

# **Intra-Sewi KNX TH-Pr**

# **Ambient Climate Sensor with Presence Detector**

Item numbers 70662 (white), 70667 (black)





**Installation and Adjustment** 

| 1.   | Description                                                              | 5   |
|------|--------------------------------------------------------------------------|-----|
|      | 1.0.1. Scope of delivery                                                 | 5   |
| 1.1. | Technical data                                                           | 6   |
|      | 1.1.1. *Measuring accuracy                                               | . 7 |
| 2.   | Installation and start-up                                                | 7   |
|      | Installation notes                                                       |     |
|      | Installation location                                                    |     |
|      | 2.2.1. Coverage area of the motion detector                              |     |
| 2.3. | Installation of the sensor                                               |     |
|      | 2.3.1. Installation in false ceiling                                     |     |
|      | 2.3.2. Installation in connector socket                                  |     |
|      | 2.3.3. Back view: connection                                             |     |
|      | 2.3.4. Front view: programming and addressing                            |     |
| 2.4. | Notes on mounting and commissioning                                      |     |
| 3.   | Maintenance                                                              |     |
|      |                                                                          |     |
| 4.   | Transfer protocol                                                        |     |
| 4.1. | List of all communication objects                                        |     |
| 5.   | Parameter setting                                                        |     |
|      | Behaviour on power failure/ restoration of power                         |     |
| 5.2. | General settings                                                         | 24  |
| 5.3. | Motion detector                                                          | 24  |
|      | 5.3.1. Master 1/2/3/4                                                    |     |
|      | 5.3.2. Align communication between master and slave                      |     |
|      | 5.3.2.1. Sending cycle slave - switch-off delay master                   |     |
|      | 5.3.2.2. Slave cycle reset                                               | 29  |
| 5.4. | Temperature Measurement                                                  | 30  |
| 5.5. | Temperature PI control                                                   |     |
|      | 5.5.0.1. General control                                                 | 31  |
|      | 5.5.0.2. General setpoint values                                         | 33  |
|      | 5.5.0.3. Comfort Setpoint                                                | 33  |
|      | 5.5.0.4. Standby setpoint                                                | 34  |
|      | 5.5.0.5. Eco setpoint                                                    | 34  |
|      | 5.5.0.6. Setpoint values for frost/heat protection (building protection) | 35  |
|      | 5.5.0.7. General control variables                                       |     |
| 5.6. | Temperature threshold values                                             | 36  |
|      | 5.6.1. Threshold value 1, 2, 3, 4                                        | 36  |
|      | 5.6.1.1. Threshold value                                                 | 36  |
|      | 5.6.1.2. Switching output                                                | 37  |
|      | 5.6.1.3. Block                                                           | 38  |
|      | 5.6.2. Heating control level 1/2                                         | 38  |
|      | 5.6.3. Cooling control level 1/2                                         | 41  |
| 5.7. | Humidity Measurement                                                     | 43  |

| 5.8. Humidity threshold values                  |    |
|-------------------------------------------------|----|
| 5.8.1. Threshold value 1, 2, 3, 4               | 44 |
| 5.8.1.1. Threshold value                        | 44 |
| 5.8.1.2. Switching output                       | 45 |
| 5.8.1.3. Block                                  | 45 |
| 5.9. Humidity PI control                        | 46 |
| 5.9.0.1. General control                        | 46 |
| 5.9.0.2. Controller setpoint                    | 47 |
| 5.9.0.3. Dehumidification and/or humidification | 48 |
| 5.10.Dewpoint measurement                       |    |
| 5.10.1. Cooling medium temp. monitoring         | 49 |
| 5.10.1.1.Threshold value                        | 49 |
| 5.10.1.2.Switching output                       | 50 |
| 5.10.1.3.Blocking                               | 51 |
| 5.11.Absolute humidity                          | 51 |
| 5.12.Comfort field                              | 52 |
| 5.13. Variable comparator                       | 52 |
| 5.13.1. Control variable comparator 1/2         | 53 |
| 5.14.Logic                                      | 53 |
| 5.14.0.1.AND logic                              |    |
| 5.14.0.2.OR logic                               |    |
| 5.14.1. AND logic 1-4 and OR logic outputs 1-4  |    |
| 5.14.1.1.Block                                  | 55 |
| 5.14.1.2.Monitoring                             | 56 |
| 5.15.AND logic connection inputs                | 56 |
| 5.15.1. Connection inputs of the OR logic       | 58 |



Installation, inspection, commissioning and troubleshooting of the device must only be carried out by a competent electrician.

This manual is amended periodically and will be brought into line with new software releases. The change status (software version and date) can be found in the contents footer. If you have a device with a later software version, please check

www.elsner-elektronik.de in the menu area "Service" to find out whether a more up-todate version of the manual is available.

# Clarification of signs used in this manual

Safety advice.

Safety advice for working on electrical connections, components, etc.

**DANGER!** 

... indicates an immediately hazardous situation which will lead to

death or severe injuries if it is not avoided.

**WARNING!** 

... indicates a potentially hazardous situation which may lead to

death or severe injuries if it is not avoided.

**CAUTION!** 

... indicates a potentially hazardous situation which may lead to

trivial or minor injuries if it is not avoided.

ATTENTION! ... indicates a situation which may lead to damage to property if it is

not avoided.

**ETS** 

In the ETS tables, the parameter default settings are marked by

underlining.

# 1. Description

The **Sensor Intra-Sewi KNX TH-Pr** for the KNX building bus system detects motion. It measures the temperature and the air humidity and calculates the dew-point. Via the bus, the indoor sensor can receive external values of temperature and humidity and process them further with its own data to a total value (mixed value, e.g. room average).

All measurement values can be used for the control of limit-dependent switching outputs. States can be linked via AND logic gates and OR logic gates. In addition, an integrated actuating variable comparator can compare and output variables that were received via communication objects.

Integrated PI-controllers control ventilation (humidification/dehumidification according to humidity) and heating/cooling (according to temperature). The **Intra-Sewi KNX TH-Pr** can output a warning to the bus as soon as the comfort field, as per DIN 1946, is left.

#### Functions:

- Motion detection
- Measuring the temperature and air humidity (relative, absolute), each with mixed value calculation. The share of internal measurement value and external value can be set as a percentage
- Bus message, whether the values for temperature and air humidity are within the comfort field (DIN 1946). Dew point calculation
- Threshold values can be adjusted per parameter or via communication objects
- PI-controller for heating (one or two-stage) and cooling (one or two-stage) according to temperature. Regulation according to separate setpoints or basic setpoint temperature
- PI controller for humidity according to humidity: Ventilate/Air (one-stage) or Ventilate (one or two-stage)
- 4 AND and 4 OR logic gates, each with 4 inputs. All switching events as well
  as 16 logic inputs (in the form of communications objects) can be used as
  inputs for the logic gates. The output of each gate can be configured optionally
  as 1-bit or 2 x 8-bit
- 2 actuation variable comparators to output minimum, maximum or average values. 5 inputs each for values received via communication objects

Configuration is made using the KNX software ETS. The **product file** can be downloaded from the Elsner Elektronik website on **www.elsner-elektronik.de** in the "Service" menu.

# 1.0.1. Scope of delivery

- Sensor
- Pre-assembled clamps for false ceiling installation
- Support ring for connector socket installation

For socket installation you will need in addition (not supplied):

• Socket Ø 60 mm, 42 mm deep

# 1.1. Technical data

| Housing               | Plastic, glass                                                                                                  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|
| Colour                | similar to signal white RAL 9003     similar to jet black RAL 9005                                              |
| Assembly              | built-in, in false ceiling or connector socket                                                                  |
| Protection category   | IP 30                                                                                                           |
| Dimensions            | Ø approx. 80 mm<br>height above wall approx. 5 mm<br>height in wall (installation) approx. 31 mm (incl. clamps) |
| Total weight          | approx. 50 g                                                                                                    |
| Ambient temperature   | Operation -20+60°C, storage -20+70°C                                                                            |
| Ambient humidity      | max. 95% RH, avoid condensation                                                                                 |
| Operating voltage     | KNX bus voltage                                                                                                 |
| Bus current           | max. 10 mA                                                                                                      |
| Data output           | KNX +/- bus plug-in terminal                                                                                    |
| BCU type              | Integrated microcontroller                                                                                      |
| PEI type              | 0                                                                                                               |
| Group addresses       | max. 254                                                                                                        |
| Assignments           | max. 254                                                                                                        |
| Communication objects | 232                                                                                                             |
| Temperature sensor:   |                                                                                                                 |
| Measurement range     | -20°C +60°C                                                                                                     |
| Resolution            | 0.1°C                                                                                                           |
| Accuracy*             | ±0.7°C at -20°C10°C<br>±0.5°C at -10°C+60°C                                                                     |
| Humidity sensor:      |                                                                                                                 |
| Measurement range     | 0% rH 100% rH                                                                                                   |
| Resolution            | 0.1% rH                                                                                                         |
| Accuracy              | ± 7,5% rH at 0% 10% rH<br>± 4,5% rH at 10% 90% rH<br>± 7,5% rH at 90% 100% rH                                   |
| Motion sensor:        | ·                                                                                                               |
| Coverage angle        | approx. 100° × 82° (see also Coverage area of the motion detector)                                              |
| Range                 | approx. 5 m                                                                                                     |

The product is compliant with the provisions of the EU guidelines.

## 1.1.1. \*Measuring accuracy

Deviations in measured values due to interfering sources (see chapter *installation location*) must be corrected in the ETS in order to achieve the specified accuracy of the sensor (offset).

During the **Temperature measurement**, the self-heating of the device is taken into consideration by the electronics. It is compensated by the software, therefore the displayed/output indoor temperature measuring value is correct.

# 2. Installation and start-up

## 2.1. Installation notes



Installation, testing, operational start-up and troubleshooting should only be performed by an electrician.



# CAUTION! Live voltage!

There are unprotected live components inside the device.

- National legal regulations are to be followed.
- Ensure that all lines to be assembled are free of voltage and take precautions against accidental switching on.
- Do not use the device if it is damaged.
- Take the device or system out of service and secure it against unintentional use, if it can be assumed, that risk-free operation is no longer guaranteed.

The device is only to be used for its intended purpose. Any improper modification or failure to follow the operating instructions voids any and all warranty and guarantee claims.

After unpacking the device, check it immediately for possible mechanical damage. If it has been damaged in transport, inform the supplier immediately.

The device may only be used as a fixed-site installation; that means only when assembled and after conclusion of all installation and operational start-up tasks and only in the surroundings designated for it.

Elsner Elektronik is not liable for any changes in norms and standards which may occur after publication of these operating instructions.

# 2.2. Installation location



**Install and use only in dry interior rooms!** Avoid condensation.

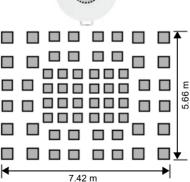
The **Sensor Intra-Sewi KNX TH-Pr** is installed in a false ceiling or a standard connection socket (Ø 60 mm, 42 mm deep).

The device must be installed on the ceiling, so that the **movement capturing** takes place from above. Make sure that the desired area is covered by the sensor's coverage angle and that no obstacles obstruct the recording.

When selecting an installation location, please ensure that the measurement results of **temperature and humidity** are affected as little as possible by external influences. Possible sources of interference include:

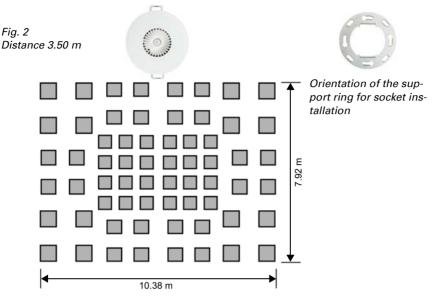
- Direct sunlight
- Drafts from windows and doors
- Draughts from ducts coming from other rooms or the outdoors
- Warming or cooling of the building structure on which the sensor is mounted,
   e.g. due to sunlight, heating or cold water pipes
- Connection lines and empty ducts which lead from warmer or colder areas to the sensor

Measurement variations from such sources of interference must be corrected in the ETS in order to ensure the specified accuracy of the sensor (offset).


# 2.2.1. Coverage area of the motion detector

Angle of coverage: approx. 100° × 82°

Range: approx. 5 m


#### Segmentation of the coverage area







Orientation of the support ring for socket installation

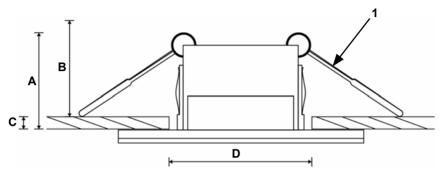


#### Size of the coverage area

| Distance | Length          | Width          |
|----------|-----------------|----------------|
| 2.50 m   | approx. 7.42 m  | approx. 5.66 m |
| 3.50 m   | approx. 10.38 m | approx. 7.92 m |

# 2.3. Installation of the sensor

# 2.3.1. Installation in false ceiling


Connect the bus line to the KNX terminal (red/black).

Place the device in the installation opening in the ceiling. For this, fold the clamps upwards and guide the device through the installation opening with the clamps first.

Intra-Sewi KNX TH-Pr is automatically fixed by the clamps.

Fig. 3

- 1 Clamps for installation in false ceiling
- A Height in wall (built-in): approx. 31 mm
- B Space behind the false ceiling, necessary for insertion (clear dimension): approx. 31 mm
- C Maximum wall thickness: 20 mm
- D Hole size for installation: 50...65 mm



#### 2.3.2. Installation in connector socket

Before socket installation, remove the clamps for the false ceiling installation.

