (if sent periodically)	5 s • • <u>5 min</u> • • 2 h

The **status object** reports the current status of the control variables (0% = OFF, >0% = ON) and may for example be used for visualisation, or to switch off the heating pump as soon as the heating is switched off.

Send status objects	on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Cycle (if sent periodically)	5 s • • <u>5 min</u> • • 2 h

Then define the **type of control**. Heating and/or cooling may be controlled in two levels.

Type of control	 Single level heating Dual-level heating Single-level cooling Dual-level cooling Single-level heating + single-level cooling Dual-level heating + single-level cooling
	Dual-level heating + dual-level cooling

General setpoint values

You may enter separate setpoint values for each mode or use the comfort setpoint as a basic value.

If you are using the control for both heating *and* cooling, you may also select the setting "separately with switching object". Systems used for cooling in summer and for heating in winter can thus be switched from one to the other.

If you are using the basic value, only the deviation from the comfort setpoint value is listed for the other modes (e.g. 2°C less for standby mode).

Setting the setpoint values	with separate setpoint values with Switching object with separate setpoint values without Switching object with comfort setpoint as a basis with Switching object with comfort setpoint as a basis without Switching object
Behaviour of the switching object at value (with switching object)	• 0 = Heating 1 = Cooling • 1 = Heating 0 = Cooling
Value of the switching object after reset (with switching object)	<u>0</u> • 1

The **increment** for the setpoint changes is predefined. Whether the change only remains temporarily active (not saved) or is also retained after power supply restoration (and programming), is specified in the first section of "General control". This also applies to a comfort extension.

Increment for setpoint changes	1 50; <u>10</u>
(in 0.1 °C)	

The control may be reset to comfort mode from eco mode, which is used as night mode, via the comfort extension. This allows the user to maintain the comfort setpoint value for a longer time, e.g. when having guests. The duration of this comfort extension period is set. After the comfort extension period expires, the system returns to eco mode.

Comfort extension time in seconds	136000; <u>3600</u>
(can only be activated from eco mode)	

Comfort Setpoint

Comfort mode is usually used for daytime mode when people are present. A starting value is defined for the comfort setpoint as well as a temperature range in which the setpoint value may be modified.

Starting heating/cooling setpoint (in 0.1 °C)	-300800; 210
valid until 1st communication	
(not upon saving the setpoint value after	
programming)	

If setpoint values are entered separately:

Min. object value heating/cooling (in 0.1 °C)	-300800; <u>160</u>
Max. object value heating/cooling (in 0.1 °C)	-300800; <u>280</u>

If the comfort setpoint value is used as a basis:

If the comfort setpoint value is used as a basis, the reduction/increment of the value is set.

Minimum base setpoint (in 0.1°C)	-300800; <u>160</u>
Maximum base setpoint (in 0.1°C)	-300800; <u>280</u>
Reduction by up to (in 0.1°C)	0200; <u>50</u>
Increase by up to (in 0.1°C)	0200; <u>50</u>

If the comfort setpoint is used as the basis without a switching object, a dead zone is specified for the control mode "heating and cooling" to avoid direct switching from heating to cooling.

Dead zone between heating and cooling	1100; <u>50</u>
(only if both heating AND cooling are used)	

Standby setpoint

Standby mode is usually used for daytime mode when people are absent.

If setpoint values are entered separately:

A starting setpoint value is defined as well as a temperature range in which the setpoint value may be changed.

Starting heating/cooling setpoint (in 0.1 °C) valid until 1st communication	-300800; <u>210</u>
Min. object value heating/cooling (in 0.1 °C)	-300800; <u>160</u>
Max. object value heating/cooling (in 0.1 °C)	-300800; <u>280</u>

If the comfort setpoint value is used as a basis:

If the comfort setpoint value is used as a basis, the reduction/increment of the value is set.

Reduce heating setpoint (in 0.1°C) (for heating)	0200; <u>30</u>
Increase cooling setpoint (in 0.1°C) (for cooling)	0200; <u>30</u>

Eco setpoint

Eco mode is usually used for night mode.

If setpoint values are entered separately:

A starting setpoint value is defined as well as a temperature range in which the setpoint value may be changed.

Starting heating/cooling setpoint (in 0.1 °C) valid until 1st communication	-300800; <u>210</u>
Min. object value heating/cooling (in 0.1 °C)	-300800; <u>160</u>
Max. object value heating/cooling (in 0.1 °C)	-300800; <u>280</u>

If the comfort setpoint value is used as a basis:

If the comfort setpoint value is used as a basis, the reduction/increment of the value is set.

Reduce heating setpoint (in 0.1°C) (for heating)	0200; <u>50</u>
Increase cooling setpoint (in 0.1°C) (for cooling)	0200; <u>60</u>

Setpoint values for frost/heat protection (building protection)

The building protection mode is for example used as long as windows are opened for ventilation. Setpoints for frost protection (heating) and heat protection (cooling) are determined which may not be modified from outside (no access via operating devices etc.). The building protection mode may be activated with delay, which allows you to leave the building before the controls switch to frost/heat protection mode.

Setpoint frost protection (in 0.1°C)	-300800; <u>70</u>
Activation delay	less than • 5 s • • <u>5 min</u> • • 2 h
Setpoint heat protection (in 0.1°C)	-300800; <u>350</u>
Activation delay	less than • 5 s • • 5 min • • 2 h

General control variables

This setting appears for the control types "Heating and Cooling" only. Here, you can decide whether to use a common control variable for heating and cooling. If the 2nd level has a common control variable, you also determine the control mode of the 2nd level here.

For heating and cooling	separate control variables are used common control variables are used for Level 1 common control variables are used for Level 2 common control variable are used for Level 1+2
Use control variable for 4/6-way valve (only for common control variables in level 1)	<u>No</u> • Yes

Control type (for level 2 only)	• 2-point-control • PI control
Control variable of the 2nd Level is on (only for level 2 with 2 point controlling)	• 1 bit object • 8 bit object

When using the control variable for a 4/6 way valve, the following applies:

0%...100% heating = 66%...100% control variable

OFF = 50% control variable

0%...100% cooling = 33%...0% control variable

6.7.1. Heating control level 1/2

If a heating control mode is configured, one or two setting sections for the heating levels are displayed.

In the 1st level, heating is controlled by a PI control, which allows to either enter control parameters or select predetermined applications.

In the 2nd level (therefore only in case of 2-level heating), heating is controlled via a PI or a 2-point-control.

In level 2, the setpoint difference between the two levels must also be specified, i.e. below which setpoint deviation the second level is added.

Setpoint difference between 1st and 2nd level (in 0.1°C) (for level 2)	0100; <u>40</u>
Control type (for level 2, no common control variables)	• 2-point-control • PI control
Control variable is a (for level 2 with 2-point controlling, no common control variables)	• 1 bit object • 8 bit object

PI control with control parameters:

This setting allows individual input of the parameters for PI control.

Control type	• PI control
Setting of the controller by	Controller parameter
	 specified applications

Specify the deviation from the setpoint value at which the maximum control variable value is reached, i.e. the point at which maximum heating power is activated.

The reset time shows how quickly the controller responds to deviations from the setpoint value. In case of a short reset time, the control responds with a fast increase of the control variable. In case of a long reset time, the control responds somewhat less urgently and needs longer until the necessary control variable for the setpoint value deviation is reached.

You should set the time appropriate to the heating system at this point (observe manufacturer's instructions).

Maximum control variable is reached at setpoint/actual difference of (in °C)	0 <u>5</u>
Reset time (in min.)	1255; <u>30</u>

Now specify what should be sent when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating level, e.g. for floor heating.

On release, the control variable follows the rule again.

When blocked, the control variable shall	• not be sent • send a specific value
Value (in %) (if a value is sent)	<u>0</u> 100

In case of a common control variable for heating and cooling, 0 is always transmitted as a fixed value.

