

KNXT-AP

Temperature Sensor

Item number 70121

1.	Description	3
1.1.	Technical specifications	3
2.	Installation and commissioning	4
2.1.	Installation notes	
	Location	
2.3.	Mounting and connection	5
	2.3.1. Layout	
	2.3.2. Connection of the sensor	5
2.4.	Notes on mounting and commissioning	6
3.	Maintenance	6
4.	Transfer protocol	7
4.1.	List of all communication objects	
5.	Setting parameters	10
5.1.	Behaviour on power failure/ restoration of power	10
5.1.		10
5.1. 5.2.	Behaviour on power failure/ restoration of power	10 10
5.1. 5.2. 5.3.	Behaviour on power failure/ restoration of power	10 10 10
5.1. 5.2. 5.3.	Behaviour on power failure/ restoration of power	10 10 10 11
5.1. 5.2. 5.3. 5.4.	Behaviour on power failure/ restoration of power General settings Temperature measured value Temperature threshold values	10 10 10 11 11
5.1. 5.2. 5.3. 5.4.	Behaviour on power failure/ restoration of power General settings	10 10 10 11 11 13
5.1. 5.2. 5.3. 5.4.	Behaviour on power failure/ restoration of power General settings Temperature measured value Temperature threshold values 5.4.1. Temperature threshold values 1, 2, 3, 4 Temperature PI control	10 10 10 11 11 13
5.1. 5.2. 5.3. 5.4. 5.5.	Behaviour on power failure/ restoration of power General settings Temperature measured value Temperature threshold values 5.4.1. Temperature threshold values 1, 2, 3, 4 Temperature PI control 5.5.1. Heating control level 1/2	10 10 10 11 11 13 15
5.1. 5.2. 5.3. 5.4. 5.5.	Behaviour on power failure/ restoration of power General settings Temperature measured value Temperature threshold values 5.4.1. Temperature threshold values 1, 2, 3, 4 Temperature PI control 5.5.1. Heating control level 1/2 5.5.2. Cooling control level 1/2	10 10 10 11 11 13 15 17 21
5.1. 5.2. 5.3. 5.4. 5.5.	Behaviour on power failure/ restoration of power General settings Temperature measured value Temperature threshold values 5.4.1. Temperature threshold values 1, 2, 3, 4 Temperature PI control 5.5.1. Heating control level 1/2 5.5.2. Cooling control level 1/2 Logic	10 10 10 11 11 13 15 17 21

Installation, inspection, commissioning and troubleshooting of the device must only be carried out by a competent electrician.

This manual is amended periodically and will be brought into line with new software releases. The change status (software version and date) can be found in the contents footer. If you have a device with a later software version, please check

www.elsner-elektronik.de in the menu area "Service" to find out whether a more up-todate version of the manual is available.

Clarification of signs used in this manual

Safety advice.

Safety advice for working on electrical connections, components,

etc.

DANGER!

... indicates an immediately hazardous situation which will lead to

death or severe injuries if it is not avoided.

WARNING!

... indicates a potentially hazardous situation which may lead to

death or severe injuries if it is not avoided.

CAUTION!

... indicates a potentially hazardous situation which may lead to

trivial or minor injuries if it is not avoided.

ATTENTION! ... indicates a situation which may lead to damage to property if it is

not avoided.

ETS

In the ETS tables, the parameter default settings are marked by

underlining.

1. Description

The **Temperature Sensor KNX T-AP** measures temperature in indoor and outdoor areas. The sensor can receive an external measured value via the bus and process it with the own data to an overall temperature (mixed value).

The **KNX T-AP** provides four switching outputs with adjustable threshold values as well as additional AND and OR logic gates. The sensor has got a PI controller for heating and cooling.

Functions:

- Measurement of temperature
- Mixed value from own measured value and external value (proportions can be set in percentage)
- PI controller for heating (one or two step) and cooling (one or two step)
- 4 switching outputs with adjustable threshold values (Threshold values can be set by parameter or via communication objects)
- 4 AND and 4 OR logic gates with each 4 inputs. Every switching incident as well as 8 logic inputs in the form of communication objects may be used as inputs for the logic gates. The output of each gate may optionally be configured as 1 bit or 2 x 8 bits

Configuration is made using the KNX software ETS. The **product file** can be downloaded from the Elsner Elektronik website on **www.elsner-elektronik.de** in the "Service" menu.