Screw the support ring onto the socket. Pay attention to the orientation as shown in the chapter *Coverage area of the motion detector*.

Connect the bus line to the KNX terminal (red/black).

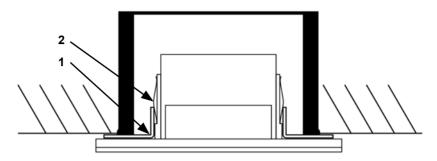
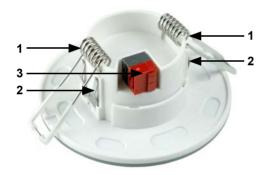

Clamp the device in the support ring so that the springs on the device snap over the tabs of the support ring.



Fig. 4: Tragring 1 Tabs


Fig. 5 Connector socket with  $\emptyset$  60 mm, 42 mm deep.

- 1 Support ring, screwed to the socket
- 2 Springs hold the device firmly on the support ring



# 2.3.3. Back view: connection

The connection is made with the KNX terminal (red/black) to KNX TP.



#### Fig. 6

- 1 Clamps for installation in false ceiling
- 2 Springs for installation in support ring
- 3 KNX terminal

## 2.3.4. Front view: programming and addressing

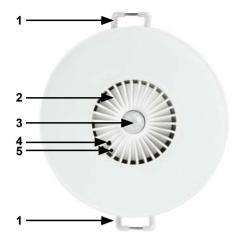



Fig. 7

- 1 Clamps for installation in false ceiling
- 2 Airing lamella
- 3 Motion sensor
- 4 Programming button (recessed, larger opening)
- 5 Programming LED (recessed, smaller opening)

The equipment is delivered with the bus address 15.15.255. You can program a different address in the ETS by overwriting the address or by teaching the device via the programming button.

The programming button is located between the airing lamella (Fig. 7: No. 4).

# 2.4. Notes on mounting and commissioning

Never expose the device to water (e.g. rain) or dust. This can damage the electronics. You must not exceed a relative humidity of 95%. Avoid condensation.

The airing lamella must not be closed or covered. The device must not be painted over.

After the bus voltage has been applied, the device will enter an initialisation phase lasting a few seconds. During this phase no information can be received or sent via the bus.

The motion sensor has a start-up phase of approx. 15 seconds during which no motion detection takes place.

# 3. Maintenance

The movement sensor and the airing lamella must not get dirty or covered. As a rule, it is sufficient to wipe the device with a soft, dry cloth twice a year.

# 4. Transfer protocol

#### Units:

Temperatures in degrees Celsius Brightness in Lux Air humidity in % Absolute air humidity in g/kg and/or g/m<sup>3</sup> Variables in %

# 4.1. List of all communication objects

### Abbreviation flags:

C Communication

R Read

W Write

T Transfer

U Update

| No. | Text                                                  | Function          | Flags | Data Point Type            | Size               |
|-----|-------------------------------------------------------|-------------------|-------|----------------------------|--------------------|
| 0   | Software version                                      | Output            | R-CT  | [217.1]<br>DPT_Version     | 2 Bytes            |
| 5   | Motion sensor: Test object                            | Output            | R-CT  | [14]<br>14.xxx             | 4 Bytes            |
| 6   | Motion sensor: Test object release (1 = release)      | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 7   | Motion sensor: Slave: Block (1 = Blocking)            | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 8   | Motion sensor: Slave: Message                         | Output            | R-CT  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 9   | Motion sensor: Slave: Cycle reset                     | Input             | -WC-  | [5.1]<br>DPT_Scaling       | 1 Byte             |
| 10  | Motion sensor: Master 1: bright-<br>ness              | Input             | -WCT  | [9.4]<br>DPT_Value_Lux     | 2 Bytes            |
| 11  | Motion sensor: Master 1:<br>Brightn. thresh. val. On  | Input /<br>Output | -WCT  | [9.4]<br>DPT_Value_Lux     | 2 Bytes            |
| 12  | Motion sensor: Master 1: Bright-<br>ness hysteresis   | Input /<br>Output | -WCT  | [9.4]<br>DPT_Value_Lux     | 2 Bytes            |
| 13  | Motion sensor: Master 1: Bright-<br>ness waiting time | Input             | RWC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes            |
| 14  | Motion sensor: Master 1: Output                       | Output            | R-CT  | Depending on setting       | 1 Bit -<br>4 Bytes |
| 15  | Motion sensor: Master 1: Switch on delay              | Input             | RWC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes            |
| 16  | Motion sensor: Master 1: Switch off delay             | Input             | RWC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes            |

| No. | Text                                                  | Function          | Flags | Data Point Type            | Size               |
|-----|-------------------------------------------------------|-------------------|-------|----------------------------|--------------------|
| 17  | Motion sensor: Master 1: Slave message                | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 18  | Motion sensor: Master 1: Slave cycle reset            | Output            | CT    | [5.1]<br>DPT_Scaling       | 1 Byte             |
| 19  | Motion sensor: Master 1: Block (1 = Blocking)         | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 20  | Motion sensor: Master 1: Central Off                  | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 21  | Motion sensor: Master 2: bright-<br>ness              | Input             | -WCT  | [9.4]<br>DPT_Value_Lux     | 2 Bytes            |
| 22  | Motion sensor: Master 2:<br>Brightn. thresh. val. On  | Input /<br>Output | -WCT  | [9.4]<br>DPT_Value_Lux     | 2 Bytes            |
| 23  | Motion sensor: Master 2: Bright-<br>ness hysteresis   | Input /<br>Output | -WCT  | [9.4]<br>DPT_Value_Lux     | 2 Bytes            |
| 24  | Motion sensor: Master 2: Bright-<br>ness waiting time | Input             | RWC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes            |
| 25  | Motion sensor: Master 2: Output                       | Output            | R-CT  | Depending on setting       | 1 Bit -<br>4 Bytes |
| 26  | Motion sensor: Master 2: Switch on delay              | Input             | RWC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes            |
| 27  | Motion sensor: Master 2: Switch off delay             | Input             | RWC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes            |
| 28  | Motion sensor: Master 2: Slave message                | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 29  | Motion sensor: Master 2: Slave cycle reset            | Output            | CT    | [5.1]<br>DPT_Scaling       | 1 Byte             |
| 30  | Motion sensor: Master 2: Block (1 = Blocking)         | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 31  | Motion sensor: Master 2: Central Off                  | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 32  | Motion sensor: Master 3: bright-<br>ness              | Input             | -WCT  | [9.4]<br>DPT_Value_Lux     | 2 Bytes            |
| 33  | Motion sensor: Master 3:<br>Brightn. thresh. val. On  | Input /<br>Output | -WCT  | [9.4]<br>DPT_Value_Lux     | 2 Bytes            |
| 34  | Motion sensor: Master 3: Bright-<br>ness hysteresis   | Input /<br>Output | -WCT  | [9.4]<br>DPT_Value_Lux     | 2 Bytes            |
| 35  | Motion sensor: Master 3: Brightness waiting time      | Input             | RWC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes            |
| 36  | Motion sensor: Master 3: Output                       | Output            | R-CT  | Depending on setting       | 1 Bit -<br>4 Bytes |
| 37  | Motion sensor: Master 3: Switch on delay              | Input             | RWC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes            |
| 38  | Motion sensor: Master 3: Switch off delay             | Input             | RWC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes            |

| No. | Text                                                  | Function          | Flags | Data Point Type            | Size               |
|-----|-------------------------------------------------------|-------------------|-------|----------------------------|--------------------|
| 39  | Motion sensor: Master 3: Slave message                | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 40  | Motion sensor: Master 3: Slave cycle reset            | Output            | CT    | [5.1]<br>DPT_Scaling       | 1 Byte             |
| 41  | Motion sensor: Master 3: Block (1 = Blocking)         | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 42  | Motion sensor: Master 3: Central Off                  | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 43  | Motion sensor: Master 4: bright-<br>ness              | Input             | -WCT  | [9.4]<br>DPT_Value_Lux     | 2 Bytes            |
| 44  | Motion sensor: Master 4:<br>Brightn. thresh. val. On  | Input /<br>Output | -WCT  | [9.4]<br>DPT_Value_Lux     | 2 Bytes            |
| 45  | Motion sensor: Master 4: Bright-<br>ness hysteresis   | Input /<br>Output | -WCT  | [9.4]<br>DPT_Value_Lux     | 2 Bytes            |
| 46  | Motion sensor: Master 4: Bright-<br>ness waiting time | Input             | RWC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes            |
| 47  | Motion sensor: Master 4: Output                       | Output            | R-CT  | Depending on setting       | 1 Bit -<br>4 Bytes |
| 48  | Motion sensor: Master 4: Switch on delay              | Input             | RWC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes            |
| 49  | Motion sensor: Master 4: Switch off delay             | Input             | RWC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes            |
| 50  | Motion sensor: Master 4: Slave message                | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 51  | Motion sensor: Master 4: Slave cycle reset            | Output            | CT    | [5.1]<br>DPT_Scaling       | 1 Byte             |
| 52  | Motion sensor: Master 4: Block (1 = Blocking)         | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 53  | Motion sensor: Master 4: Central Off                  | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 56  | Temperature sensor: malfunction                       | Output            | R-CT  | [1.1]<br>DPT_Switch        | 1 Bit              |
| 57  | Temperature sensor: measured value external           | Input             | -WCT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes            |
| 58  | Temperature sensor: measured value                    | Output            | R-CT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes            |
| 59  | Temperature sensor: measured value total              | Output            | R-CT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes            |
| 60  | Temperature sensor: measured value min./max. query    | Input             | -WC-  | [1.17]<br>DPT_Trigger      | 1 Bit              |
| 61  | Temperature sensor: measured value minimum            | Output            | R-CT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes            |
| 62  | Temperature sensor: measured value maximum            | Output            | R-CT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes            |

| No. | Text                                               | Function          | Flags | Data Point Type            | Size    |
|-----|----------------------------------------------------|-------------------|-------|----------------------------|---------|
| 63  | Temperature sensor: measured value min./max. reset | Input             | -WC-  | [1.17]<br>DPT_Trigger      | 1 Bit   |
| 66  | Temp. thresholdV 1: Absolute value                 | Input /<br>Output | -WCT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes |
| 67  | Temp. thresholdV 1: (1:+   0:-)                    | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 68  | Temp. thresholdV 1: Switching delay from 0 to 1    | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes |
| 69  | Temp. thresholdV 1: Switching delay from 1 to 0    | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes |
| 70  | Temp. thresholdV 1: Switching output               | Output            | R-CT  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 71  | Temp. thresholdV 1: Switching output block         | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 72  | Temp. thresholdV 2: Absolute value                 | Input /<br>Output | -WCT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes |
| 73  | Temp. thresholdV 2: (1:+   0:-)                    | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 74  | Temp. thresholdV 2: Switching delay from 0 to 1    | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes |
| 75  | Temp. thresholdV 2: Switching delay from 1 to 0    | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes |
| 76  | Temp. thresholdV 2: Switching output               | Output            | R-CT  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 77  | Temp. thresholdV 2: Switching output block         | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 78  | Temp. thresholdV 3: Absolute value                 | Input /<br>Output | -WCT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes |
| 79  | Temp. thresholdV 3: (1:+   0:-)                    | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 80  | Temp. thresholdV 3: Switching delay from 0 to 1    | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes |
| 81  | Temp. thresholdV 3: Switching delay from 1 to 0    | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes |
| 82  | Temp. thresholdV 3: Switching output               | Output            | R-CT  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 83  | Temp. thresholdV 3: Switching output block         | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 84  | Temp. threshold value 4: Absolute value            | Input /<br>Output | -WCT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes |
| 85  | Temp. threshold value 4: (1:+   0:-)               | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 86  | Temp. thresh. val. 4: Switching delay from 0 to 1  | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes |

| No. | Text                                                 | Function          | Flags | Data Point Type            | Size    |
|-----|------------------------------------------------------|-------------------|-------|----------------------------|---------|
| 87  | Temp. thresh. val. 4: Switching delay from 1 to 0    | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec | 2 Bytes |
| 88  | Temp. threshold value 4: Switching output            | Output            | R-CT  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 89  | Temp. threshold value 4: Switching output block      | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 95  | Temp.control: HVAC mode (priority 1)                 | Input             | -WC-  | [20.102]<br>DPT_HVACMode   | 1 Byte  |
| 96  | Temp.control: HVAC mode (priority 2)                 | Input             | -WCT  | [20.102]<br>DPT_HVACMode   | 1 Byte  |
| 97  | Temp.control: Mode frost/heat protection activt.     | Input             | -WCT  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 98  | Temp.control: Block (1 = Blocking)                   | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 99  | Temp.control: Current setpoint                       | Output            | R-CT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes |
| 100 | Temp.control: Switch. (0: Heating   1: Cooling)      | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 101 | Temp.control: Setpoint Comfort heating               | Input /<br>Output | -WCT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes |
| 102 | Temp.control: Setpoint Comfort heat.(1:+   0:-)      | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 103 | Temp.control: Setpoint Com-<br>fort cooling          | Input /<br>Output | -WCT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes |
| 104 | Temp.control: Setpoint Com-<br>fort cool.(1:+   0:-) | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 105 | Temp.control: Basic 16-bit set-<br>point shift       | Input /<br>Output | -WCT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes |
| 106 | Temp.control: Setpoint Standby heating               | Input /<br>Output | -WCT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes |
| 107 | Temp.control: Setpoint Standby heat.(1:+   0:-)      | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 108 | Temp.control: Setpoint Standby cooling               | Input /<br>Output | -WCT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes |
| 109 | Temp.control: Setpoint Standby cool. (1:+   0:-)     | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 110 | Temp.control: Setpoint Eco heating                   | Input /<br>Output | -WCT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes |
| 111 | Temp.control: Setpoint Eco heating (1:+   0:-)       | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |
| 112 | Temp.control: Setpoint Eco cooling                   | Input /<br>Output | -WCT  | [9.1]<br>DPT_Value_Temp    | 2 Bytes |
| 113 | Temp.control: Setpoint Eco cooling (1:+   0:-)       | Input             | -WC-  | [1.1]<br>DPT_Switch        | 1 Bit   |