PI control with predetermined application:

This setting provides fixed parameters for frequent applications.

Control type	• PI control
Setting of the controller by	• Controller parameter • specified applications
Application	Warm water heatingFloor heatingConvection unitElectric heating
Maximum control variable is reached at setpoint/actual difference of (in °C)	Warm water heating: 5 Floor heating: 5 Convection unit: 4 Electric heating: 4
Reset time (in min.)	Warm water heating: 150 Floor heating: 240 Convection unit: 90 Electric heating: 100

Now specify what should be sent when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating level, e.g. for floor heating.

On release, the control variable follows the rule again.

When blocked, the control variable shall	not be sent send a specific value
Value (in %) (if a value is sent)	<u>0</u> 100

In case of a common control variable for heating and cooling, 0 is always transmitted as a fixed value.

2-point-control (only level 2):

2-point-control is used for systems which are only set to ON or OFF.

Control type	• 2-point-control
(is determined at a higher level for com-	
mon control variables)	

Enter the hysteresis that prevents frequent on/off switching of temperatures in the threshold range.

Hysteresis (in 0.1°C)	0100; <u>20</u>

If separate control variables are used, select whether the control variable of the 2nd level is a 1 bit object (on/off) or an 8 bit object (on with percentage/off).

Control variable is a	• 1 bit object • 8 bit object
Value (in %) (for 8 bit object)	0 <u>100</u>

Now specify what should be sent when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating level, e.g. for floor heating. On release, the control variable follows the rule again.

When blocked, the control variable shall	not be sent send a specific value
Value (in %) only if a value is sent	<u>0</u> 100

6.7.2. Cooling control level 1/2

If a cooling control mode is configured, one or two setting sections for the cooling levels are displayed.

In the 1st level, cooling is controlled by a PI control in which either control parameters can be entered or predetermined applications can be selected.

In the 2nd level (therefore only for 2-level cooling), cooling is controlled via a PI or a 2-point-control.

In level 2, the setpoint deviation between the two levels must also be specified, i.e. above which setpoint value deviation the second level is added.

Setpoint difference between 1st and 2nd level (in 0.1°C) (for level 2)	0100; <u>40</u>
Control type (for level 2, no common control variables)	• 2-point-control • PI control
Control variable is a (for level 2 with 2-point controlling, no common control variables)	• 1 bit object • 8 bit object

PI control with control parameters:

This setting allows individual input of the parameters for PI control.

Control type	• PI control
Setting of the controller by	Controller parameter
	specified applications

Specify the deviation from the setpoint value which reaches maximum variable value, i.e. the point at which maximum cooling power is activated.

The reset time shows how quickly the controller responds to deviations from the setpoint value. In case of a short reset time, the control responds with a fast increase of the control variable. In case of a long reset time, the control responds somewhat less urgently and needs longer until the necessary control variable for the setpoint value deviation is reached. You should set the time appropriate to the cooling system at this point (observe manufacturer's instructions).

Maximum control variable is reached at setpoint/actual difference of (in °C)	0 <u>5</u>
Reset time (in min.)	1255; <u>30</u>

Now specify what should be sent when the control is blocked.

On release, the control variable follows the rule again.

When blocked, the control variable shall	• not be sent • send a specific value
Value (in %) (if a value is sent)	<u>0</u> 100

In case of a common control variable for heating and cooling, 0 is always transmitted as a fixed value.

PI control with predetermined application:

This setting provides fixed parameters for a cooling ceiling

Control type	• PI control
Setting of the controller by	Controller parameter specified applications
Application	Cooling ceiling
Maximum control variable is reached at setpoint/actual difference of (in °C)	Cooling ceiling: 5
Reset time (in min.)	Cooling ceiling: 30

Now specify what should be sent when the control is blocked. On release, the control variable follows the rule again.

When blocked, the control variable shall	not be sent send a specific value
Value (in %) (if a value is sent)	<u>0</u> 100

2-point-control (only level 2):

2-point-control is used for systems which are only set to ON or OFF.

Control type	• 2-point-control
is determined at a higher level for common	
variables	

Enter the hysteresis that prevents frequent on/off switching of temperatures in the threshold range.

Hysteresis (in 0.1°C)	0100; <u>20</u>

If separate control variables are used, select whether the control variable of the 2nd level is a 1 bit object (on/off) or an 8 bit object (on with percentage/off).

Control variable is a	• 1 bit object • 8 bit object
Value (in %) (for 8 bit object)	0 <u>100</u>

Now specify what should be sent when the control is blocked.

On release, the control variable follows the rule again.

When blocked, the control variable shall	• not be sent • send a specific value
Value (in %) (if a value is sent)	<u>0</u> 100

In case of a common control variable for heating and cooling, 0 is always transmitted as a fixed value.

6.8. Summer Compensation

With the summer compensation the target value for the room temperature can automatically be adapted by cooling at higher outdoor temperatures. The objective is to prevent a too great a difference between indoor and outdoor temperature in order to keep the energy consumption low.

Activate the summer compensation.

Use summer compensation	No • Yes
Ose summer compensation	100 - 162

Using the points 1 and 2, define the outdoor temperature range in which the target value for the indoor temperature is to be adapted linearly. Then, specify which indoor temperature target values are to be valid below point 1 and above point 2.

Standard values according to DIN EN 60529

Point 1: External temperature = 20°, Target value = 20°C.

Point 2: External temperature = 32°, Target value = 26°C.

Characteristic curve description:	
External temperature point 1 (in 0.1°C increments)	0 500 ; <u>200</u>
Outdoor temperature point 2 (in 0.1°C increments)	0 500 ; <u>320</u>
below point 1 the target value is (in 0.1°C)	0 500 ; <u>200</u>
above point 2 the target value is (in 0.1°C)	0 500 ; <u>260</u>

Set the send pattern for the summer compensation.

Send pattern	periodically on change on change and periodically
on change of (if sent on change)	0.1°C • <u>0.2°C</u> • 0.5°C • 1°C • 2°C • 5°C
Send cycle (if sent periodically)	5 s 2 h; <u>1 min</u>

If necessary, activate the block for the summer compensation and set what a 1 or 0 at the block input means and what happens in the event of a block.

Use block	<u>No</u> • Yes
Analysis of the blocking object	At value 1: block At value 0: release At value 0: block At value 1: release
Blocking object value before first call	<u>0</u> • 1
Action when locking	• do not send • Send value
Value (in increments of 0.1°C) (if a value is sent during blocking)	0 500; <u>200</u>

6.9. Brightness Measurement

The **Indoor Sensor Sewi KNX AQS/TH-D L-Pr** detects the brightness in rooms, for example for controlling lights.

Set the sending pattern for the measured brightness.

Sending pattern	never periodically on change on change and periodically
at and above change in % (if sent on change)	1 100; <u>20</u>
Send cycle (if sent periodically)	<u>5 s</u> 2 h

The brightness reading can be **corrected** in order to compensate for a dull or bright point of installation for the sensor.

Use reading correction	<u>No</u> • Yes
------------------------	-----------------

Set, in which cases the correction factor received via object is to be retained. Please note that the setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first communication (setting via objects is ignored).

Specify the starting correction factor.

Maintain the	
correction factor received via communication object	never after power supply restoration after power supply restoration and programming
Start correction factor in 0.001 valid till first communication	1 10000; <u>1000</u>

Examples:

For a factor of 1.234 the parameter value is 1234.

For a factor of 0.789 the parameter value is 789.

For a factor of 1.2 and a reading of 1000 Lux the transmitted value is 1200 Lux.

6.10. Brightness threshold values

Activate the required brightness threshold value. The menus for setting the threshold values are displayed.