1.1. Technical specifications

Housing	Plastic material, sensor sleeve metal
Colour	Grey
Mounting	On-wall
Protection category	IP 65
Dimensions	approx. $65 \times 93 \times 38$ (W × H × D, mm)
Weight	approx. 70 g
Ambient temperature	Operation -30+85°C, Storage -55+125°C
Operating voltage	KNX bus voltage
Bus current	max. 5.5 mA, max. 15 mA when programming LED is active
Data output	KNX +/- bus terminal plug
BCU type	Own micro controller
PEI type	0
Group addresses	max. 184
Allocations	max. 184
Communication objects	80
Measurement range temperature	-30+80°C

Resolution (temperature)	0.1°C
Accuracy (temperature)	±1°C at -30+80°C

The product conforms with the provisions of EU directives.

2. Installation and commissioning

2.1. Installation notes

Installation, testing, operational start-up and troubleshooting should only be performed by an electrician.

CAUTION! Live voltage!

There are unprotected live components inside the device.

- National legal regulations are to be followed.
- Ensure that all lines to be assembled are free of voltage and take precautions against accidental switching on.
- Do not use the device if it is damaged.
- Take the device or system out of service and secure it against unintentional use, if it can be assumed, that risk-free operation is no longer guaranteed.

The device is only to be used for its intended purpose. Any improper modification or failure to follow the operating instructions voids any and all warranty and guarantee claims.

After unpacking the device, check it immediately for possible mechanical damage. If it has been damaged in transport, inform the supplier immediately.

The device may only be used as a fixed-site installation; that means only when assembled and after conclusion of all installation and operational start-up tasks and only in the surroundings designated for it.

Elsner Elektronik is not liable for any changes in norms and standards which may occur after publication of these operating instructions.

2.2. Location

The sensor is designed for surface mounting. When selecting an installation location, please ensure that the measurement results are affected as little as possible by external influences. Possible sources of interference include:

- Direct sunlight
- Drafts from windows and doors
- Warming or cooling of the building structure on which the sensor is mounted,
 e.g. due to sunlight, heating or cold water pipes

Connection lines which lead from warmer or colder areas to the sensor

Temperature variations from such sources of interference must be corrected in the ETS in order to ensure the specified accuracy of the sensor (temperature offset).

For outdoor installation it must be ensured that a 60 cm gap is left below the sensor in order to prevent it from being snowed during snowfall.

The sensor must be mounted vertically. The measurement probe and the cable outlet must point downwards.

2.3. Mounting and connection

2.3.1. Layout



Fig. 1 Opened casing, board

Fig. 2 Rear view with dimensioning of openings for mounting

- 1 Slot for KNX terminal +/-
- 2 Programming button for teaching the instrument
- 3 Programming LED
- 4 Cable entry with threaded joint
- 5 Temperature sensor tip

2.3.2. Connection of the sensor

Remove the screwed on cover. Lead the KNX bus connection cable through the cable entry on the bottom of the casing and connect the bus +/- to the terminal provided for this purpose. Screw the cover back on.

2.4. Notes on mounting and commissioning

Do not open the device if water (rain) might ingress: even some drops might damage the electronic system.

After the bus voltage has been applied, the device will enter an initialisation phase lasting a few seconds. During this phase no information can be received or sent via the bus.

3. Maintenance

Always isolate the device from the voltage supply for servicing and cleaning.

The device must regularly be checked for dirt twice a year and cleaned if necessary. In case of severe dirt, the sensor may not work properly anymore.

ATTENTION

The device can be damaged if significant volumes of water penetrate the housing.

Do not clean with high pressure cleaners or steam jets.

4. Transfer protocol

4.1. List of all communication objects

Abbreviation flags:

C Communication

R Read

W Write

T Transfer

U Update

No.	Name	Function	DPT	Flags
0	Outside temperature reading	Input	9,001	C W
1	Inside temperature reading	Output	9,001	CRT
2	Overall temperature reading	Output	9,001	CRT
3	Min./max. temperature value request	Input	1,017	C W
4	Minimum temperature reading	Output	9,001	CRT
5	Maximum temperature reading	Output	9,001	CRT
6	Reset min./max. temperature value	Input	1,017	C W
7	Temperature sensor defect	Output	1,001	CRT
9	Temp. threshold value 1: Absolute value	Input / Output	9,001	CRWTU
10	Temp. threshold value 1: (1:+ 0:-)	Input	1,006	CW
11	Temp. threshold value 1: Switching output	Output	1,001	CRT
12	Temp. threshold value 1: Switching output block	Input	1,006	CW
13	Temp. threshold value 2: Absolute value	Input / Output	9,001	CRWTU
14	Temp. threshold value 2: (1:+ 0:-)	Input	1,006	C W
15	Temp. threshold value 2: Switching output	Output	1,001	CRT
16	Temp. threshold value 2: Switching output block	Input	1,006	CW
17	Temp. threshold value 3: Absolute value	Input / Output	9,001	CRWTU
18	Temp. threshold value 3: (1:+ 0:-)	Input	1,006	C W
19	Temp. threshold value 3: Switching output	Output	1,001	CRT
20	Temp. threshold value 3: Switching output block	Input	1,006	CW
21	Temp. threshold value 4: Absolute value	Input / Output	9,001	CRWTU
22	Temp. threshold value 4: (1:+ 0:-)	Input	1,006	C W
23	Temp. threshold value 4: Switching output	Output	1,001	CRT
24	Temp. threshold value 4: Switching output block	Input	1,006	CW