| No. | Text                                             | Function          | Flags | Data Point Type             | Size    |
|-----|--------------------------------------------------|-------------------|-------|-----------------------------|---------|
| 114 | Temp.control: Control variable heating (level 1) | Output            | R-CT  | [5.1]<br>DPT_Scaling        | 1 Byte  |
| 115 | Temp.control: Control variable heating (level 2) | Output            | R-CT  | [5.1]<br>DPT_Scaling        | 1 Byte  |
| 116 | Temp.control: Control variable cooling (level 1) | Output            | R-CT  | [5.1]<br>DPT_Scaling        | 1 Byte  |
| 117 | Temp.control: Control variable cooling (level 2) | Output            | R-CT  | [5.1]<br>DPT_Scaling        | 1 Byte  |
| 118 | Temperature control: Variable for 4/6-way valve  | Output            | R-CT  | [5.1]<br>DPT_Scaling        | 1 Byte  |
| 119 | Temp.control: Status Heat. level 1 (1=ON 0=OFF)  | Output            | R-CT  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 120 | Temp.control: Status Heat. level 2 (1=ON 0=OFF)  | Output            | R-CT  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 121 | Temp.control: Status Cool. level 1 (1=ON 0=OFF)  | Output            | R-CT  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 122 | Temp.control: Status Cool. level 2 (1=ON 0=OFF)  | Output            | R-CT  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 123 | Temp.control: Comfort extension status           | Input /<br>Output | -WCT  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 124 | Temp.control: Comfort Extension time             | Input             | -WCT  | [7.5]<br>DPT_TimePeriodSec  | 2 Bytes |
| 130 | Humidity sensor: malfunction                     | Output            | R-CT  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 131 | Humidity sensor: measured value external         | Input             | -WCT  | [9.7]<br>DPT_Value_Humidity | 2 Bytes |
| 132 | Humidity sensor: measured value                  | Output            | R-CT  | [9.7]<br>DPT_Value_Humidity | 2 Bytes |
| 133 | Humidity sensor: measured value total            | Output            | R-CT  | [9.7]<br>DPT_Value_Humidity | 2 Bytes |
| 134 | Humidity sensor: measured value min./max. query  | Input             | -WC-  | [1.17]<br>DPT_Trigger       | 1 Bit   |
| 135 | Humidity sensor: measured value minimum          | Output            | R-CT  | [9.7]<br>DPT_Value_Humidity | 2 Bytes |
| 136 | Humidity sensor: measured value maximum          | Output            | R-CT  | [9.7]<br>DPT_Value_Humidity | 2 Bytes |
| 137 | Humidity sensor: measured value min./max. reset  | Input             | -WC-  | [1.17]<br>DPT_Trigger       | 1 Bit   |
| 138 | Humidity thresholdV 1: Absolute value            | Input /<br>Output | -WCT  | [9.7]<br>DPT_Value_Humidity | 2 Bytes |
| 139 | Humidity thresholdV 1: (1:+   0:-)               | Input             | -WC-  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 140 | Humidity thresholdV 1: Delay from 0 to 1         | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec  | 2 Bytes |

| No. | Text                                               | Function          | Flags | Data Point Type             | Size    |
|-----|----------------------------------------------------|-------------------|-------|-----------------------------|---------|
| 141 | Humidity thresholdV 1: Delay from 1 to 0           | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec  | 2 Bytes |
| 142 | Humidity thresholdV 1: Switching output            | Output            | R-CT  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 143 | Humidity thresholdV 1: Switching output block      | Input             | -WC-  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 144 | Humidity thresholdV 2: Absolute value              | Input /<br>Output | -WCT  | [9.7]<br>DPT_Value_Humidity | 2 Bytes |
| 145 | Humidity thresholdV 2: (1:+   0:-)                 | Input             | -WC-  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 146 | Humidity thresholdV 2: Delay from 0 to 1           | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec  | 2 Bytes |
| 147 | Humidity thresholdV 2: Delay from 1 to 0           | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec  | 2 Bytes |
| 148 | Humidity thresholdV 2: Switching output            | Output            | R-CT  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 149 | Humidity thresholdV 2: Switching output block      | Input             | -WC-  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 150 | Humidity thresholdV 3: Absolute value              | Input /<br>Output | -WCT  | [9.7]<br>DPT_Value_Humidity | 2 Bytes |
| 151 | Humidity thresholdV 3: (1:+   0:-                  | Input             | -WC-  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 152 | Humidity thresholdV 3: Delay from 0 to 1           | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec  | 2 Bytes |
| 153 | Humidity thresholdV 3: Delay from 1 to 0           | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec  | 2 Bytes |
| 154 | Humidity thresholdV 3: Swit-<br>ching output       | Output            | R-CT  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 155 | Humidity thresholdV 3: Swit-<br>ching output block | Input             | -WC-  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 156 | Humidity thresholdV 4: Absolute value              | Input /<br>Output | -WCT  | [9.7]<br>DPT_Value_Humidity | 2 Bytes |
| 157 | Humidity thresholdV 4: (1:+   0:-)                 | Input             | -WC-  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 158 | Humidity thresholdV 4: Delay from 0 to 1           | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec  | 2 Bytes |
| 159 | Humidity thresholdV 4: Delay from 1 to 0           | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec  | 2 Bytes |
| 160 | Humidity thresholdV 4: Switching output            | Output            | R-CT  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 161 | Humidity thresholdV 4: Switching output block      | Input             | -WC-  | [1.1]<br>DPT_Switch         | 1 Bit   |
| 165 | Humidity control: Block (1: blocking)              | Input             | -WC-  | [1.2]<br>DPT_Bool           | 1 Bit   |

| No. | Text                                               | Function          | Flags | Data Point Type               | Size     |
|-----|----------------------------------------------------|-------------------|-------|-------------------------------|----------|
| 166 | Humidity control: Target value                     | Input /<br>Output | -WCT  | [9.7]<br>DPT_Value_Humidity   | 2 Bytes  |
| 167 | Humidity control: Target value (1:+   0:-)         | Input             | -WC-  | [1.2]<br>DPT_Bool             | 1 Bit    |
| 168 | Humidity control: Act. variable dehumidification   | Output            | R-CT  | [5.1]<br>DPT_Scaling          | 1 Byte   |
| 169 | Humidity control: Act. variable dehumid. 2nd stage | Output            | R-CT  | [5.1]<br>DPT_Scaling          | 1 Byte   |
| 170 | Humidity control: Act. variable humidification     | Output            | R-CT  | [5.1]<br>DPT_Scaling          | 1 Byte   |
| 171 | Humidity control: Status dehumidif. (1:ON   0:OFF) | Output            | R-CT  | [1.1]<br>DPT_Switch           | 1 Bit    |
| 172 | Humidity control: Status dehumidif.2 (1:ON 0:OFF)  | Output            | R-CT  | [1.1]<br>DPT_Switch           | 1 Bit    |
| 173 | Humidity control: Status humidif. (1:ON   0:OFF)   | Output            | R-CT  | [1.1]<br>DPT_Switch           | 1 Bit    |
| 175 | Dew point: Measurement                             | Output            | R-CT  | [9.1]<br>DPT_Value_Temp       | 2 Bytes  |
| 176 | Cooling medium temp.:<br>Threshold value           | Output            | R-CT  | [9.1]<br>DPT_Value_Temp       | 2 Bytes  |
| 177 | Cooling medium temp.: Actual value                 | Input             | -WCT  | [9.1]<br>DPT_Value_Temp       | 2 Bytes  |
| 178 | Cooling medium temp.: Offset change (1:+   0:-)    | Input             | -WC-  | [1.1]<br>DPT_Switch           | 1 Bit    |
| 179 | Cooling medium temp.: Offset current               | Output            | R-CT  | [9.1]<br>DPT_Value_Temp       | 2 Bytes  |
| 180 | Cooling medium temp.: Switching delay from 0 to 1  | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec    | 2 Bytes  |
| 181 | Cooling medium temp.: Switching delay from 1 to 0  | Input             | -WC-  | [7.5]<br>DPT_TimePeriodSec    | 2 Bytes  |
| 182 | Cooling medium temp.: Switching output             | Output            | R-CT  | [1.1]<br>DPT_Switch           | 1 Bit    |
| 183 | Cooling medium temp.: Switching output block       | Input             | -WC-  | [1.1]<br>DPT_Switch           | 1 Bit    |
| 184 | Absolute humidity [g/kg]                           | Output            | R-CT  | [14.5]<br>DPT_Value_Amplitude | 4 Bytes  |
| 185 | Absolute humidity [g/m³]                           | Output            | R-CT  | [14.17]<br>DPT_Value_Density  | 4 Bytes  |
| 186 | Ambient climate status: 1=comfortable 0=uncomfort. | Output            | R-CT  | [1.1]<br>DPT_Switch           | 1 Bit    |
| 187 | Ambient climate status: Text                       | Output            | R-CT  | [16.0]<br>DPT_String_ASCII    | 14 Bytes |
| 189 | Actuating variable comparator 1: Input 1           | Input             | -WC-  | [5.1]<br>DPT_Scaling          | 1 Byte   |

| No. | Text                                              | Function | Flags | Data Point Type      | Size   |
|-----|---------------------------------------------------|----------|-------|----------------------|--------|
| 190 | Actuating variable comparator 1: Input 2          | Input    | -WC-  | [5.1]<br>DPT_Scaling | 1 Byte |
| 191 | Actuating variable comparator 1: Input 3          | Input    | -WC-  | [5.1]<br>DPT_Scaling | 1 Byte |
| 192 | Actuating variable comparator 1: Input 4          | Input    | -WC-  | [5.1]<br>DPT_Scaling | 1 Byte |
| 193 | Actuating variable comparator 1: Input 5          | Input    | -WC-  | [5.1]<br>DPT_Scaling | 1 Byte |
| 194 | Actuating variable comparator 1: Output           | Output   | R-CT  | [5.1]<br>DPT_Scaling | 1 Byte |
| 195 | Actuating variable comparator 1: Block (1: block) | Output   | -WC-  | [1.2]<br>DPT_Bool    | 1 Bit  |
| 196 | Actuating variable comparator 2: Input 1          | Input    | -WC-  | [5.1]<br>DPT_Scaling | 1 Byte |
| 197 | Actuating variable comparator 2: Input 2          | Input    | -WC-  | [5.1]<br>DPT_Scaling | 1 Byte |
| 198 | Actuating variable comparator 2: Input 3          | Input    | -WC-  | [5.1]<br>DPT_Scaling | 1 Byte |
| 199 | Actuating variable comparator 2: Input 4          | Input    | -WC-  | [5.1]<br>DPT_Scaling | 1 Byte |
| 200 | Actuating variable comparator 2: Input 5          | Input    | -WC-  | [5.1]<br>DPT_Scaling | 1 Byte |
| 201 | Actuating variable comparator 2: Output           | Output   | R-CT  | [5.1]<br>DPT_Scaling | 1 Byte |
| 202 | Actuating variable comparator 2: Block (1: block) | Output   | -WC-  | [1.2]<br>DPT_Bool    | 1 Bit  |
| 204 | Logic input 1                                     | Input    | -WC-  | [1.2]<br>DPT_Bool    | 1 Bit  |
| 205 | Logic input 2                                     | Input    | -WC-  | [1.2]<br>DPT_Bool    | 1 Bit  |
| 206 | Logic input 3                                     | Input    | -WC-  | [1.2]<br>DPT_Bool    | 1 Bit  |
| 207 | Logic input 4                                     | Input    | -WC-  | [1.2]<br>DPT_Bool    | 1 Bit  |
| 208 | Logic input 5                                     | Input    | -WC-  | [1.2]<br>DPT_Bool    | 1 Bit  |
| 209 | Logic input 6                                     | Input    | -WC-  | [1.2]<br>DPT_Bool    | 1 Bit  |
| 210 | Logic input 7                                     | Input    | -WC-  | [1.2]<br>DPT_Bool    | 1 Bit  |
| 211 | Logic input 8                                     | Input    | -WC-  | [1.2]<br>DPT_Bool    | 1 Bit  |
| 212 | Logic input 9                                     | Input    | -WC-  | [1.2]<br>DPT_Bool    | 1 Bit  |