Threshold value 1/2/3/4	<u>No</u> • Yes	

6.10.1. Threshold value 1/2/3/4

Threshold value

Set, in which cases threshold values and delay times received are to be kept per object. The parameter is only taken into consideration if the specification/ setting by object is activated further down. Please note that the setting "After power restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first call (setting via objects is ignored).

Maintain the	
threshold values and delays received via communication objects	never_ after power supply restoration after power supply restoration and programming

Select whether the threshold value is to be specified per parameter or via a communication object.

Threshold value setpoint using	Parameter • Communications object
--------------------------------	-----------------------------------

When the threshold value per parameter is specified, then the value is set.

Threshold value in kLux	1000 150000; <u>60000</u>

When the **threshold value per communication object** is specified, the starting value, object value limit and type of change to the threshold value are then set.

Start threshold value in Lux valid until first call	1000 150000; <u>60000</u>
Object value limit (min.) in Lux	<u>1000</u> 150000
Object value limit (max.) in Lux	1000 <u>150000</u>
Type of threshold change	Absolute value • Increase/decrease
Increment in Lux (upon increase/decrease change)	1000 • <u>2000</u> • 5000 • 10000 • 20000

With both of the methods for specifying the threshold values the hysteresis is set.

Hysteresis setting	in % • absolute
Hysteresis in % of the threshold value (for setting in %)	0 100; <u>50</u>
Hysteresis in Lux (for absolute setting)	0 150000; <u>30000</u>

Switching output

Define which value the output transmits if the threshold value is exceeded or undercut. Set the delay for the switching and in which cases the switch output transmits.

When the following conditions apply, the output is (LV = Threshold value)	• <u>GW above = 1 GW - Hyst. below = 0</u> • <u>GW above = 0 GW - Hyst. below = 1</u> • <u>GW below = 1 GW + Hyst. above = 0</u> • <u>GW below = 0 GW + Hyst. above = 1</u>
Delays can be set via objects (in seconds)	<u>No</u> • Yes
Delay from 0 to 1	<u>none</u> • 1 s 2 h
Delay from 1 to 0	<u>none</u> • 1 s 2 h
Switching output sends	on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Cycle (if sent periodically)	<u>5 s</u> 2 h

Block

If necessary, activate the switching output block and set what a 1 or 0 at the block entry means and what happens in the event of a block.

Use switching output block	No • Yes
Analysis of the blocking object	At value 1: block At value 0: release At value 0: block At value 1: release
Blocking object value before first call	<u>0</u> • 1
Action when locking	• <u>Do not send message</u> • send 0 • send 1
Action upon release (with 2 seconds release delay)	[Dependent on the "Switching output sends" setting]

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output sends" (see "Switching output")

Switching output sends on change	do not send message • Status object/s send/s
Switching output sends on change to 1	do not send message • If switching output = 1 → send 1
Switching output sends on change to 0	do not send message •
	If switching output = 0 → send 0
Switching output sends on change and periodically	Send switching output status
Switching output sends on change to 1 and periodically	If switching output = 1 → send 1
Switching output sends on change to 0 and periodically	If switching output = 0 → send 0

6.11. Night

If necessary, activate the night recognition.

Set, in which cases delay times received are to be kept per object. The parameter is only taken into consideration if the setting by object is activated further down. Please note that the setting "After power restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first call (setting via objects is ignored).

Maintain the	
delays received via communication objects	 never after power supply restoration after power supply restoration and programming

Specify below which brightness the device should recognise "night" and with which hysteresis this is to be outputted.

Night is recognised below Lux	1 1000; <u>10</u>
Hysteresis in Lux	0 500; <u>5</u>

Set the delay for the switching and in which cases the switch output sends and which value is output at night.

Delays can be set via objects (in seconds)	<u>No</u> • Yes
Switching delay on night	<u>none</u> • 1 s 2 h
Switching delay on day	<u>none</u> • 1 s 2 h
Switching output sends	on change on change to night on change to day on change and periodically on change to night and periodically on change to day and periodically
Send cycle (if sent periodically)	<u>5 s</u> 2 h
Object value at night	0 • <u>1</u>

6.12. Humidity Measurement

Select, whether a malfunction object is to be sent if the sensor is faulty.

Use malfunction object	No • Yes
	l <u></u>

Use Offsets to adjust the readings to be sent.

Offset in 0.1°C	-5050; 0

The unit can calculate a **mixed value** from its own reading and an external value. Set the mixed value calculation if desired. If an external portion is used, all of the following settings (threshold values, etc.) are related to the overall reading.

Use external measured value	No • Yes
Ext. Reading proportion of the total reading	5% • 10% • • <u>50%</u> • • 100%
Sending pattern for internal and total measured value	never periodically on change on change and periodically
At and above change of (if sent on change)	0.1% RH • 0.2% RH • 0.5% RH • <u>1.0% RH</u> • • 20.0% RH
Send cycle (if sent periodically)	5 s • <u>10 s</u> • • 2 h

The **minimum and maximum readings** can be saved and sent to the bus. Use the "Reset humidity min/max. value" objects to reset the values to the current readings. The values are not retained after a reset.

	1	Use minimum and maximum value	No • Yes	
--	---	-------------------------------	----------	--

6.13. Humidity threshold values

Activate the required air humidity threshold values. The menus for setting the threshold values are displayed.

Use threshold value 1/2/3/4	Yes • <u>No</u>	
-----------------------------	-----------------	--

6.13.1. Threshold value 1, 2, 3, 4

Threshold value

Set, in which cases **threshold values and delay times** received via objects are to be retained. The parameter is only taken into consideration if the setting via object is activated below. Please note that the setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first communication (setting via objects is ignored).

Maintain the	
threshold values and delays received via communication objects	never after power supply restoration after power supply restoration and programming

Set the threshold value directly in the application program using parameters, or define them via the bus using a communication object.

Threshold value setting using parameter:

Set the threshold values and hysteresis directly.

Threshold value setting using	Parameter • Communication objects
Threshold value in 0.1% RH	1 1000; <u>650</u>

Threshold value setting using a communication object:

Define, how the threshold value is to be received from the bus. Basically, a new value can be received, or simply a command to increase or decrease.

During initial commissioning, a threshold value must be defined, which will be valid until the first communication with a new threshold value. For units which have already been taken into service, the last communicated threshold value can be used. Basically, a humidity range is specified in which the threshold value can be changed (object value limit).

A set threshold value will be retained until a new value or a change is transferred. The current value is saved, so that it is retained in the event of a power supply failure and will be available once the power supply is restored.

Threshold value setting using	Parameter • Communication objects
Starting threshold value in 0.1% RH valid until first communication	1 1000; <u>650</u>
Object value limit (min.) in 0.1%RH	<u>1</u> 1000
Object value limit (max.) in 0.1%RH	1 <u>1000</u>
Type of threshold value change	Absolute value • Increase/decrease
Increment (upon increase/decrease change)	0.1% RH • • <u>2.0% RH</u> • • 20.0% RH

Set the **hysteresis** independent of the type of threshold value specification.

Hysteresis setting	in % • absolute
Hysteresis in 0.1% RH	01000; <u>100</u>
Hysteresis in % (relative to the threshold value)	0 50; <u>20</u>

Switching output

Set the behaviour of the switching output when a threshold value is exceeded/undercut. The output switching delay can be set using objects or directly as a parameter.

When the following conditions apply, the output is (TV = Threshold value)	 TV above = 1 TV - hyst. below = 0 TV above = 0 TV - hyst. below = 1 TV below = 1 TV + hyst. above = 0 TV below = 0 TV + hyst. above = 1
Delays can be set via objects (in seconds)	<u>No</u> • Yes
Switching delay from 0 to 1 (If delay can be set via objects: valid until 1st communication)	<u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Switching delay from 1 to 0 (If delay can be set via objects: valid until 1st communication)	None • 1 s • 2 s • 5 s • 10 s • • 2 h
Switching output sends	on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Cycle (is only sent if periodically is selected)	<u>5 s</u> • 10 s • 30 s • 2 h

Block

The switching output can be blocked using an object.

se switching output block	No • Yes
---------------------------	----------

If the block is activated, define specifications here for the behaviour of the output when blocked.