No.	Name	Function	DPT	Flags
25	Temp. controller: Switching object (0:Heating 1:Cooling)	Input	1,002	CW
26	Temp. controller: Current setpoint	Output	9,001	CRT
27	Temp. controller: Blocking object	Input	1,006	CW
28	Temp. controller: Setpoint, daytime Heating	Input / Output	9,001	CRWTU
29	Temp. controller: Setpoint, daytime Heating (1:+ 0:-)	Input	1,002	CW
30	Temp. controller: Setpoint, daytime Cooling	Input / Output	9,001	CRWTU
31	Temp. controller: Setpoint, daytime Cooling (1:+ 0:-)	Input	1,002	CW
32	Temp. controller: Control variable, heating (level 1)	Output	5,001	CRT
33	Temp. controller: Control variable, heating (level 2)	Output	5,001	CRT
34	Temp. controller: Control variable, heating (level 2)	Output	1,001	CRT
35	Temp. controller: Control variable, cooling (Level 1)	Output	5,001	CRT
36	Temp. controller: Control variable, cooling (level 2)	Output	5,001	CRT
		_		
37	Temp. controller: Control variable, cooling (level 2)	Output	1,001	CRT
38	Temp. controller: Night-time reduction activation	Input	1,003	C W
39	Temp. controller: Heating setpoint, night	Input / Output	9,001	CRWTU
40	Temp. controller: Heating setpoint, night (1:+ 0:-)	Input	1,002	CW
41	Temp. controller: Cooling setpoint, night	Input / Output	9,001	CRWTU
42	Temp. controller: Cooling setpoint, night (1:+ 0:-)	Input	1,002	CW
43	Temp. controller: Heating 1 (1=ON 0=OFF)	Output	1,001	CRT
44	Temp. controller: Heating 2 (1=ON 0=OFF)	Output	1,001	CRT
45	Temp. controller: Cooling 1 status (1=ON 0=OFF)	Output	1,001	CRT
46	Temp. controller: Cooling 2 status (1=ON 0=OFF)	Output	1,001	CRT
47	Temp. controller: Window status (0: CLOSED 1: OPEN)	Input	1,019	CW

No.	Name	Function	DPT	Flags
78	Logic input 1	Input	1,006	C W
79	Logic input 2	Input	1,006	C W
80	Logic input 3	Input	1,006	C W
81	Logic input 4	Input	1,006	C W
82	Logic input 5	Input	1,006	C W
83	Logic input 6	Input	1,006	CW
84	Logic input 7	Input	1,006	C W
85	Logic input 8	Input	1,006	C W
86	AND logic 1: 1-bit	output	1,001	CRT
87	AND logic 1: 8-bit output A	Output	5,010	CRT
88	AND logic 1: 8-bit output B	Output	5,010	CRT
89	AND logic 2: 1-bit	output	1,001	CRT
90	AND logic 2: 8-bit output A	Output	5,010	CRT
91	AND logic 2: 8-bit output B	Output	5,010	CRT
92	AND logic 3: 1-bit	output	1,001	CRT
93	AND logic 3: 8-bit output A	Output	5,010	CRT
94	AND logic 3: 8-bit output B	Output	5,010	CRT
95	AND logic 4: 1-bit	output	1,001	CRT
96	AND logic 4: 8-bit output A	Output	5,010	CRT
97	AND logic 4: 8-bit output B	Output	5,010	CRT
98	OR logic 1: 1-bit	output	1,001	CRT
99	OR logic 1: 8-bit output A	Output	5,010	CRT
100	OR logic 1: 8-bit output B	Output	5,010	CRT
101	OR logic 2: 1-bit	output	1,001	CRT
102	OR logic 2: 8-bit output A	Output	5,010	CRT
103	OR logic 2: 8-bit output B	Output	5,010	CRT
104	OR logic 3: 1-bit	output	1,001	CRT
105	OR logic 3: 8-bit output A	Output	5,010	CRT
106	OR logic 3: 8-bit output B	Output	5,010	CRT
107	OR logic 4: 1-bit	output	1,001	CRT
108	OR logic 4: 8-bit output A	Output	5,010	CRT
109	OR logic 4: 8-bit output B	Output	5,010	CRT
110	Software version	Output	217,001	CRT

5. Setting parameters

5.1. Behaviour on power failure/ restoration of power

Behaviour following a failure of the bus power supply:

The device sends nothing.