| No. | Text                                | Function | Flags | Data Point Type               | Size                |
|-----|-------------------------------------|----------|-------|-------------------------------|---------------------|
| 213 | Logic input 10                      | Input    | -WC-  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 214 | Logic input 11                      | Input    | -WC-  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 215 | Logic input 12                      | Input    | -WC-  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 216 | Logic input 13                      | Input    | -WC-  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 217 | Logic input 14                      | Input    | -WC-  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 218 | Logic input 15                      | Input    | -WC-  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 219 | Logic input 16                      | Input    | -WC-  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 220 | AND logic 1: 1 bit switching output | Output   | R-CT  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 221 | AND logic 1: 8 bit output A         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 222 | AND logic 1: 8 bit output B         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 223 | AND logic 1: Block                  | Input    | -WC-  | [1.1]<br>DPT_Switch           | 1 Bit               |
| 224 | AND logic 2: 1 bit switching output | Output   | R-CT  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 225 | AND logic 2: 8 bit output A         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 226 | AND logic 2: 8 bit output B         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 227 | AND logic 2: Block                  | Input    | -WC-  | [1.1]<br>DPT_Switch           | 1 Bit               |
| 228 | AND logic 3: 1 bit switching output | Output   | R-CT  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 229 | AND logic 3: 8 bit output A         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 230 | AND logic 3: 8 bit output B         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 231 | AND logic 3: Block                  | Input    | -WC-  | [1.1]<br>DPT_Switch           | 1 Bit               |
| 232 | AND logic 4: 1 bit switching output | Output   | R-CT  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 233 | AND logic 4: 8 bit output A         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 234 | AND logic 4: 8 bit output B         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |

| No. | Text                               | Function | Flags | Data Point Type               | Size                |
|-----|------------------------------------|----------|-------|-------------------------------|---------------------|
| 235 | AND logic 4: Block                 | Input    | -WC-  | [1.1]<br>DPT_Switch           | 1 Bit               |
| 236 | OR logic 1: 1 bit switching output | Output   | R-CT  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 237 | OR logic 1: 8 bit output A         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 238 | OR logic 1: 8 bit output B         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 239 | OR logic 1: Block                  | Input    | -WC-  | [1.1]<br>DPT_Switch           | 1 Bit               |
| 240 | OR logic 2: 1 bit switching output | Output   | R-CT  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 241 | OR logic 2: 8 bit output A         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 242 | OR logic 2: 8 bit output B         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 243 | OR logic 2: Block                  | Input    | -WC-  | [1.1]<br>DPT_Switch           | 1 Bit               |
| 244 | OR logic 3: 1 bit switching output | Output   | R-CT  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 245 | OR logic 3: 8 bit output A         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 246 | OR logic 3: 8 bit output B         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 247 | OR logic 3: Block                  | Input    | -WC-  | [1.1]<br>DPT_Switch           | 1 Bit               |
| 248 | OR logic 4: 1 bit switching output | Output   | R-CT  | [1.2]<br>DPT_Bool             | 1 Bit               |
| 249 | OR logic 4: 8 bit output A         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 250 | OR logic 4: 8 bit output B         | Output   | R-CT  | [5.010] DPT<br>Value_1_Ucount | 1 Bit -<br>2x1 Byte |
| 251 | OR logic 4: Block                  | Input    | -WC-  | [1.1]<br>DPT_Switch           | 1 Bit               |

# 5. Parameter setting

# 5.1. Behaviour on power failure/ restoration of power

#### Behaviour following a failure of the bus power supply:

The device sends nothing.

#### Behaviour on bus restoration of power and following programming or reset:

The device sends all outputs according to their send behaviour set in the parameters with the delays established in the "General settings" parameter block.

# 5.2. General settings

Set basic characteristics for the data transfer.

| Send delay after reset/bus restoration for: |                          |  |
|---------------------------------------------|--------------------------|--|
| Measured values                             | <u>5 s</u> • • 300 s     |  |
| Threshold values and switching outputs      | <u>5 s</u> • • 300 s     |  |
| Controller objects                          | <u>5 s</u> • • 300 s     |  |
| Comparator and logic objects                | <u>5 s</u> • • 300 s     |  |
| Maximum telegram rate                       | • 1 message per second   |  |
|                                             | •                        |  |
|                                             | • 10 messages per second |  |
|                                             | •                        |  |
|                                             | • 50 messages per second |  |

## 5.3. Motion detector

The motion detector detects movement by means of temperature differences. Please note that the "no movement" message is only sent to the bus after a 5 second delay. After connecting the operating voltage and after a reset, it takes 15 seconds until the sensor is ready for operation.

Activate the **test object** if you would like to test the motion detection while commissioning.

With an active test object, you can enter the settings for analysis of the release object, the value prior to the first communication, and the type and value of the test object.

| Use test object                    | No • Yes                                                                            |
|------------------------------------|-------------------------------------------------------------------------------------|
| If test object is used:            |                                                                                     |
| Release object analysis            | at value 1: release   at value 0: block     at value 0: release   at value 1: block |
| Value prior to first communication | 0 • <u>1</u>                                                                        |

| Type of test object                | • 1 bit • 1 byte (0255) • 1 byte (0%100%) • 1 byte (0°360°) • 1 byte 063) scenario call-up • 2 byte counter without math. symbol • 2 byte counter with math. symbol • 2 byte floating point • 4 byte counter without math. symbol • 4 byte counter with math. symbol • 4 byte floating point |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test object value for movement     | e.g. 0 • 1 [depending on the type of test object]                                                                                                                                                                                                                                            |
| Test object value without movement | e.g. <u>0</u> • 1 [depending on the type of test object]                                                                                                                                                                                                                                     |

Select whether the motion detector is operated as **master or slave**.

For a master device, the reactions to motion detection are filed in the master settings 1 to 4. The master can thus control up to four different lamps, scenarios etc. and, as an option, also observe incoming motion messages from slave devices.

A slave device sends a motion message to the master via the bus.

| Mode | Slave • Master |
|------|----------------|
|      |                |

#### Motion detector as slave:

Activate the slave in order to use it.

| Use slave | <u>No</u> • Yes |
|-----------|-----------------|
|-----------|-----------------|

When a motion is detected, the device periodically sends a 1 to the master via the bus.

Information on setting the slave sending cycle and the cycle reset can be found in chapter *Align communication between master and slave*, page 29.

Set the **sending cycle** shorter than the master's switch-off delay.

| Sending cycle in the event of movement | 1240; <u>2</u> |
|----------------------------------------|----------------|
| (in seconds)                           |                |

Set the **object type and value** for the cycle reset input for the slave in the same way as for the cycle reset output for the master.

| Cycle reset object type | • 1 bit<br>• 1 byte (0%100%)       |
|-------------------------|------------------------------------|
| Cycle reset at value    | 0 • <u>1</u> and/or 0100; <u>1</u> |

The slave can be blocked via the bus.

| Use block                          | No • Yes                                                                            |
|------------------------------------|-------------------------------------------------------------------------------------|
| Analysis of the blocking object    | • at value 1: block   at value 0: release • at value 0: block   at value 1: release |
| Value prior to first communication | <u>0</u> • 1                                                                        |

#### 5.3.1. Master 1/2/3/4

If the device is set as a master, the additional master settings 1 to 4 will appear. This enables the **Sensor Intra-Sewi KNX TH-Pr** to perform four different control functions for motion detection. Activate the master in order to use it.

Set, in which cases **threshold values and delay times** received via object are to be retained. The parameter is only taken into consideration if the setting via object is activated below. Please note that the setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the 1st communication (setting via objects is ignored).

| Maintain the                                                   |                                                                                             |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| threshold values and delays received via communication objects | never     after power supply restoration     after power supply restoration and programming |
|                                                                |                                                                                             |

Select, whether motion is to be detected constantly or brightness dependent.

| Motion detection | constantly • brightness dependent |
|------------------|-----------------------------------|
|------------------|-----------------------------------|

#### Settings for brightness dependent motion detection:

The **brightness dependent motion detection** can be used via separate threshold values for switch-on and switch-off or dependent on daylight. The separate threshold values are ideal for controlling the light in rooms which are only illuminated by artificial light. The daylight dependent control is ideal for rooms with daylight and artificial light.

| Motion detection | brightness dependent                                            |
|------------------|-----------------------------------------------------------------|
|                  | separate switch-on and switch-off values     daylight dependent |

For daylight dependent motion detection with separate switch-on and switch-off threshold values activate, as required, the objects for setting the threshold values. Then specify the switch-on and switch-off values (brightness range). The switch-on value is the value, below which the room should be lit in the event of

movement. The switch-off value should be higher than the brightness value of the artificially lit room.

| Type of brightness dependency           | • separate switch-on and switch-off values |
|-----------------------------------------|--------------------------------------------|
| Threshold values can be set via objects | <u>No</u> • Yes                            |
| Switch on sensor below<br>Lux           | 15000; <u>200</u>                          |
| Switch off sensor below<br>Lux          | 15000; <u>500</u>                          |

For the **daylight dependent motion detection** activate, as required, the objects for setting the threshold values/hysteresis and waiting period. Then specify the switch-on value. This is the value, below which the room should be lit in the event of movement.

The switch-off value is derived from the brightness measurement that is performed by the sensor at the end of the waiting period. Set the waiting period such that after it all lamps are set to the final brightness. The hysteresis is added to the measured brightness value. If the room brightness later exceeds this total value because the room is illuminated by daylight, the motion control is switched off.

| Type of brightness dependency                                        | Daylight dependent |
|----------------------------------------------------------------------|--------------------|
| Threshold values and hysteresis can be set via objects               | <u>No</u> • Yes    |
| Waiting period can be set via objects                                | <u>No</u> • Yes    |
| Switch on sensor below<br>Lux                                        | 15000; <u>200</u>  |
| Switch off sensor, at the earliest after a waiting period of seconds | 0600; <u>5</u>     |
| after motion detection and above measured brightness plus hysteresis |                    |
| in Lux                                                               | 15000; <u>200</u>  |

#### Settings for all types of motion detection:

The following settings can be made, independent of the motion detection type, i.e. for "constant" and "brightness dependent" motion recognition.

Define the **output type and value**. As a result of the different types, switchable lights (1 bit), dimmer (1 Byte 0-100%), scenarios (1 Byte 0...63 scenario call-up) and other functions can be controlled.

| Output type                         | 1 bit 1 byte (0255) 1 byte (0%100%) 1 byte (0°360°) 1 byte (063) scenario call-up 2 byte counter without math. symbol 2 byte counter with math. symbol 2 byte floating point 4 byte counter without math. symbol 4 byte counter without math. symbol |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output value in the event of motion | e.g. 0 • 1 [depending on the output type]                                                                                                                                                                                                            |
| Output value without motion         | e.g. <u>0</u> • 1 [depending on the output type]                                                                                                                                                                                                     |
| Output value when blocked           | e.g. <u>0</u> • 1 [depending on the output type]                                                                                                                                                                                                     |

Select whether delays can be set via objects and specify the **switching delays**. By setting a **blocking time** after switch-off, you prevent sensors from recognising a switched-off lamp in their detection zone as a temperature change, and sending a motion message.

| Delays can be set via objects (in seconds)                                      | <u>No</u> • Yes                                                                        |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Switch on delay<br>(for setting via objects: valid until<br>1st communication)  | 0 s • 5 s • 10 s • 2 h<br>(for daylight dependent motion detection:<br>fixed value 0s) |
| Switch off delay<br>(for setting via objects: valid until<br>1st communication) | 0 s • 5 s • <u>10 s</u> • 2 h                                                          |
| Blocking time for motion detection after switch off delay in seconds            | 0600 ; <u>2</u>                                                                        |

#### Set the master's output sending pattern.

| Sending pattern                 | on change     on change to movement     on change to no movement     on change and periodically     on change to movement and periodically     on change to no movement periodically |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cycle<br>(if sent periodically) | 1s • <u>5 s</u> • 2 h                                                                                                                                                                |

In addition, you can refer to a **slave signal**, i.e. a signal from an additional motion detector, for controlling purposes.

| 1 | Use slave signal | No • Yes         |  |
|---|------------------|------------------|--|
|   | Ose slave signal | <u>100</u> • 165 |  |

The slave device periodically sends a 1 to the bus, as long as a motion is detected. The master receives this at the input object "master: slave message" and evaluates the slave message as an own sensor message.

Furthermore, the master has the possibility of triggering a reset of the slave sending cycle.

Information on setting the slave sending cycle and the cycle reset can be found in chapter *Align communication between master and slave*, page 29.

Set the **object type and value** for the master's slave cycle reset output in the same way, as the cycle reset input for the slave.

| Slave cycle reset object type | • 1 bit<br>• 1 byte (0%100%)       |
|-------------------------------|------------------------------------|
| Cycle reset at value          | 0 • <u>1</u> and/or 0100; <u>1</u> |

The master can be **blocked** via the bus

| Use block                          | No • Yes                                                                            |
|------------------------------------|-------------------------------------------------------------------------------------|
| Analysis of the blocking object    | at value 1: block   at value 0: release     at value 0: block   at value 1: release |
| Value prior to first communication | <u>0</u> • 1                                                                        |
| Output pattern                     |                                                                                     |
| On block                           | do not send anything     Send value                                                 |
| For release                        | as for transmission pattern     send current value immediately                      |

## 5.3.2. Align communication between master and slave

# Sending cycle slave - switch-off delay master

Set the slave's **sending cycle** shorter than the master's switch-off delay. Thereby it is ensured that the master does not perform a switch-off action, while the slave is still detecting a motion.

# Slave cycle reset

The cycle reset for the slave is required, if a master switch action by the "master: central off" object was triggered.