Analysis of the blocking object	• At value 1: block At value 0: release • At value 0: block At value 1: release
Blocking object value before first communication	<u>0</u> • 1
Behaviour of the switching output	
On block	Do not send message send 0 send 1
On release (with 2 seconds release delay)	[Dependent on the "Switching output sends" setting]

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output sends" (see "Switching output")

Switching output sends on change	Do not send message Send switching output status
Switching output sends on change to 1	 Do not send message if switching output = 1 → send 1
Switching output sends on change to 0	 Do not send message if switching output = 0 → send 0
Switching output sends on change and periodically	Send switching output status
Switching output sends on change to 1 and periodically	if switching output = 1 → send 1
Switching output sends on change to 0 and periodically	if switching output = 0 → send 0

6.14. Humidity PI control

If you activate humidity control, you can use the following settings to define control type, setpoint values, and humidification and dehumidification.

1	Use humidity control	No • Yes	
	·		

General control

Indoor Sensor Sewi KNX AQS/TH-D L-Pr can be used to control one- or two-level dehumidification or combined humidification/dehumidification.

Type of control	One-level dehumidification
	Two-level dehumidification
	Humidification and dehumidification

Configure a block for the humidity control using the blocking object.

Behaviour of the blocking object with value	• 1 = Block 0 = release • 0 = block 1 = release
Blocking object value before first communication	0 • <u>1</u>

Specify when the current control variables are to be sent to the bus. Periodic sending is safer, in case a message does not reach a recipient. You may also set up periodic monitoring using an actuator with this setting.

Send control variable	on change on change and periodically
Send cycle (is only sent if "periodically" is selected)	5 s • • <u>5 min</u> • • 2 h

The status object shows the current status of the output variable (0 = OFF, >0 = ON) and can for example be used for visualisation.

Send status object(s)	on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Send cycle (is only sent if "periodically" is selected)	5 s • • <u>5 min</u> • • 2 h

Controller setpoint

Set, in which cases **setpoint values** received via object are to be retained. Please note that the setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first communication (setting via objects is ignored).

Maintain the	
setpoint value received via communication object	never after power supply restoration after power supply restoration and programming

During initial commissioning, a **setpoint value** must be defined which is valid until the first communication of a new setpoint value. For units which have already been taken into service, the last communicated setpoint value can be used. Basically, an air humidity range is specified in which the setpoint value can be changed (**object value limit**).

Enter, how the setpoint value will be received from the bus. Basically, a new value can be received, or simply a command to increase or decrease.

A set setpoint value will be retained until a new value or a change is transferred. The current value is saved, so that it is retained in the event of a power supply failure and will be available once the power supply is restored.

Start setpoint in % valid until first communication (not upon saving the setpoint value after programming)	0 100; <u>50</u>
Object value limit (min.) in %	0100; <u>30</u>
Object value limit (max.) in %	0100; <u>70</u>
Type of setpoint value change	Absolute value • Increase/decrease
Increment (upon increase/decrease change)	1% • <u>2%</u> • 3% • 5% • 10%

In "Humidification and dehumidification" control mode, a dead zone is specified so that a direct changeover switching between humidification and dehumidification can be avoided.

Dead zone between humidification and	050; 10
dehumidification in %	_
(only if both humidification and dehumidifi-	
cation are used)	

Humidification starts, when the relative air humidity is lower or equal to the setpoint value - dead zone value.

Dehumidification and/or humidification

Depending on the control mode, settings sections for humidification and dehumidification appear (level 1/2).

For dual-level dehumidification, the setpoint value difference between the two levels must be defined, i.e. the setpoint value which, when exceeded, triggers the switch to the 2nd level.

Target value difference between level 1	050; <u>10</u>
and 2 in %	_
(for level 2 only)	

Determine the deviation from the setpoint value at which the maximum variable value is reached, i.e. the point at which maximum output is used.

The reset time shows how quickly the controller responds to deviations from the setpoint value. In case of a short reset time, the control responds with a fast increase of the control variable. In case of a long reset time, the control responds somewhat less urgently and needs longer until the necessary control variable for the setpoint value deviation is reached.

You should set the time appropriate for the humidification/dehumidification system at this point (note manufacturer instructions).

Maximum control variable is reached at target/actual difference of %	150; <u>5</u>
Reset time in minutes	1255; <u>3</u>

Now specify, what should be sent when the control is blocked.

On release, the control variable follows the rule again.

When blocked, the control variable shall	• not be sent • send a specific value
Value in % (if a value is sent)	<u>0</u> 100

6.15. Dewpoint measurement

The **Indoor Sensor Sewi KNX AQS/TH-D L-Pr** calculates the dewpoint temperature and can output the value to the bus.

Sending pattern	never periodically on change on change and periodically
At and above change of (if sent on change)	0.1°C • 0.2°C • <u>0.5°C</u> • 1.0°C • 2.0°C • 5.0°C
Send cycle (if sent periodically)	5 s • <u>10 s</u> • 30 s • 1 min • • 2 h

Activate the monitoring of the coolant temperature if required. The menus for setting the monitoring are displayed.

Use monitoring of the coolant temperature	<u>No</u> • Yes
---	-----------------

6.15.1. Cooling medium temp. monitoring

A threshold value can be set for the temperature of the coolant, which is based on the current dewpoint temperature (offset/deviation). The switching output of the coolant temperature monitoring system can provide a warning prior to any build-up of condensation in the system, and/or activate appropriate countermeasures.

Threshold value

Threshold value = dewpoint temperature + offset

Set, in which cases **offset** received via object is to be retained. Please note that the setting "After power supply restoration and programming" should not be used for the in-

itial start-up, as the factory settings are always used until the first communication (setting via objects is ignored).

Maintain the	
offset received via communication object	never after power supply restoration after power supply restoration and programming

During initial commissioning, an **offset** must be defined which is valid until the first communication of a new offset. For units which have already been taken into service, the last communicated offset can be used.

A set offset will be retained until a new value or a change is transferred. The current value is saved, so that it is retained in the event of a power supply failure and will be available once the power supply is restored.

Start offset in °C valid until first communication	0200; <u>30</u>
Increment for offset change	0.1°C • 0.2°C • 0.3°C • 0.4°C • 0.5°C • 1°C • 2°C • 3°C • 4°C • 5°C
Hysteresis setting	in % • absolute
Hysteresis of the threshold value in % (for setting in %)	0 50; <u>20</u>
Threshold value hysteresis in 0.1°C increments (at absolute setting)	0 1000; <u>50</u>
Threshold value sends	never periodically on change on change and periodically
At and above change of (if sent on change)	<u>0.1°C</u> • 0.2°C • 0.5°C • 1.0°C • 2.0°C • 5.0°C
Send cycle (if sent periodically)	5 s • <u>10 s</u> • 30 s • 1 min • • 2 h

Switching output

The output switching delay can be set using objects or directly as a parameter.

When the following conditions apply,	• TV above = 1 TV - hyst. below = 0
the output is	• TV above = 0 TV - hyst. below = 1
(TV = Threshold value)	• TV below = 1 TV + hyst. above = 0
	• TV below = 0 TV + hyst. above = 1
Delays can be set via objects (in seconds)	<u>No</u> • Yes
Switching delay from 0 to 1 for setting via objects: valid until 1st communication	<u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h

Switching delay from 1 to 0 for setting via objects: valid until 1st communication	<u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Switching output sends	 on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Send cycle (is only sent if periodically is selected)	<u>5 s</u> • 10 s • 30 s • 2 h

Blocking

The switching output can be blocked using an object. Define specifications here for the behaviour of the output when blocked.