When the master performs a switch-off action, it simultaneously sends a message to the bus via the "master: slave cycle reset". This message can be received by the slave via the "slave: cycle reset" in order to *immediately* send a message to the bus in the event of a motion detection. The master receives the motion message without having to wait for the next slave transmission cycle.

Please note that object type and value for the slave's cycle reset input and the master's cycle reset output must be set the same.

#### Application Example:

A person steps into a corridor, the master recognises this movement and switches on the corridor lighting. When leaving the corridor, the person wants to switch off the light using a switch.

However, in the meantime a second person has entered the corridor who is detected by a slave. This person would be in darkness and would have to wait for the slave's next transmission cycle before the light would be switched on again.

To prevent this, the switch command is connected to the "master: central off" object. As a result, the master sends a cycle reset command to the slave if the light is switched off manually. In the present example, the master would immediately switch the light back on.

# 5.4. Temperature Measurement

Select, whether a **malfunction object** is to be sent if the sensor is faulty.

| Use malfunction object | <u>No</u> • Yes |
|------------------------|-----------------|
|------------------------|-----------------|

Use Offsets to adjust the readings to be sent.

| Offset in 0.1°C | -5050; 0 |  |
|-----------------|----------|--|
|                 |          |  |

The unit can calculate a **mixed value** from its own reading and an external value. Set the mixed value calculation if desired. If an external portion is used, all of the following settings (threshold values, etc.) are related to the overall reading.

| Use external measured value                           | <u>No</u> • Yes                                                                                        |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Ext. Reading proportion of the total reading          | 5% • 10% • • <u>50%</u> • • 100%                                                                       |
| Sending pattern for internal and total measured value | <ul> <li>never</li> <li>periodically</li> <li>on change</li> <li>on change and periodically</li> </ul> |
| At and above change of (if sent on change)            | 0.1°C • 0.2°C • <u>0.5°C</u> • • 5.0°C                                                                 |
| Send cycle (if sent periodically)                     | 5 s • <u>10 s</u> • • 2 h                                                                              |

The **minimum and maximum readings** can be saved and sent to the bus. Use the "Reset temperature min/max, value" objects to reset the values to the current readings. The values are not retained after a reset.

| Use minimum and maximum value | <u>No</u> • Yes |
|-------------------------------|-----------------|
|-------------------------------|-----------------|

# 5.5. Temperature PI control

Activate the control if you want to use it.

| Use control | <u>No</u> • Yes |
|-------------|-----------------|
|-------------|-----------------|

#### General control

Set, in which cases **setpoint values and extension time** received via object are to be retained. The parameter is only taken into consideration if the setting via object is activated below. Please note that the setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the 1st communication (setting via objects is ignored).

| Maintain the                                                        |                                                                                             |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Target values and extension time received via communication objects | never     after power supply restoration     after power supply restoration and programming |
|                                                                     |                                                                                             |

For an adequate regulation of the ambient temperature, comfort, standby, eco and building protection modes may be used.

Comfort when present,

Standby during short absences,

Eco as a night-time mode and

Frost/heat protection (building protection) e. g. with the window open.

The settings for the temperature control include the setpoint temperatures for the individual modes. Objects are used to determine which mode is to be selected. A change of mode may be triggered manually or automatically (e.g. by a timer, window contact).

The mode may be switched with two 8 bit objects of different priority. Objects

- "... HVAC mode (Prio 2)" for switching in everyday operation and
- "... HVAC mode (Prio 1)" for central switching with higher priority.

The objects are coded as follows:

- 0 = Auto
- 1 = Comfort
- 2 = Standby
- 3 = Eco
- 4 = Building Protection

Alternatively, you can use three objects, with one object switching between eco and standby mode and the two others activating comfort mode and frost/heat protection mode respectively. The comfort object blocks the eco/standby object, and the frost/heat protection object has the highest priority. Objects

- "... Mode (1: Eco, 0: Standby)",
- "... comfort activation mode" and
- "... frost/heat protection activation mode"

| Switch mode via | • two 8 Bit objects (HVAC Modes) |
|-----------------|----------------------------------|
|                 | • three 1 bit objects            |

Select the **mode to be activated after reset** (e.g. power failure, reset of the line via the bus) (Default).

Then configure a temperature control **block** via the blocking object.

| Mode after reset                            | Comfort                   |
|---------------------------------------------|---------------------------|
|                                             | Standby                   |
|                                             | • Eco                     |
|                                             | Building protection       |
| Behaviour of the blocking object with value | • 1 = Block   0 = release |
|                                             | • 0 = block   1 = release |
| Value of the blocking object after reset    | <u>0</u> • 1              |

Specify when the current **control variables** of the controller are to be **sent** to the bus. Periodic sending is safer, in case a message does not reach a recipient. You may also set up periodical monitoring by the actuator with this setting.

| Send control variable        | • on change<br>• on change and periodically |
|------------------------------|---------------------------------------------|
| from change (in % absolute)  | 110; <u>2</u>                               |
| Cycle (if sent periodically) | 5 s • • <u>5 min</u> • • 2 h                |

The **status object** reports the current status of the control variables (0% = OFF, >0% = ON) and may for example be used for visualisation, or to switch off the heating pump as soon as the heating is switched off.

| Send status objects          | on change     on change to 1     on change to 0     on change and periodically     on change to 1 and periodically     on change to 0 and periodically |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cycle (if sent periodically) | 5 s • • <u>5 min</u> • • 2 h                                                                                                                           |

Then define the **type of control**. Heating and/or cooling may be controlled in two levels.

| Type of control | Single level heating Dual-level heating Single-level cooling Dual-level cooling Single-level heating + single-level cooling Dual-level heating + single-level cooling Dual-level heating + dual-level cooling |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### **General setpoint values**

You may enter separate setpoint values for each mode or use the comfort setpoint as a basic value.

If you are using the control for both heating *and* cooling, you may also select the setting "separately with switching object". Systems used for cooling in summer and for heating in winter can thus be switched from one to the other.

If you are using the basic value, only the deviation from the comfort setpoint value is listed for the other modes (e.g. 2°C less for standby mode).

| Receive changed setpoints after mode change                        | no • <u>yes</u>                                                                                                                                                                                                                         |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Setting the setpoint values                                        | with separate setpoint values with Switching object     with separate setpoint values without Switching object     with comfort setpoint as a basis with Switching object     with comfort setpoint as a basis without Switching object |
| Behaviour of the switching object at value (with switching object) | • 0 = Heating   1 = Cooling<br>• 1 = Heating   0 = Cooling                                                                                                                                                                              |
| Value of the switching object after reset (with switching object)  | <u>0</u> • 1                                                                                                                                                                                                                            |

The **increment** for the setpoint changes is predefined. Whether the change only remains temporarily active (not saved) or is also retained after power supply restoration (and programming), is specified in the first section of "General control". This also applies to a comfort extension.

| Increment for setpoint changes | 1 50; <u>10</u> |
|--------------------------------|-----------------|
| (in 0.1 °C)                    |                 |

The control may be reset to comfort mode from eco mode, which is used as night mode, via the comfort extension. This allows the user to maintain the comfort setpoint value for a longer time, e.g. when having guests. The duration of this comfort extension period is set. After the comfort extension period expires, the system returns to eco mode.

| 1 | Comfort extension time in seconds     | 136000; 3600 |  |
|---|---------------------------------------|--------------|--|
|   | (can only be activated from eco mode) |              |  |

# **Comfort Setpoint**

Comfort mode is usually used for daytime mode when people are present. A starting value is defined for the comfort setpoint as well as a temperature range in which the setpoint value may be modified.

| Starting heating/cooling setpoint (in 0. | 1 °C)   -300800; 210 |
|------------------------------------------|----------------------|
| valid until 1st communication            | <u> </u>             |
| (not upon saving the setpoint value aft  | er                   |
| programming)                             |                      |

#### If setpoint values are entered separately:

| Min. object value heating/cooling (in 0.1 °C) | -300800; <u>160</u> |
|-----------------------------------------------|---------------------|
| Max. object value heating/cooling (in 0.1 °C) | -300800; <u>280</u> |

#### If the comfort setpoint value is used as a basis:

If the comfort setpoint value is used as a basis, the reduction/increment of the value is set.

| Minimum base setpoint (in 0.1°C) | -300800; <u>160</u> |
|----------------------------------|---------------------|
| Maximum base setpoint (in 0.1°C) | -300800; <u>280</u> |
| Reduction by up to (in 0.1°C)    | 0100; <u>50</u>     |
| Increase by up to (in 0.1°C)     | 0100; <u>50</u>     |

If the comfort setpoint is used as the basis without a switching object, a dead zone is specified for the control mode "heating and cooling" to avoid direct switching from heating to cooling.

| Dead zone between heating and cooling       | 1100; 50 |
|---------------------------------------------|----------|
| (only if both heating AND cooling are used) | _        |

## Standby setpoint

Standby mode is usually used for daytime mode when people are absent.

#### If setpoint values are entered separately:

A starting setpoint value is defined as well as a temperature range in which the setpoint value may be changed.

| Starting heating/cooling setpoint (in 0.1 °C) valid until 1st communication | -300800; <u>180</u> |
|-----------------------------------------------------------------------------|---------------------|
| Min. object value heating/cooling (in 0.1 °C)                               | -300800; <u>160</u> |
| Max. object value heating/cooling (in 0.1 °C)                               | -300800; <u>280</u> |

#### If the comfort setpoint value is used as a basis:

If the comfort setpoint value is used as a basis, the reduction/increment of the value is set.

| Reduce heating setpoint (in 0.1°C) (for heating)   | 0200; <u>30</u> |
|----------------------------------------------------|-----------------|
| Increase cooling setpoint (in 0.1°C) (for cooling) | 0200; <u>30</u> |

# **Eco setpoint**

Eco mode is usually used for night mode.

### If setpoint values are entered separately:

A starting setpoint value is defined as well as a temperature range in which the setpoint value may be changed.

| Starting heating/cooling setpoint (in 0.1 °C) valid until 1st communication | -300800; <u>160</u> |
|-----------------------------------------------------------------------------|---------------------|
| Min. object value heating/cooling (in 0.1 °C)                               | -300800; <u>160</u> |
| Max. object value heating/cooling (in 0.1 °C)                               | -300800; <u>280</u> |

#### If the comfort setpoint value is used as a basis:

If the comfort setpoint value is used as a basis, the reduction/increment of the value is set.

| Reduce heating setpoint (in 0.1°C) (for heating)   | 0200; <u>50</u> |
|----------------------------------------------------|-----------------|
| Increase cooling setpoint (in 0.1°C) (for cooling) | 0200; <u>60</u> |

### Setpoint values for frost/heat protection (building protection)

The building protection mode is for example used as long as windows are opened for ventilation. Setpoints for frost protection (heating) and heat protection (cooling) are determined which may not be modified from outside (no access via operating devices etc.). The building protection mode may be activated with delay, which allows you to leave the building before the controls switch to frost/heat protection mode.

| Setpoint frost protection (in 0.1°C) | -300800; <u>70</u>                       |
|--------------------------------------|------------------------------------------|
| Activation delay                     | less than • 5 s • • <u>5 min</u> • • 2 h |
| Setpoint heat protection (in 0.1°C)  | -300800; <u>350</u>                      |
| Activation delay                     | less than • 5 s • • <u>5 min</u> • • 2 h |

### **General control variables**

This setting appears for the control types "Heating and Cooling" only. Here, you can decide whether to use a common control variable for heating and cooling. If the 2nd level has a common control variable, you also determine the control mode of the 2nd level here.

| For heating and cooling                                                               | separate control variables are used     common control variables are used for Level 1     common control variables are used for Level 2     common control variable are used for Level 1+2 |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use control variable for 4/6-way valve (only for common control variables in level 1) | <u>No</u> • Yes                                                                                                                                                                            |

| Control type<br>(for level 2 only)                                                  | • 2-point-control • PI control   |
|-------------------------------------------------------------------------------------|----------------------------------|
| Control variable of the 2nd Level is on (only for level 2 with 2 point controlling) | • 1 bit object<br>• 8 bit object |

When using the control variable for a 4/6 way valve, the following applies:

0%...100% heating = 66%...100% control variable

OFF = 50% control variable

0%...100% cooling = 33%...0% control variable

# 5.6. Temperature threshold values

Activate the required temperature threshold values. The menus for setting the threshold values are displayed.

| Use threshold value 1/2/3/4 | Yes ● No |  |
|-----------------------------|----------|--|
|-----------------------------|----------|--|

### 5.6.1. Threshold value 1, 2, 3, 4

### Threshold value

Set, in which cases **threshold values and delay times** received via object are to be retained. The parameter is only taken into consideration if the setting via object is activated below. Please note that the setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first communication (setting via objects is ignored).

| Maintain the                                                  |                                                                                                   |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| threshold values and delays received vi communication objects | • never     • after power supply restoration     • after power supply restoration and programming |
|                                                               |                                                                                                   |

Set the threshold value directly in the application program using parameters, or define them via the bus using a communication object.

### Threshold value setting via parameter:

Set the threshold values and hysteresis directly.

| Threshold value setting via | Parameter • Communication objects |
|-----------------------------|-----------------------------------|
| Threshold value in 0.1°C    | -300 800; <u>200</u>              |

### Threshold value setting via a communication object:

Define, how the threshold value is to be received from the bus. Basically, a new value can be received, or simply a command to increase or decrease.

During initial commissioning, a threshold value must be defined, which will be valid until the first communication with a new threshold value. For units which have already

been taken into service, the last communicated threshold value can be used. Basically, a temperature range is given, in which the threshold value can be changed (object value limit).

A set threshold value will be retained until a new value or a change is transferred. The current value is saved, so that it is retained in the event of a power supply failure and will be available once the power supply is restored.

| Threshold value setting via                                    | Parameter • Communication objects  |
|----------------------------------------------------------------|------------------------------------|
| Start threshold value in 0.1°C valid until first communication | -300 800; <u>200</u>               |
| Object value limit (min) in 0.1°C                              | <u>-300</u> 800                    |
| Object value limit (max) in 0.1°C                              | -300 <u>800</u>                    |
| Type of threshold value change                                 | Absolute value • Increase/decrease |
| Increment (upon increase/decrease change)                      | <u>0.1°C</u> • • 5°C               |

Set the **hysteresis** independent of the type of threshold value specification.

| Hysteresis setting                     | in % • absolute  |
|----------------------------------------|------------------|
| Hysteresis in 0.1°                     | 01100; <u>50</u> |
| Hysteresis in % of the threshold value | 0 50; <u>20</u>  |

### **Switching output**

Set the behaviour of the switching output when a threshold value is exceeded/undercut. The output switching delay can be set using objects or directly as a parameter.

| When the following conditions apply,<br>the output is<br>(TV = Threshold value)                    | • TV above = 1   TV - hyst. below = 0<br>• TV above = 0   TV - hyst. below = 1<br>• TV below = 1   TV + hyst. above = 0<br>• TV below = 0   TV + hyst. above = 1                                    |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Delays can be set via objects (in seconds)                                                         | <u>No</u> • Yes                                                                                                                                                                                     |
| Switching delay from 0 to 1<br>(If delay can be set via objects:<br>valid until 1st communication) | None • 1 s • 2 s • 5 s • 10 s • • 2 h                                                                                                                                                               |
| Switching delay from 1 to 0<br>(If delay can be set via objects:<br>valid until 1st communication) | None • 1 s • 2 s • 5 s • 10 s • • 2 h                                                                                                                                                               |
| Switching output sends                                                                             | <ul> <li>on change</li> <li>on change to 1</li> <li>on change to 0</li> <li>on change and periodically</li> <li>on change to 1 and periodically</li> <li>on change to 0 and periodically</li> </ul> |
| Cycle (only if sending periodically is selected)                                                   | <u>5 s</u> • 10 s • 30 s • 2 h                                                                                                                                                                      |

### Block

The switching output can be blocked using an object.

| Use switching output block | <u>No</u> • Yes |  |
|----------------------------|-----------------|--|
|----------------------------|-----------------|--|

If the block is activated, define specifications here for the behaviour of the output when blocked.

| Analysis of the blocking object                | At value 1: block   At value 0: release     At value 0: block   At value 1: release |
|------------------------------------------------|-------------------------------------------------------------------------------------|
| Blocking object value before 1st communication | <u>0</u> • 1                                                                        |
| Behaviour of the switching output              |                                                                                     |
| On block                                       | • Do not send message<br>• send 0<br>• send 1                                       |
| On release<br>(with 2 seconds release delay)   | [Dependent on the "Switching output sends" setting]                                 |

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output sends" (see "Switching output")

| Switching output sends on change                       | Do not send message     Send switching output status                              |
|--------------------------------------------------------|-----------------------------------------------------------------------------------|
| Switching output sends on change to 1                  | <ul> <li>Do not send message</li> <li>if switching output = 1 → send 1</li> </ul> |
| Switching output sends on change to 0                  | <ul> <li>Do not send message</li> <li>if switching output = 0 → send 0</li> </ul> |
| Switching output sends on change and periodically      | Send switching output status                                                      |
| Switching output sends on change to 1 and periodically | if switching output = 1 → send 1                                                  |
| Switching output sends on change to 0 and periodically | if switching output = 0 → send 0                                                  |

## 5.6.2. Heating control level 1/2

If a heating control mode is configured, one or two setting sections for the heating levels are displayed.

In the 1st level, heating is controlled by a PI control, which allows to either enter control parameters or select predetermined applications.

In the 2nd level (therefore only in case of 2-level heating), heating is controlled via a PI or a 2-point-control.

In level 2, the setpoint difference between the two levels must also be specified, i.e. below which setpoint deviation the second level is added.

| Setpoint difference between 1st and 2nd level (in 0.1°C) (for level 2)                    | 0100; <u>40</u>                   |
|-------------------------------------------------------------------------------------------|-----------------------------------|
| Control type (for level 2, no common control variables)                                   | • 2-point-control<br>• PI control |
| Control variable is a (for level 2 with 2-point controlling, no common control variables) | • 1 bit object<br>• 8 bit object  |

### PI control with control parameters:

This setting allows individual input of the parameters for PI control.

| Control type                 | • PI control                                    |
|------------------------------|-------------------------------------------------|
| Setting of the controller by | Controller parameter     specified applications |

Specify the deviation from the setpoint value at which the maximum control variable value is reached, i.e. the point at which maximum heating power is activated.

The reset time shows how quickly the controller responds to deviations from the setpoint value. In case of a short reset time, the control responds with a fast increase of the control variable. In case of a long reset time, the control responds somewhat less urgently and needs longer until the necessary control variable for the setpoint value deviation is reached.

You should set the time appropriate to the heating system at this point (observe manufacturer's instructions).

| Maximum control variable is reached at setpoint/actual difference of (in °C) | 1 <u>5</u>      |
|------------------------------------------------------------------------------|-----------------|
| Reset time (in min.)                                                         | 1255; <u>30</u> |

Now specify what should be sent when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating level, e.g. for floor heating.

On release, the control variable follows the rule again.

| When blocked, the control variable shall | • not be sent<br>• send a specific value |
|------------------------------------------|------------------------------------------|
| Value (in %) (if a value is sent)        | <u>0</u> 100                             |

In case of a common control variable for heating and cooling, 0 is always transmitted as a fixed value.

#### PI control with predetermined application:

This setting provides fixed parameters for frequent applications.

| Control type                 | • PI control           |
|------------------------------|------------------------|
| Setting of the controller by | Controller parameter   |
|                              | specified applications |

| Application                                                                  | Warm water heating     Floor heating     Convection unit     Electric heating        |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Maximum control variable is reached at setpoint/actual difference of (in °C) | Warm water heating: 5 Floor heating: 5 Convection unit: 4 Electric heating: 4        |
| Reset time (in min.)                                                         | Warm water heating: 150 Floor heating: 240 Convection unit: 90 Electric heating: 100 |

Now specify what should be sent when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating level, e.g. for floor heating.

On release, the control variable follows the rule again.

| When blocked, the control variable shall | not be sent     send a specific value |
|------------------------------------------|---------------------------------------|
| Value (in %)<br>(if a value is sent)     | <u>0</u> 100                          |

In case of a common control variable for heating and cooling, 0 is always transmitted as a fixed value.

### 2-point-control (only level 2):

2-point-control is used for systems which are only set to ON or OFF.

| Control type                              | • 2-point-control |
|-------------------------------------------|-------------------|
| (is determined at a higher level for com- |                   |
| mon control variables)                    |                   |

Enter the hysteresis that prevents frequent on/off switching of temperatures in the threshold range.

| Hysteresis (in 0.1°C) | 0100; 20   |
|-----------------------|------------|
|                       | · <u> </u> |

If separate control variables are used, select whether the control variable of the 2nd level is a 1 bit object (on/off) or an 8 bit object (on with percentage/off).

| Control variable is a              | • 1 bit object<br>• 8 bit object |
|------------------------------------|----------------------------------|
| Value (in %)<br>(for 8 bit object) | 0 <u>100</u>                     |

Now specify what should be sent when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating level, e.g. for floor heating. On release, the control variable follows the rule again.

| When blocked, the control variable shall | not be sent     send a specific value |
|------------------------------------------|---------------------------------------|
| Value (in %) only if a value is sent     | <u>0</u> 100                          |

### 5.6.3. Cooling control level 1/2

If a cooling control mode is configured, one or two setting sections for the cooling levels are displayed.

In the 1st level, cooling is controlled by a PI control in which either control parameters can be entered or predetermined applications can be selected.

In the 2nd level (therefore only for 2-level cooling), cooling is controlled via a PI or a 2-point-control.

In level 2, the setpoint deviation between the two levels must also be specified, i.e. above which setpoint value deviation the second level is added.

| Setpoint difference between 1st and 2nd level (in 0.1°C) (for level 2)                    | 0100; <u>40</u>                   |
|-------------------------------------------------------------------------------------------|-----------------------------------|
| Control type (for level 2, no common control variables)                                   | • 2-point-control<br>• PI control |
| Control variable is a (for level 2 with 2-point controlling, no common control variables) | • 1 bit object<br>• 8 bit object  |

#### PI control with control parameters:

This setting allows individual input of the parameters for PI control.

| Control type                 | • PI control           |
|------------------------------|------------------------|
| Setting of the controller by | Controller parameter   |
|                              | specified applications |

Specify the deviation from the setpoint value which reaches maximum variable value, i.e. the point at which maximum cooling power is activated.

The reset time shows how quickly the controller responds to deviations from the setpoint value. In case of a short reset time, the control responds with a fast increase of the control variable. In case of a long reset time, the control responds somewhat less urgently and needs longer until the necessary control variable for the setpoint value deviation is reached. You should set the time appropriate to the cooling system at this point (observe manufacturer's instructions).

|   | flaximum control variable is reached t setpoint/actual difference of (in °C) | 1 <u>5</u>      |
|---|------------------------------------------------------------------------------|-----------------|
| R | eset time (in min.)                                                          | 1255; <u>30</u> |

Now specify what should be sent when the control is blocked. On release, the control variable follows the rule again.

| When blocked, the control variable shall | not be sent     send a specific value |
|------------------------------------------|---------------------------------------|
| Value (in %)<br>(if a value is sent)     | <u>0</u> 100                          |

In case of a common control variable for heating and cooling, 0 is always transmitted as a fixed value.

### PI control with predetermined application:

This setting provides fixed parameters for a cooling ceiling

| Control type                                                                 | • PI control                                    |
|------------------------------------------------------------------------------|-------------------------------------------------|
| Setting of the controller by                                                 | Controller parameter     specified applications |
| Application                                                                  | Cooling ceiling                                 |
| Maximum control variable is reached at setpoint/actual difference of (in °C) | Cooling ceiling: 5                              |
| Reset time (in min.)                                                         | Cooling ceiling: 30                             |

Now specify what should be sent when the control is blocked. On release, the control variable follows the rule again.

| When blocked, the control variable shall | not be sent     send a specific value |
|------------------------------------------|---------------------------------------|
| Value (in %)<br>(if a value is sent)     | <u>0</u> 100                          |

### 2-point-control (only level 2):

2-point-control is used for systems which are only set to ON or OFF.

| Control type                               | • 2-point-control |
|--------------------------------------------|-------------------|
| is determined at a higher level for common |                   |
| variables                                  |                   |

Enter the hysteresis that prevents frequent on/off switching of temperatures in the threshold range.

| Hyptoropia (in 0.190) | 0100; 20        |
|-----------------------|-----------------|
| Hysteresis (in 0.1°C) | 0100; <u>20</u> |

If separate control variables are used, select whether the control variable of the 2nd level is a 1 bit object (on/off) or an 8 bit object (on with percentage/off).

| Control variable is a              | • 1 bit object<br>• 8 bit object |
|------------------------------------|----------------------------------|
| Value (in %)<br>(for 8 bit object) | 0 <u>100</u>                     |

Now specify what should be sent when the control is blocked. On release, the control variable follows the rule again.

| When blocked, the control variable shall | • not be sent<br>• send a specific value |
|------------------------------------------|------------------------------------------|
| Value (in %) (if a value is sent)        | <u>0</u> 100                             |

In case of a common control variable for heating and cooling, 0 is always transmitted as a fixed value.

# 5.7. Humidity Measurement

Select, whether a malfunction object is to be sent if the sensor is faulty.

| Use malfunction object | <u>No</u> • Yes |
|------------------------|-----------------|
|------------------------|-----------------|

Use Offsets to adjust the readings to be sent.

| Offset in 0.1% RH | -100100; <u>0</u> |
|-------------------|-------------------|
|-------------------|-------------------|

The unit can calculate a **mixed value** from its own reading and an external value. Set the mixed value calculation if desired. If an external portion is used, all of the following settings (threshold values, etc.) are related to the overall reading.

| Use external measured value                           | <u>No</u> • Yes                                                                                        |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Ext. Reading proportion of the total reading          | 5% • 10% • • <u>50%</u> • • 100%                                                                       |
| Sending pattern for internal and total measured value | <ul> <li>never</li> <li>periodically</li> <li>on change</li> <li>on change and periodically</li> </ul> |
| At and above change of (if sent on change)            | 0.1% RH • 0.2% RH • 0.5% RH • <u>1.0% RH</u> •<br>• 20.0% RH                                           |
| Send cycle (if sent periodically)                     | 5 s • <u>10 s</u> • • 2 h                                                                              |

The **minimum and maximum readings** can be saved and sent to the bus. Use the "Reset humidity min/max. value" objects to reset the values to the current readings. The values are not retained after a reset.

| Ose minimum and maximum value | Use minimum and maximum value | No • Yes |
|-------------------------------|-------------------------------|----------|
|-------------------------------|-------------------------------|----------|

# 5.8. Humidity threshold values

Activate the required air humidity threshold values. The menus for setting the threshold values are displayed.

| Use threshold value 1/2/3/4 | Yes • <u>No</u> |
|-----------------------------|-----------------|
|-----------------------------|-----------------|

### 5.8.1. Threshold value 1, 2, 3, 4

#### Threshold value

Set, in which cases **threshold values and delay times** received via objects are to be retained. The parameter is only taken into consideration if the setting via object is activated below. Please note that the setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first communication (setting via objects is ignored).

| Maintain the                                                   |                                                                                             |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| threshold values and delays received via communication objects | never     after power supply restoration     after power supply restoration and programming |
|                                                                |                                                                                             |

Set the threshold value directly in the application program using parameters, or define them via the bus using a communication object.