Use switching output block	<u>No</u> • Yes	
Analysis of the blocking object	At value 1: block At value 0: release	
	At value 0: block At value 1: release	
Blocking object value before first communication	<u>0</u> • 1	
Behaviour of the switching output		
On block	• Do not send message	
	• send 0	
	• send 1	
On release	[Dependent on the "Switching output	
(with 2 seconds release delay)	sends" setting]	

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output sends" (see "Switching output")

Switching output sends on change	Do not send message Send switching output status
Switching output sends on change to 1	 Do not send message if switching output = 1 → send 1
Switching output sends on change to 0	 Do not send message if switching output = 0 → send 0
Switching output sends on change and periodically	Send switching output status
Switching output sends on change to 1 and periodically	if switching output = 1 → send 1
Switching output sends on change to 0 and periodically	if switching output = 0 → send 0

6.16. Absolute humidity

The absolute air humidity value is detected by the **Sewi KNX AQS/TH-D L-Pr** and can be output to the bus.

Use absolute humidity	No • Yes
Sending pattern	 never periodically on change on change and periodically
At and above change of (if sent on change)	0.1 g • 0.2 g • <u>0.5 g</u> • 1.0 g • 2.0 g • 5.0 g
Send cycle (if sent periodically)	5 s • <u>10 s</u> • 30 s • 2 h

6.17. Comfort field

The **Indoor Sensor Sewi KNX AQS/TH-D L-Pr** can send a message to the bus if the limits of the comfort field are exceeded. In this way, it is for example possible to monitor compliance with DIN 1946 (standard values) or even to define your own comfort field.

Use comfort field No • Yes	

Specify the **sending pattern**, a **Text** for comfortable and uncomfortable and the **Object value**.

Sending pattern	neverperiodicallyon changeon change and periodically
Text for comfortable	[Free text max. 14 chars.]
Text for uncomfortable	[Free text max. 14 chars.]
Object value is at	• comfortable = 1 uncomfortable = 0 • comfortable = 0 uncomfortable = 1
Send cycle (if sent periodically)	<u>5 s</u> • <u>10 s</u> • 30 s • 2 h

Define the comfort field by specifying the minimum and maximum values for temperature and humidity. The specified standard values comply with DIN 1946

Maximum temperature in °C (Standard 26°C)	25 40; <u>26</u>
Minimum temperature in °C (Standard 20°C)	10 21; <u>20</u>
Maximum relative humidity in % (Standard 65%)	52 90; <u>65</u>
Minimum relative humidity in % (Standard 30%)	10 43; <u>30</u>
Maximum absolute humidity in 0.1 g/kg (Standard 115 g/kg)	50 200; <u>115</u>

Temperature hysteresis: 1°C

Relative humidity hysteresis: 2% RH Absolute humidity hysteresis: 2 g/kg

6.18. Air Pressure Measurement

If necessary, activate the air pressure malfunction object. Specify at which **height** above sea level the device is installed and whether the reading is to be additionally output as **barometric pressure** (see below *information on air pressure*).

Use malfunction object	<u>No</u> • Yes
Height above sea level	-100010000; <u>200</u>
Additionally output measured value as barometric pressure	<u>No</u> • Yes

Define the **transmission pattern** and, if necessary, activate the **minimum and ma- ximum value** (these values are not retained after a reset).

Sending pattern for measured value	never periodically on change on change and periodically
at and above change of (if sent on change)	10 Pa • 20 Pa • 50 Pa • 100 Pa • 200 Pa • 500 Pa
Send cycle (if sent periodically)	5 s 2 h; <u>1 min</u>
Use minimum and maximum value	<u>No</u> • Yes

Dependent on the air pressure measured, a **Text object** can be sent. Specify the sending pattern and enter the text.

Sending pattern for text object	neverperiodicallyon changeon change and periodically
Text for normal pressure range	
< 98,000 Pa (e.g. weather is stormy)	stormy
98,000100,000 Pa (e.g. weather is rainy)	rainy
100,000102,000 Pa (e.g. weather is changeable)	changeable
102,000104,000 Pa (e.g. weather is sunny)	sunny
< 104,000 Pa (e.g. weather is very dry)	very dry
Send cycle (if sent periodically)	5 s 2 h; <u>1 min</u>

Information on air pressure

The unit for air pressure is Pascal (Pa).

1 Pa = 0.01 hPa = 0.01 mbar

The air pressure is specified as "normal air pressure" or as "barometric pressure". The normal air pressure is the pressure compensated for height and temperature. The barometric air pressure is the pressure measured directly by the sensor (without compensation).

Air pressure (in Pa)	Meaning	Weather tendency
up to 98,000 Pa	very low	stormy
98,000 100,000 Pa	low	rainy
100,000 102,000 Pa	normal	changeable
102,000 104,000 Pa	high	sunny
104,000 Pa:	very high	very dry

6.19. Air pressure threshold values

Activate the required air pressure threshold value. The menus for setting the threshold values are displayed.

Threshold value 1/2/3/4	<u>No</u> • Yes
-------------------------	-----------------

6.19.1. Air pressure threshold value 1-4

Threshold value

Set, in which cases threshold values and delay times received are to be kept per object. The parameter is only taken into consideration if the specification/ setting by object is activated further down. Please note that the setting "After power restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first call (setting via objects is ignored).

Select the type of measured value for the calculation of the threshold value (siehe *Informationen zum Luftdruck*, Seite 73)

Maintain the	
threshold values and delays received via communication object	never after power supply restoration after power supply restoration and programming
Type of measurement for threshold value calculation	Normal air pressure Barometric pressure

Select whether the threshold value is to be specified per parameter or via a communication object.

Threshold value setpoint using	Parameter • Communications object
--------------------------------	-----------------------------------

When the threshold value per parameter is specified, then the value is set.

Threshold value in 10 Pa	3000 11000; <u>10200</u>

When the **threshold value per communication object** is specified, the starting value, object value limit and type of change to the threshold value are then set.

Start threshold value in 10 Pa valid until first call	3000 11000; <u>10200</u>
Object value limit (min.) in 10 Pa	<u>3000</u> 11000
Object value limit (max.) in 10 Pa	3000 <u>11000</u>
Type of threshold change	Absolute value • Increase/decrease
Step size (upon increase/decrease change)	10 Pa • 20 Pa • <u>50 Pa</u> • 100 Pa • 200 Pa • 500 Pa

With both of the methods for specifying the threshold values the hysteresis is set.

Hysteresis setting	in % • absolute
Hysteresis in % (relative to threshold value) (for setting in %)	0 50; <u>20</u>
Hysteresis in 10 Pa (for absolute setting)	0 11000; <u>100</u>

Switching output

Define which value the output transmits if the threshold value is exceeded or undercut. Set the delay for the switching and in which cases the switch output transmits.

When the following conditions apply, the output is (LV = Threshold value)	• GW above = 1 GW - Hyst. below = 0 • GW above = 0 GW - Hyst. below = 1 • GW below = 1 GW + Hyst. above = 0 • GW below = 0 GW + Hyst. above = 1
Delays can be set via objects (in seconds)	<u>No</u> • Yes
Delay from 0 to 1	<u>none</u> • 1 s 2 h
Delay from 1 to 0	<u>none</u> • 1 s 2 h
Switching output sends	 on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Cycle (if sent periodically)	<u>5 s</u> 2 h

Block

If necessary, activate the switching output block and set what a 1 or 0 at the block entry means and what happens in the event of a block.