### Threshold value setting using parameter:

Set the threshold values and hysteresis directly.

| Threshold value setting using | Parameter • Communication objects |
|-------------------------------|-----------------------------------|
| Threshold value in 0.1% RH    | 1 1000; <u>650</u>                |

### Threshold value setting using a communication object:

Define, how the threshold value is to be received from the bus. Basically, a new value can be received, or simply a command to increase or decrease.

During initial commissioning, a threshold value must be defined, which will be valid until the first communication with a new threshold value. For units which have already been taken into service, the last communicated threshold value can be used. Basically, a humidity range is specified in which the threshold value can be changed (object value limit).

A set threshold value will be retained until a new value or a change is transferred. The current value is saved, so that it is retained in the event of a power supply failure and will be available once the power supply is restored.

| Threshold value setting using                                       | Parameter • Communication objects       |
|---------------------------------------------------------------------|-----------------------------------------|
| Starting threshold value in 0.1% RH valid until first communication | 1 1000; <u>650</u>                      |
| Object value limit (min.) in 0.1%RH                                 | <u>1</u> 1000                           |
| Object value limit (max.) in 0.1%RH                                 | 1 <u>1000</u>                           |
| Type of threshold value change                                      | Absolute value • Increase/decrease      |
| Increment (upon increase/decrease change)                           | 0.1% RH • • <u>2.0% RH</u> • • 20.0% RH |

Set the **hysteresis** independent of the type of threshold value specification.

| Hysteresis setting                                | in % • absolute   |
|---------------------------------------------------|-------------------|
| Hysteresis in 0.1% RH                             | 01000; <u>100</u> |
| Hysteresis in % (relative to the threshold value) | 0 50; <u>20</u>   |

## **Switching output**

Set the behaviour of the switching output when a threshold value is exceeded/undercut. The output switching delay can be set using objects or directly as a parameter.

| When the following conditions apply, the output is (TV = Threshold value)                          | • TV above = 1   TV - hyst. below = 0<br>• TV above = 0   TV - hyst. below = 1<br>• TV below = 1   TV + hyst. above = 0<br>• TV below = 0   TV + hyst. above = 1                                    |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Delays can be set via objects (in seconds)                                                         | <u>No</u> • Yes                                                                                                                                                                                     |
| Switching delay from 0 to 1<br>(If delay can be set via objects:<br>valid until 1st communication) | <u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h                                                                                                                                                        |
| Switching delay from 1 to 0<br>(If delay can be set via objects:<br>valid until 1st communication) | <u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h                                                                                                                                                        |
| Switching output sends                                                                             | <ul> <li>on change</li> <li>on change to 1</li> <li>on change to 0</li> <li>on change and periodically</li> <li>on change to 1 and periodically</li> <li>on change to 0 and periodically</li> </ul> |
| Cycle (is only sent if periodically is selected)                                                   | <u>5 s</u> • 10 s • 30 s • 2 h                                                                                                                                                                      |

## **Block**

The switching output can be blocked using an object.

| Use switching output block | <u>No</u> • Yes |  |
|----------------------------|-----------------|--|
|----------------------------|-----------------|--|

If the block is activated, define specifications here for the behaviour of the output when blocked.

| Analysis of the blocking object                  | • At value 1: block   At value 0: release<br>• At value 0: block   At value 1: release |
|--------------------------------------------------|----------------------------------------------------------------------------------------|
| Blocking object value before first communication | <u>0</u> • 1                                                                           |
| Behaviour of the switching output                |                                                                                        |
| On block                                         | Do not send message     send 0     send 1                                              |

| On release                     | [Dependent on the "Switching output |
|--------------------------------|-------------------------------------|
| (with 2 seconds release delay) | sends" setting]                     |

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output sends" (see "Switching output")

| Switching output sends on change                       | Do not send message     Send switching output status                              |
|--------------------------------------------------------|-----------------------------------------------------------------------------------|
| Switching output sends on change to 1                  | <ul> <li>Do not send message</li> <li>if switching output = 1 → send 1</li> </ul> |
| Switching output sends on change to 0                  | <ul> <li>Do not send message</li> <li>if switching output = 0 → send 0</li> </ul> |
| Switching output sends on change and periodically      | Send switching output status                                                      |
| Switching output sends on change to 1 and periodically | if switching output = 1 → send 1                                                  |
| Switching output sends on change to 0 and periodically | if switching output = 0 → send 0                                                  |

# 5.9. Humidity PI control

If you activate humidity control, you can use the following settings to define control type, setpoint values, and humidification and dehumidification.

| Use humidity control | <u>No</u> • Yes |
|----------------------|-----------------|
|                      |                 |

### **General control**

**Sensor Intra-Sewi KNX TH-Pr** can be used to control one- or two-level dehumidification or combined humidification/dehumidification.

| Type of control | One-level dehumidification                              |
|-----------------|---------------------------------------------------------|
|                 | Two-level dehumidification                              |
|                 | <ul> <li>Humidification and dehumidification</li> </ul> |

Configure a block for the humidity control using the blocking object.

| Behaviour of the blocking object with value      | • 1 = Block   0 = release<br>• 0 = block   1 = release |
|--------------------------------------------------|--------------------------------------------------------|
| Blocking object value before first communication | 0 • <u>1</u>                                           |

Specify when the current control variables are to be sent to the bus. Periodic sending is safer, in case a message does not reach a recipient. You may also set up periodic monitoring using an actuator with this setting.

| Send control variable | on change     on change and periodically |
|-----------------------|------------------------------------------|
|-----------------------|------------------------------------------|

| Send cycle                                   | 5 s • 10 s • • 5 min • • 2 h |
|----------------------------------------------|------------------------------|
| (is only sent if "periodically" is selected) | _                            |

The status object shows the current status of the output variable (0 = OFF, >0 = ON) and can for example be used for visualisation.

| Send status object(s)                                   | on change     on change to 1     on change to 0     on change and periodically     on change to 1 and periodically     on change to 0 and periodically |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Send cycle (is only sent if "periodically" is selected) | 5 s • <u>10 s</u> • • 5 min • • 2 h                                                                                                                    |

### **Controller setpoint**

Set, in which cases **setpoint values** received via object are to be retained. Please note that the setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first communication (setting via objects is ignored).

| Maintain the                                     |                                                                                             |
|--------------------------------------------------|---------------------------------------------------------------------------------------------|
| setpoint value received via communication object | never     after power supply restoration     after power supply restoration and programming |
|                                                  |                                                                                             |

During initial commissioning, a **setpoint value** must be defined which is valid until the first communication of a new setpoint value. For units which have already been taken into service, the last communicated setpoint value can be used. Basically, an air humidity range is specified in which the setpoint value can be changed (**object value limit**).

Enter, how the setpoint value will be received from the bus. Basically, a new value can be received, or simply a command to increase or decrease.

A set setpoint value will be retained until a new value or a change is transferred. The current value is saved, so that it is retained in the event of a power supply failure and will be available once the power supply is restored.

| Start setpoint in %                       | 0 100; <u>50</u> |
|-------------------------------------------|------------------|
| valid until first communication           | _                |
| (not upon saving the setpoint value after |                  |
| programming)                              |                  |
| Object value limit (min.) in %            | 0100; <u>30</u>  |
| Object value limit (max.) in %            | 0100; <u>70</u>  |

| Type of setpoint value change   | Absolute value • Increase/decrease |
|---------------------------------|------------------------------------|
|                                 | 1% • <u>2%</u> • 5% • 10%          |
| (upon increase/decrease change) |                                    |

In "Humidification and dehumidification" control mode, a dead zone is specified so that a direct changeover switching between humidification and dehumidification can be avoided.

| Dead zone between humidification and         | 050; <u>10</u> |
|----------------------------------------------|----------------|
| dehumidification in %                        |                |
| (only if both humidification and dehumidifi- |                |
| cation are used)                             |                |

Humidification starts, when the relative air humidity is lower or equal to the setpoint value - dead zone value.

### Dehumidification and/or humidification

Depending on the control mode, settings sections for humidification and dehumidification appear (level 1/2).

For dual-level dehumidification, the setpoint value difference between the two levels must be defined, i.e. the setpoint value which, when exceeded, triggers the switch to the 2nd level.

| Target value difference between level 1 | 050; <u>10</u> |  |
|-----------------------------------------|----------------|--|
| and 2 in %                              | _              |  |
| (for level 2 only)                      |                |  |

Determine the deviation from the setpoint value at which the maximum variable value is reached, i.e. the point at which maximum output is used.

The reset time shows how quickly the controller responds to deviations from the setpoint value. In case of a short reset time, the control responds with a fast increase of the control variable. In case of a long reset time, the control responds somewhat less urgently and needs longer until the necessary control variable for the setpoint value deviation is reached.

You should set the time appropriate for the humidification/dehumidification system at this point (note manufacturer instructions).

| Maximum control variable is reached at target/actual difference of % | 150; <u>5</u>  |
|----------------------------------------------------------------------|----------------|
| Reset time in minutes                                                | 1255; <u>3</u> |

Now specify, what should be sent when the control is blocked. On release, the control variable follows the rule again.

| When blocked, the control variable shall | • do not transmit anything<br>• send a value |
|------------------------------------------|----------------------------------------------|
| Value in % (if a value is sent)          | <u>0</u> 100                                 |

# 5.10. Dewpoint measurement

The **Sensor Intra-Sewi KNX TH-Pr** calculates the dewpoint temperature and can output the value to the bus.

| Sending pattern                            | never     periodically     on change     on change and periodically |
|--------------------------------------------|---------------------------------------------------------------------|
| At and above change of (if sent on change) | 0.1°C • 0.2°C • <u>0.5°C</u> • 1.0°C • 2.0°C • 5.0°C                |
| Send cycle (if sent periodically)          | 5 s • <u>10 s</u> • 30 s • 1 min • • 2 h                            |

Activate the monitoring of the coolant temperature if required. The menus for setting the monitoring are displayed.

| Use monitoring of the coolant temperature | <u>No</u> • Yes |
|-------------------------------------------|-----------------|
|-------------------------------------------|-----------------|

### 5.10.1. Cooling medium temp. monitoring

A threshold value can be set for the temperature of the coolant, which is based on the current dewpoint temperature (offset/deviation). The switching output of the coolant temperature monitoring system can provide a warning prior to any build-up of condensation in the system, and/or activate appropriate countermeasures.

#### Threshold value

Threshold value = dewpoint temperature + offset

Set, in which cases **offset** received via object is to be retained. Please note that the setting "After power supply restoration and programming" should not be used for the initial start-up, as the factory settings are always used until the first communication (setting via objects is ignored).

| Maintain the                             |                                                                                             |
|------------------------------------------|---------------------------------------------------------------------------------------------|
| offset received via communication object | never     after power supply restoration     after power supply restoration and programming |
|                                          |                                                                                             |

During initial commissioning, an **offset** must be defined which is valid until the first communication of a new offset. For units which have already been taken into service, the last communicated offset can be used.

A set offset will be retained until a new value or a change is transferred. The current value is saved, so that it is retained in the event of a power supply failure and will be available once the power supply is restored.

| Start offset in °C valid until first communication                   | 0200; <u>30</u>                                                                                        |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Increment for offset change                                          | 0.1°C • 0.2°C • 0.3°C • 0.4°C • 0.5°C • 1°C • 2°C • 3°C • 4°C • 5°C                                    |
| Hysteresis setting                                                   | in % • absolute                                                                                        |
| Hysteresis of the threshold value in % (for setting in %)            | 0 50; <u>20</u>                                                                                        |
| Threshold value hysteresis in 0.1°C increments (at absolute setting) | 0 1000; <u>50</u>                                                                                      |
| Threshold value sends                                                | <ul> <li>never</li> <li>periodically</li> <li>on change</li> <li>on change and periodically</li> </ul> |
| At and above change of (if sent on change)                           | <u>0.1°C</u> • 0.2°C • 0.5°C • 1.0°C • 2.0°C • 5.0°C                                                   |
| Send cycle (if sent periodically)                                    | 5 s • <u>10 s</u> • 30 s • 1 min • • 2 h                                                               |

## **Switching output**

The output switching delay can be set using objects or directly as a parameter.

| When the following conditions apply,<br>the output is<br>(TV = Threshold value)    | <ul> <li>TV above = 1   TV - hyst. below = 0</li> <li>TV above = 0   TV - hyst. below = 1</li> <li>TV below = 1   TV + hyst. above = 0</li> <li>TV below = 0   TV + hyst. above = 1</li> </ul> |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Delays can be set via objects (in seconds)                                         | <u>No</u> • Yes                                                                                                                                                                                |
| Switching delay from 0 to 1 for setting via objects: valid until 1st communication | <u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h                                                                                                                                                   |
| Switching delay from 1 to 0 for setting via objects: valid until 1st communication | None • 1 s • 2 s • 5 s • 10 s • • 2 h                                                                                                                                                          |
| Switching output sends                                                             | on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically                                                             |
| Send cycle (is only sent if periodically is selected)                              | <u>5 s</u> • 10 s • 30 s • 2 h                                                                                                                                                                 |

## **Blocking**

The switching output can be blocked using an object. Define specifications here for the behaviour of the output when blocked.

| Use switching output block                       | <u>No</u> • Yes                                                                        |
|--------------------------------------------------|----------------------------------------------------------------------------------------|
| Analysis of the blocking object                  | • At value 1: block   At value 0: release<br>• At value 0: block   At value 1: release |
| Blocking object value before first communication | <u>0</u> • 1                                                                           |
| Behaviour of the switching output                |                                                                                        |
| On block                                         | Do not send message     send 0     send 1                                              |
| On release<br>(with 2 seconds release delay)     | [Dependent on the "Switching output sends" setting]                                    |

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output sends" (see "Switching output")

| Switching output sends on change                       | Do not send message     Send switching output status                              |
|--------------------------------------------------------|-----------------------------------------------------------------------------------|
| Switching output sends on change to 1                  | <ul> <li>Do not send message</li> <li>if switching output = 1 → send 1</li> </ul> |
| Switching output sends on change to 0                  | <ul> <li>Do not send message</li> <li>if switching output = 0 → send 0</li> </ul> |
| Switching output sends on change and periodically      | Send switching output status                                                      |
| Switching output sends on change to 1 and periodically | if switching output = 1 → send 1                                                  |
| Switching output sends on change to 0 and periodically | if switching output = 0 → send 0                                                  |

# 5.11. Absolute humidity

The absolute air humidity value is detected by the **Intra-Sewi KNX TH-Pr** and can be output to the bus.

| Use measured values                        | <u>No</u> • Yes                                                     |
|--------------------------------------------|---------------------------------------------------------------------|
| Sending pattern                            | never     periodically     on change     on change and periodically |
| At and above change of (if sent on change) | 0.1 g • 0.2 g • <u>0.5 g</u> • 1.0 g • 2.0 g • 5.0 g                |
| Send cycle (if sent periodically)          | 5 s • <u>10 s</u> • 30 s • 2 h                                      |

## 5.12. Comfort field

The **Sensor Intra-Sewi KNX TH-Pr** can send a message to the bus if the limits of the comfort field are exceeded. In this way, it is for example possible to monitor compliance with DIN 1946 (standard values) or even to define your own comfort field.

Specify the **sending pattern**, a **Text** for comfortable and uncomfortable and the **Object value**.

| Sending pattern                   | not     on change     on change to comfortable     on change to uncomfortable     on change and periodically     on change to comfortable and periodically     on change to uncomfortable and periodically |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text for comfortable              | [Free text max. 14 chars.]                                                                                                                                                                                 |
| Text for uncomfortable            | [Free text max. 14 chars.]                                                                                                                                                                                 |
| Object value is at                | • comfortable = 1   uncomfortable = 0<br>• comfortable = 0   uncomfortable = 1                                                                                                                             |
| Send cycle (if sent periodically) | <u>5 s</u> • <u>10 s</u> • 30 s • 2 h                                                                                                                                                                      |

Define the comfort field by specifying the minimum and maximum values for temperature and humidity. The specified standard values comply with DIN 1946

| Maximum temperature in °C (Standard 26°C)                 | 25 40; <u>26</u>   |
|-----------------------------------------------------------|--------------------|
| Minimum temperature in °C (Standard 20°C)                 | 10 21; <u>20</u>   |
| Maximum relative humidity in % (Standard 65%)             | 52 90; <u>65</u>   |
| Minimum relative humidity in % (Standard 30%)             | 10 43; <u>30</u>   |
| Maximum absolute humidity in 0.1 g/kg (Standard 115 g/kg) | 50 200; <u>115</u> |

Temperature hysteresis: 1°C

Relative humidity hysteresis: 2% RH Absolute humidity hysteresis: 2 g/kg

# 5.13. Variable comparator

The integrated variable comparators can output maximum, minimum and average values.

| Use comparator 1/2 | <u>No</u> • Yes |
|--------------------|-----------------|
|--------------------|-----------------|

## 5.13.1. Control variable comparator 1/2

Determine what the control variable comparator should output, and activate the input objects to be used. Transmission patterns and blocks can also be set.

| Output delivers                                           | Maximum value     Minimum value     Average value                                                                                                   |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Use input 1 / 2 / 3 / 4 / 5                               | No • Yes                                                                                                                                            |
| Output sends                                              | on change of output     on change of output and periodically     when receiving an input object     when receiving an input object and periodically |
| Send cycle (if sent periodically)                         | 5 s • 10 s • 30 s • • <u>5 min</u> • • 2 h                                                                                                          |
| At and above change of (if sent on change)                | 1% • 2% • 5% • <u>10%</u> • 20% • 25% • 50%                                                                                                         |
| Analysis of the blocking object                           | at value 1: block   at value 0: release     at value 0: block   at value 1: release                                                                 |
| Blocking object value before 1st communication            | 0•1                                                                                                                                                 |
| Behaviour of the switching output                         |                                                                                                                                                     |
| On block                                                  | • do not send message • Send value                                                                                                                  |
| Sent value in %                                           | 0 100                                                                                                                                               |
| output sends on release<br>(with 2 seconds release delay) | • the current value • the current value after receipt of an object                                                                                  |

# 5.14. Logic

The device has 16 logic inputs, four AND and four OR logic gates.

Activate the logic inputs and assign object values up to first call.

| Use logic inputs                      | Yes • No     |  |
|---------------------------------------|--------------|--|
| Object value prior to first call for: |              |  |
| - Logic input 1                       | <u>0</u> • 1 |  |
| - Logic input                         | <u>0</u> • 1 |  |
| - Logic input 16                      | <u>0</u> • 1 |  |

Activate the required logic outputs.

## **AND logic**

| AND logic 1 | not active • active |
|-------------|---------------------|
| AND logic   | not active • active |
| AND logic 4 | not active • active |

## **OR** logic

| OR logic 1 | not active • active |
|------------|---------------------|
| OR logic   | not active • active |
| OR logic 4 | not active • active |

## 5.14.1. AND logic 1-4 and OR logic outputs 1-4

The same setting options are available for AND and OR logic.

Each logic output may transmit one 1 bit or two 8 bit objects. Determine what the out put should send if logic = 1 and logic = 0.

| 1. / 2. / 3. / 4. Input | do not use     Logic inputs 116     Logic inputs 116 inverted     all switching events that the device provides (see Connection inputs of the AND/OR logic) |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output type             | a 1-Bit-object     two 8-bit objects                                                                                                                        |

If the **output type is a 1-bit object**, set the output values for the various conditions.

| Output value if logic = 1                     | <u>1</u> •0  |
|-----------------------------------------------|--------------|
| Output value if logic = 0                     | 1 • <u>0</u> |
| Output value If block is active               | 1 • <u>0</u> |
| Output value if monitoring period is exceeded | 1 • <u>0</u> |

If the **output type is two 8-bit objects**, set the type of object and the output values for the various conditions.

| Object type                                            | • Value (0255)<br>• Percent (0100%)<br>• Angle (0360°)<br>• Scene call-up (063) |
|--------------------------------------------------------|---------------------------------------------------------------------------------|
| Output value object A if logic = 1                     | 0 255 / 100% / 360° / 63; <u>1</u>                                              |
| Output value object B if logic = 1                     | 0 255 / 100% / 360° / 63; <u>1</u>                                              |
| Output value object A if logic = 0                     | 0 255 / 100% / 360° / 63; <u>0</u>                                              |
| Output value object B if logic = 0                     | 0 255 / 100% / 360° / 63; <u>0</u>                                              |
| Output value object A if block is active               | 0 255 / 100% / 360° / 63; <u>0</u>                                              |
| Output value object B if block is active               | 0 255 / 100% / 360° / 63; <u>0</u>                                              |
| Output value object A if monitoring period is exceeded | 0 255 / 100% / 360° / 63; <u>0</u>                                              |
| Output value object B if monitoring period is exceeded | 0 255 / 100% / 360° / 63; <u>0</u>                                              |

Set the output send pattern.

| Send pattern                      | on change of logic     on change of logic to 1     on change of logic to 0     on change of logic and periodically     on change of logic to 1 and periodically     on change of logic to 0 and periodically     on change of logic+object receipt     on change of logic+object receipt     and periodically |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Send cycle (if sent periodically) | 5 s • <u>10 s</u> • • 2 h                                                                                                                                                                                                                                                                                     |

### **Block**

If necessary, activate the block for the logic output and set what a 1 or 0 at the block input means and what happens in the event of a block.

| Use block                               | No • Yes                                                                            |
|-----------------------------------------|-------------------------------------------------------------------------------------|
| Analysis of the blocking object         | At value 1: block   At value 0: release     At value 0: block   At value 1: release |
| Blocking object value before first call | <u>0</u> • 1                                                                        |

| Output pattern<br>On block                | Do not send message     Transmit block value [see above, Output value if blocking active] |
|-------------------------------------------|-------------------------------------------------------------------------------------------|
| On release (with 2 seconds release delay) | [send value for current logic status]                                                     |

### Monitoring

If necessary, activate the input monitoring. Set which inputs are to be monitored, at which intervals the inputs are to be monitored and what value the "monitoring status" should have, if the monitoring period is exceeded without a feedback being given.

| Use input monitoring                    | <u>No</u> • Yes                        |  |  |
|-----------------------------------------|----------------------------------------|--|--|
| Input monitoring                        | •1•2•3•4                               |  |  |
|                                         | •1+2•1+3•1+4•2+3•2+4•3+4               |  |  |
|                                         | •1+2+3•1+2+4•1+3+4•2+3+4               |  |  |
|                                         | • <u>1 + 2 + 3 + 4</u>                 |  |  |
| Monitoring period                       | 5 s • • 2 h; <u>1 min</u>              |  |  |
| Output behaviour on exceeding the moni- | Do not send message                    |  |  |
| toring time                             | • Send value exceeding [= value of the |  |  |
|                                         | parameter "monitoring period"]         |  |  |

# 5.15. AND logic connection inputs

Do not use

Logic input 1

Logic input 1 inverted

Logic input 2

Logic input 2 inverted

Logic input 3

Logic input 3 inverted

Logic input 4

Logic input 4 inverted

Logic input 5

Logic input 5 inverted

Logic input 6

Logic input 6 inverted

Logic input 7

Logic input 7 inverted

Logic input 8

Logic input 8 inverted

Logic input 9

Logic input 9 inverted

Logic input 10

Logic input 10 inverted

Logic input 11

Logic input 11 inverted

Logic input 12

Logic input 12 inverted

Logic input 13

Logic input 13 inverted

Logic input 14

Logic input 14 inverted

Logic input 15

Logic input 15 inverted

Logic input 16

Logic input 16 inverted

Temperature sensor malfunction ON

Temperature sensor malfunction OFF

Humidity sensor malfunction ON

Humidity sensor malfunction OFF

Motion detector test output

Motion detector test output inverted

Motion detector slave output

Motion detector slave output inverted

Motion detector master 1 output

Motion detector master 1 output inverted

Motion detector master 2 output

Motion detector master 2 output inverted

Motion detector master 3 output

Motion detector master 3 output inverted

Motion detector master 4 output

Motion detector master 4 output inverted

Switching output 1 Temperature

Switching output 1 Temperature inverted

Switching output 2 Temperature

Switching output 2 Temperature inverted

Switching output 3 Temperature

Switching output 3 Temperature inverted

Switching output 4 Temperature

Switching output 4 Temperature inverted

Switching output 1 Humidity

Switching output 1 Humidity inverted

Switching output 2 Humidity

Switching output 2 Humidity inverted

Switching output 3 Humidity

Switching output 3 Humidity inverted

Switching output 4 Humidity

Switching output 4 Humidity inverted

Switching output coolant temperature

Switching output coolant temperature inverted

Ambient climate is comfortable

Ambient climate is uncomfortable

Comfort temperature controller active

Comfort temperature controller inactive Standby temperature controller active Standby temperature controller inactive Eco temperature controller active Eco temperature controller inactive Frost protection temperature controller active Frost protection temperature controller inactive Heating 1 temperature controller active Heating 1 temperature controller inactive Heating 2 temperature controller active Heating 2 temperature controller inactive Cooling 1 temperature controller active Cooling 1 temperature controller inactive Cooling 2 temperature controller active Cooling 2 temperature controller inactive Humidity controller dehumidification 1 active Humidity controller dehumidification 1 inactive Humidity controller dehumidification 2 active Humidity controller dehumidification 2 inactive Humidity controller humidification active Humidity controller humidification 1 inactive

### 5.15.1. Connection inputs of the OR logic

The OR logic connection inputs correspond to those of the AND logic. In addition, the following inputs are available for the OR logic:

Switching output AND logic 1
Switching output AND logic 1 inverted
Switching output AND logic 2
Switching output AND logic 2 inverted
Switching output AND logic 3
Switching output AND logic 3 inverted
Switching output AND logic 4
Switching output AND logic 4