Use switching output block	<u>No</u> • Yes
Analysis of the blocking object	At value 1: block At value 0: release At value 0: block At value 1: release
Blocking object value before first call	<u>0</u> • 1
Action when locking	• Do not send message • send 0 • send 1
Action upon release (with 2 seconds release delay)	[Dependent on the "Switching output sends" setting]

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output sends" (see "Switching output")

Switching output sends on change	do not send message • Status object/s send/s
Switching output sends on change to 1	do not send message • If switching output = 1 → send 1
Switching output sends on change to 0	do not send message •
	If switching output = 0 → send 0
Switching output sends on change and periodically	Send switching output status
Switching output sends on change to 1 and periodically	If switching output = 1 → send 1
Switching output sends on change to 0 and periodically	If switching output = 0 → send 0

6.20. CO2 Measurement

Select, whether a malfunction object is to be sent if the sensor is faulty.

Use malfunction object	No • Yes
	I

Use Offsets to adjust the readings to be sent.

Offset in ppm	-100100; 0

The unit can calculate a **mixed value** from its own reading and an external value. Set the mixed value calculation if desired. If an external portion is used, all of the following settings (threshold values, etc.) are related to the overall reading.

Use external measured value	<u>No</u> • Yes
Ext. Reading proportion of the total reading	5% • 10% • • <u>50%</u> • • 100%

Sending pattern for internal and total measured value	never periodically on change on change and periodically
At and above change of (relative to the last measured value) (if sent on change)	2% • <u>5%</u> • • 50%
Send cycle (if sent periodically)	5 s • <u>10 s</u> • • 2 h

The **maximum reading** can be saved and sent to the bus. Using the "Reset CO2 maximum value" objects, the value can be reset to the current reading. The value is not retained after a reset.

Use maximum value	<u>No</u> • Yes
-------------------	-----------------

6.21. CO2 threshold values

Activate the required CO2 threshold value. The menus for setting the threshold values are displayed.

Use threshold value 1/2/3/4	Yes • <u>No</u>	
300 ppm 1000 ppm: fresh air 1000 ppm 2000 ppm: used air		
1000 ppm = 0.1 %		

6.21.1. Threshold value 1, 2, 3, 4

Threshold value

Set, in which cases **threshold values and delay times** received via object are to be retained. The parameter is only taken into consideration if the setting via object is activated below. Please note that the setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first communication (setting via objects is ignored).

Maintain the	
threshold values and delays received via communication objects	never after power supply restoration after power supply restoration and programming

Set the threshold value directly in the application program using parameters, or define them via the bus using a communication object.

Threshold value setting using parameters:

Set the threshold values and hysteresis directly.

Threshold value setting using	Parameter • Communication objects
Threshold value in ppm	0 2000; <u>1200</u>

Threshold value setting using a communication object:

Define, how the threshold value will be received from the bus. Basically, a new value can be received, or simply a command to increase or decrease.

During initial commissioning, a threshold value must be defined, which will be valid until the first communication of a new threshold value. For units which have already been taken into service, the last communicated threshold value can be used. Basically, a range is specified in which the threshold value can be changed (object value limit).

A set threshold value will be retained until a new value or a change is transferred. The current value is saved, so that it is retained in the event of a power supply failure and will be available once the power supply is restored.

Threshold value setting using	Parameter • Communication objects
Start threshold value in 0.1°C valid until first communication	-300 800; <u>200</u>
Limitation of object value (min) in ppm	<u>10</u> 2000
Limitation of object value (max) in ppm	12000; <u>1000</u>
Type of threshold value change	Absolute value • Increase/decrease
Increment in ppm (upon increase/decrease change)	1 • 2 • 5 • 10 • <u>20</u> • • 200

Set the **hysteresis** independent of the type of threshold value specification.

Hysteresis setting	in % • absolute
Hysteresis in ppm	02000; <u>500</u>
Hysteresis in % of the threshold value	0 50; <u>20</u>

Switching output

Set the behaviour of the switching output when a threshold value is exceeded/undercut. The output switching delay can be set using objects or directly as a parameter.

When the following conditions apply,	TV above = 1 TV - hyst. below = 0
the output is	• TV above = 0 TV - hyst. below = 1
(TV = Threshold value)	• TV below = 1 TV + hyst. above = 0
	• TV below = 0 TV + hyst. above = 1
Delays can be set via objects (in seconds)	<u>No</u> • Yes
Switching delay from 0 to 1 (If delay can be set via objects: valid until first communication)	<u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h

Switching delay from 1 to 0 (If delay can be set via objects: valid until first communication)	<u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Switching output sends	on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Cycle (is only sent if periodically is selected)	<u>5 s</u> • 10 s • 30 s • 2 h

Block

The switching output can be blocked using an object.

Use switching output block No • Yes	Use switching output block	No • Yes
-------------------------------------	----------------------------	----------

If the block is activated, define specifications here for the behaviour of the output when blocked.

Analysis of the blocking object	At value 1: block At value 0: release At value 0: block At value 1: release
Blocking object value before first communication	<u>0</u> • 1
Behaviour of the switching output	
On block	Do not send message send 0 send 1
On release (with 2 seconds release delay)	[Dependent on the "Switching output sends" setting]

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output sends" (see "Switching output")

Switching output sends on change	Do not send messageSend switching output status
Switching output sends on change to 1	 Do not send message if switching output = 1 → send 1
Switching output sends on change to 0	 Do not send message if switching output = 0 → send 0
Switching output sends on change and periodically	Send switching output status
Switching output sends on change to 1 and periodically	if switching output = 1 → send 1
Switching output sends on change to 0 and periodically	if switching output = 0 → send 0

6.22. CO2 PI-control

If you activate air quality control, you can use the following settings to define control type, setpoint values, and ventilation.

Use control	Yes • <u>No</u>	
-------------	------------------------	--

General control

The **Indoor Sensor Sewi KNX AQS/TH-D L-Pr** can be used to control one or two-stage ventilation.

Type of control	One-stage ventilation
	Two-stage ventilation

Configure a block for the ventilation control using the blocking object.

Behaviour of the blocking object with value	• 1 = Block 0 = release • 0 = block 1 = release
Blocking object value before first communication	0 • <u>1</u>

Specify when the current control variables are to be sent to the bus. Periodic sending is safer, in case a message does not reach a recipient. You may also set up periodic monitoring using an actuator with this setting.

Send control variable	• on change • on change and periodically
at and above change of (in ppm)	120; <u>2</u>
Cycle (if sent periodically)	5 s • • <u>5 min</u> • • 2 h

The status object shows the current status of the output variable (0 = OFF, >0 = ON) and can for example be used for visualisation.

Send status object(s)	on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Cycle (if sent periodically)	5 s • <u>10 s</u> • • 2 h

Controller setpoint

The setpoint values can be set directly in the application program using parameters, or be defined via the bus using a communication object.

Setpoint value setting using parameters:

Set the setpoint value directly.

Specified setpoint using	Parameter • Communication objects
Target value in ppm	4005000; <u>800</u>

Setpoint value setting via communication object:

Enter, how the setpoint value will be received from the bus. Basically, a new value can be received, or simply a command to increase or decrease.

During initial commissioning, a setpoint value must be defined which is valid until the first communication of a new setpoint value. For units which have already been taken into service, the last communicated setpoint value can be used. Basically, an air humidity range is given in which the setpoint value can be changed (object value limit).

A set setpoint value will be retained until a new value or a change is transferred. The current value is saved, so that it is retained in the event of a power supply failure and will be available once the power supply is restored.

Threshold value setting using	Parameter • Communication objects
The last communicated value should be retained	never after power supply restoration after power supply restoration and programming
Start setpoint value in ppm valid until first communication (not upon saving the setpoint value after programming)	400 2000; <u>800</u>
Object value limit (min) in 0.1°C	4002000; <u>400</u>
Object value limit (max) in 0.1°C	4002000; <u>1500</u>
Type of threshold value change	Absolute value • Increase/decrease
Increment in ppm (upon increase/decrease change)	1 • 2 • 5 • • <u>20</u> • • 100 • 200

Ventilation control

Depending on the control mode, one and/or two setting sections for the ventilation stages are displayed.

For two-stage ventilation, the setpoint value difference between the two stages must be defined, i.e. the setpoint value which, when exceeded, triggers the switch to the 2nd level.

Target value difference between 1st and	1002000; <u>400</u>
2nd level in ppm	
(for level 2 only)	

Determine the deviation from the setpoint value at which the maximum variable value is reached, i.e. the point at which maximum output is used.

The reset time shows how quickly the controller responds to deviations from the setpoint value. In case of a short reset time, the control responds with a fast increase of the control variable. In case of a long reset time, the control responds somewhat less urgently and needs longer until the necessary control variable for the setpoint value deviation is reached.

You should set the time appropriate to the ventilation system at this point (follow the manufacturer's instructions).

Maximum control variable is reached at setpoint value/actual difference of (in ppm)	1002000
Reset time in minutes	1255; <u>30</u>

Now specify what should be sent when the control is blocked. On release, the control variable follows the rule again.

When blocked, the control variable shall	• not send anything • send a value
Value in % (if a value is sent)	<u>0</u> 100

6.23. Variable comparator

The integrated variable comparators can output maximum, minimum and average values.

Use comparator 1/2/3/4	<u>No</u> • Yes
------------------------	-----------------

6.23.1. Control variable comparator 1/2/3/4

Determine what the control variable comparator should output, and activate the input objects to be used. Transmission patterns and blocks can also be set.

Output delivers	Maximum valueMinimum valueAverage value
Use input 1 / 2 / 3 / 4 / 5	No • Yes
Output sends	 on change of output on change of output and periodically when receiving an input object when receiving an input object and periodically
Send cycle (if sent periodically)	5 s • 10 s • 30 s • • <u>5 min</u> • • 2 h

At and above change of (if sent on change)	1% • 2% • 5% • <u>10%</u> • 20% • 25% • 50%
Analysis of the blocking object	• at value 1: block at value 0: release • at value 0: block at value 1: release
Blocking object value before 1st communication	0 • 1
Behaviour of the switching output	
On block	do not send message Send value
Sent value in %	0 100
output sends on release (with 2 seconds release delay)	• the current value • the current value after receipt of an object

6.24. Computer

Activate the multi-functional computer, with which the input data can be changed by calculation, querying a condition or converting the data point type. The menus for the further setting of the computer are then displayed.

6.24.1. Computer 1-8

Set, in which cases input values received are to be kept per object. Please note that the setting "After power restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first call (setting via objects is ignored).

Maintain the	
input values received via communication objects	never after power supply restoration after power supply restoration and programming

Select the function set the input mode and starting values for input 1 and input 2.

Function (I = Input)	Prerequisite: E1 = E2 Prerequisite: E1 > E2 Prerequisite: E1 > E2 Prerequisite: E1 > E2 Prerequisite: E1 < E2 Prerequisite: E1 < E2 Prerequisite: E1 - E2 > E3 Prerequisite: E1 - E2 > E3 Prerequisite: E1 - E2 amount > E3 Calculation: E1 + E2 Calculation: E1 - E2 Calculation: E2 - E1 Calculation: E1 - E2 Amount Calculation: Output 1 = E1 x X + Y Output 2 = E2 x X + Y Transformation: General
Tolerance for comparison (in the case of prerequisite E1 = E2)	<u>0</u> 4,294,967,295
Input type	[Selection options depending on the function] • 1 bit • 1 byte (0255) • 1 byte (0%100%) • 1 byte (0°360°) • 2 byte counter without math. symbol • 2 byte counter with math. symbol • 2 byte floating point • 4 byte counter without math. symbol • 4 byte counter with math. symbol • 4 byte floating point
Starting value E1 / E2 / E3	[Input range depending on the type of input]

Prerequisites

When querying the prerequisites set the output type and output values at different statuses:

Output type	• 1 bit
	• 1 byte (0255)
	• 1 byte (0%100%)
	• 1 byte (0°360°)
	• 2 byte counter without math. symbol
	• 2 byte counter with math. symbol
	• 2 byte floating point
	• 4 byte counter without math. symbol
	• 4 byte counter with math. symbol
	• 4 byte floating point
Output value (if applicable output value A1 / A2)	

if the condition is met	<u>0</u> [Input range depending on the type of output]
if the condition is not met	<u>0</u> [Input range depending on the type of output]
if the monitoring time period is exceeded	<u>0</u> [Input range depending on the type of output]
if blocked	<u>0</u> [Input range depending on the type of output]

Set the output send pattern.

Output sends	on change on change and after reset on change and periodically when receiving an input object when receiving an input object and periodically
Type of change (is only sent if "on change" is selected)	on each change on change to condition met on change to condition not met
Send cycle (if sent periodically)	5 s 2 h; <u>10 s</u>

Set the text to be displayed for conditions met / not met.

Text if the condition is met	[Free text max. 14 chars.]
Text if the condition is not met	[Free text max. 14 chars.]

If applicable set the send delays.

Send delay in the event of change to the condition is met	<u>none</u> • 1 s • • 2 h
Send delay in the event of change to the condition is not met	<u>none</u> • 1 s • • 2 h

Calculations and transformation

For calculations and transformations set the output values to the various conditions:

Output value (if applicable A1 / A2)	
if the monitoring time period is exceeded	<u>0</u> [Input range depending on the type of output]
if blocked	0 [Input range depending on the type of output]

Set the output send pattern.

Output sends	on change on change and after reset on change and periodically when receiving an input object when receiving an input object and periodically
on change of (only if calculations are transmitted for changes)	1 [Input range depending on the type of input]
Send cycle (if sent periodically)	5 s 2 h; <u>10 s</u>

For Calculations of the form output $1 = E1 \times X + Y \mid \text{output } 2 = E2 \times X + Y$ define the variables X and Y. The variables can have a positive or negative sign, 9 digits before and 9 digits after the decimal point.

Formula for output A1: A1 = E1 \times X + Y		
X	1.00 [free input]	
Υ	0.00 [free input]	
Formula for output A2: A2 = E2 × X + Y		
X	1.00 [free input]	
Υ	<u>0.00</u> [free input]	

Further settings for all formulas

If necessary, activate the input monitoring. Set which inputs are to be monitored, at which intervals the inputs are to be monitored and what value the "monitoring status" should have, if the monitoring period is exceeded without feedback.

Use input monitoring	No • Yes
Monitoring of	• <u>E1</u>
	• <u>E2</u>
	• E3
	• E1 and E2
	• E1 and E3
	• E2 and E3
	• E1 and E2 and E3
	[depending on the function]
Monitoring period	5 s • • 2 h; <u>1 min</u>
Value of the object "monitoring status" if period is exceeded	0 • <u>1</u>

If necessary, activate the computer block and set what a 1 or 0 at the block entry means and what happens in the event of a block.

Use block	<u>No</u> • Yes
Analysis of the blocking object	At value 1: block At value 0: release
	At value 0: block At value 1: release

Value before first call	<u>0</u> • 1
Output pattern On block	• do not send anything • send value
On release	as send pattern [see above] send current value immediately

6.25. Logic

The device has 16 logic inputs, eight AND and eight OR logic gates.

Activate the logic inputs and assign object values up to first call.

Use logic inputs	Yes • No
Object value prior to first call for:	
- Logic input 1	<u>0</u> • 1
- Logic input	<u>0</u> • 1
- Logic input 16	<u>0</u> • 1

Activate the required logic outputs.

AND logic

AND logic 1	not active • active
AND logic	not active • active
AND logic 8	not active • active

OR logic

OR logic 1	not active • active
OR logic	not active • active
OR logic 8	not active • active

6.25.1. AND logic 1-8 and OR logic outputs 1-8

The same setting options are available for AND and OR logic.

Each logic output may transmit one 1 bit or two 8 bit objects. Determine what the out put should send if logic = 1 and = 0.

1. / 2. / 3. / 4. Input	do not use Logic inputs 116 Logic inputs 116 inverted all switching events that the device provides (see Connection inputs of the AND/OR logic)
Output type	a 1-Bit-object two 8-bit objects

If the **output type is a 1-bit object**, set the output values for the various conditions.

Output value if logic = 1	<u>1</u> •0
Output value if logic = 0	1 • <u>0</u>
Output value If block is active	1 • <u>0</u>
Output value if monitoring period is exceeded	1 • <u>0</u>

If the **output type is two 8-bit objects**, set the type of object and the output values for the various conditions.

Object type	• <u>Value (0255)</u> • <u>Percent (0100%)</u> • Angle (0360°) • Scene call-up (0127)
Output value object A if logic = 1	0 255 / 100% / 360° / 127; <u>1</u>
Output value object B if logic = 1	0 255 / 100% / 360° / 127; <u>1</u>
Output value object A if logic = 0	0 255 / 100% / 360° / 127; <u>0</u>
Output value object B if logic = 0	0 255 / 100% / 360° / 127; <u>0</u>
Output value object A if block is active	0 255 / 100% / 360° / 127; <u>0</u>
Output value object B if block is active	0 255 / 100% / 360° / 127; <u>0</u>
Output value object A if monitoring period is exceeded	0 255 / 100% / 360° / 127; <u>0</u>
Output value object B if monitoring period is exceeded	0 255 / 100% / 360° / 127; <u>0</u>

Set the output send pattern.

Send pattern	on change of logic on change of logic to 1 on change of logic to 0 on change of logic and periodically on change of logic to 1 and periodically on change of logic to 0 and periodically on change of logic+object receipt on change of logic+object receipt and periodically
Send cycle (if sent periodically)	5 s • <u>10 s</u> • • 2 h

Block

If necessary, activate the block for the logic output and set what a 1 or 0 at the block input means and what happens in the event of a block.

Use block	No • Yes
Analysis of the blocking object	At value 1: block At value 0: release At value 0: block At value 1: release
Blocking object value before first call	<u>0</u> • 1
Output pattern On block	 <u>Do not send message</u> Transmit block value [see above, Output value if blocking active]
On release (with 2 seconds release delay)	[send value for current logic status]

Monitoring

If necessary, activate the input monitoring. Set which inputs are to be monitored, at which intervals the inputs are to be monitored and what value the "monitoring status" should have, if the monitoring period is exceeded without a feedback being given.

Use input monitoring	<u>No</u> • Yes
Input monitoring	•1•2•3•4
	•1+2•1+3•1+4•2+3•2+4•3+4
	•1+2+3•1+2+4•1+3+4•2+3+4
	• <u>1 + 2 + 3 + 4</u>
Monitoring period	5 s • • 2 h; <u>1 min</u>
Output behaviour on exceeding the moni-	Do not send message
toring time	• Send value exceeding [= value of the
	parameter "monitoring period"]

6.25.2.AND logic connection inputs

Do not use

Logic input 1

Logic input 1 inverted

Logic input 2

Logic input 2 inverted

Logic input 3

Logic input 3 inverted

Logic input 4

Logic input 4 inverted

Logic input 5

Logic input 5 inverted

Logic input 6

Logic input 6 inverted

Logic input 7

Logic input 7 inverted

Logic input 8

Logic input 8 inverted

Logic input 9

Logic input 9 inverted

Logic input 10

Logic input 10 inverted

Logic input 11

Logic input 11 inverted

Logic input 12

Logic input 12 inverted

Logic input 13

Logic input 13 inverted

Logic input 14

Logic input 14 inverted

Logic input 15

Logic input 15 inverted

Logic input 16

Logic input 16 inverted

Temperature sensor malfunction ON

Temperature sensor malfunction OFF

Humidity sensor malfunction ON

Humidity sensor malfunction OFF

Pressure sensor malfunction ON

Pressure sensor malfunction OFF

CO2 sensor malfunction ON

CO2 sensor malfunction OFF

Switching output night

Switching output inverted

Switching output 1 Temperature

Switching output 1 Temperature inverted

Switching output 2 Temperature

Switching output 2 Temperature inverted

Switching output 3 Temperature

Switching output 3 Temperature inverted

Switching output 4 Temperature

Switching output 4 Temperature inverted

Brightness sensor switching output 1

Brightness sensor switching output 1 inverted

Brightness sensor switching output 2

Brightness sensor switching output 2 inverted

Brightness sensor switching output 3

Brightness sensor switching output 3 inverted

Brightness sensor switching output 4

Brightness sensor switching output 4 inverted

Switching output 1 Humidity

Switching output 1 Humidity inverted

Switching output 2 Humidity

Switching output 2 Humidity inverted

Switching output 3 Humidity

Switching output 3 Humidity inverted

Switching output 4 Humidity

Switching output 4 Humidity inverted

Switching output coolant temperature

Switching output coolant temperature inverted

Ambient climate is comfortable

Ambient climate is uncomfortable

Switching output 1 Pressure

Switching output 1 Pressure inverted

Switching output 2 Pressure

Switching output 2 Pressure inverted

Switching output 3 Pressure

Switching output 3 Pressure inverted

Switching output 4 Pressure

Switching output 4 Pressure inverted

Switching output 1 CO2

Switching output 1 CO2 inverted

Switching output 2 CO2

Switching output 2 CO2 inverted

Switching output 3 CO2

Switching output 3 CO2 inverted

Switching output 4 CO2

Switching output 4 CO2 inverted

Comfort temperature controller active

Comfort temperature controller inactive

Standby temperature controller active

Standby temperature controller inactive

Eco temperature controller active

Eco temperature controller inactive

Frost protection temperature controller active

Frost protection temperature controller inactive

Heating 1 temperature controller active

Heating 1 temperature controller inactive

Heating 2 temperature controller active Heating 2 temperature controller inactive Cooling 1 temperature controller active Cooling 1 temperature controller inactive Cooling 2 temperature controller active Cooling 2 temperature controller inactive Humidity controller dehumidification 1 active Humidity controller dehumidification 1 inactive Humidity controller dehumidification 2 active Humidity controller dehumidification 2 inactive Humidity controller humidification active Humidity controller humidification 1 inactive CO2 controller ventilation 1 active CO2 controller ventilation 1 inactive CO2 controller ventilation 2 active CO2 controller ventilation 2 inactive Motion detector test output active Motion detector test output inactive Motion detector test output active Motion detector test output inactive Motion detector slave output active Motion detector slave output inactive Motion detector master 1 output active Motion detector master 1 output inactive Motion detector master 2 output active Motion detector master 2 output inactive Motion detector master 3 output active Motion detector master 3 output inactive Motion detector master 4 output active

6.25.3. Connection inputs of the OR logic

The OR logic connection inputs correspond to those of the AND logic. In addition, the following inputs are available for the OR logic:

Switching output AND logic 1
Switching output AND logic 1 inverted
Switching output AND logic 2
Switching output AND logic 2 inverted
Switching output AND logic 2 inverted
Switching output AND logic 3
Switching output AND logic 3 inverted
Switching output AND logic 4
Switching output AND logic 4 inverted
Switching output AND logic 5
Switching output AND logic 5
Switching output AND logic 5
Switching output AND logic 6
Switching output AND logic 6
Switching output AND logic 6 inverted
Switching output AND logic 7

Motion detector master 4 output inactive

Switching output AND logic 7 inverted Switching output AND logic 8 Switching output AND logic 8 inverted

Sohlengrund 16 75395 Östelsheim Germany

Phone +49(0)7033/30945-0 Fax +49(0)7033/30945-20 www.elsner-elektronik.de

info@elsner-elektronik.de