Behaviour on bus restoration of power and following programming or reset:

The device sends all outputs according to their send behaviour set in the parameters with the delays established in the "General settings" parameter block.

5.2. General settings

Since the application is used for several devices, the first settings are device-specific. Please ensure that the following settings are selected for the **KNX T-AP**

Use parameters and objects for the humidity sensor	No
Type of logic	Logic for temperature sensor
Use parameters and objects for display	No

Set the basic data transfer characteristics and select whether or not malfunction objects should be sent.

Send delays after power-up and programming for:		
Readings	<u>5 s</u> • • 2 h	
Threshold values and switching outputs	<u>5 s</u> • • 2 h	
Setpoints and control variables	5 s • 2 h; <u>10 s</u>	
Logic outputs	5 s • 2 h; <u>10 s</u>	
Maximum message rate	 1 message per second 5 messages per second 20 messages per second 	
Use malfunction object	<u>No</u> • Yes	

5.3. Temperature measured value

Use Offsets to adjust the readings to be sent.

Offset in 0.1°C	-5050; <u>0</u>
-----------------	-----------------

The unit can calculate a **mixed value** from its own reading and an external value. Set the mixed value calculation if desired.

Use external reading	Yes • No
Ext. Measured value portion of the total reading	5% • 10% • • <u>50%</u> • • 100%
Send internal and total reading	do not send send periodically send on change send on change and periodically
On change of (if sent on change)	2% • <u>5%</u> • 10% • 25% • 50%
Send cycle (if sent periodically)	<u>5 s</u> • • 2 h

Note: If an external portion is used, all of the following settings (threshold values, etc.) are related to the overall reading!

The **minimum and maximum readings** can be saved and sent to the bus. Use the "Reset temperature (and/or humidity) min./max. value" objects to reset the values to the current readings.

Use min. and max. values	Yes • <u>No</u>
--------------------------	-----------------

The values are not retained after a reset.

5.4. Temperature threshold values

Activate the threshold values that you want to use here. The **Temperature Sensor KNX T-AP** provides four threshold values.

Use threshold value 1/2/3/4	Yes • No
	100 110

5.4.1. Temperature threshold values 1, 2, 3, 4

Threshold value

Set the threshold values directly in the application program using parameters, or define them via the bus using a communication object.

Threshold value setpoint using parameter:

Set the threshold values and hysteresis directly.

Threshold value setpoint using	Parameter • Communication objects
Threshold value in 0.1°C	-300 800; <u>200</u>
Hysteresis of the threshold value in %	0 50; <u>20</u>

Threshold value setpoint using a communication object:

Beforehand, enter how the threshold value will be received from the bus. Basically, a new value can be received, or simply a command to increase or decrease.

During initial commissioning, a threshold value must be defined which will be valid until the first call with a new threshold value. For units which have already been taken into service, the last communicated threshold value can be used. Basically, a temperature range is given in which the threshold value can be changed (object value limit).

A set threshold value will be retained until a new value or a change is transferred. The current value is saved in EEPROM, so that this is retained in the event of a power supply failure and will be available once the power supply is restored.

Threshold value setpoint using	Parameter • Communication objects
The last communicated value should	not be retained be retained after power restoration be retained after power restoration and programming
Start threshold value in 0.1°C valid until first call	-300 800; <u>200</u>
Type of threshold value change	Absolute value • Increase/decrease
Interval (upon increase/decrease change)	0.1°C • • <u>1°C</u> • • 5°C
Hysteresis of the threshold value in %	0 50; 20

Switching output

Set the behaviour of the switching output when a threshold value is exceeded/undercut. The output switching delay can be set using objects or directly as a parameter.

When the following conditions apply, the output is (TV = Threshold value)	 TV above = 1 TV - Hyst. below = 0 TV above = 0 TV - Hyst. below = 1 TV below = 1 TV + hysteresis above = 0 TV below = 0 TV + hysteresis above = 1
Switching delay from 0 to 1	<u>None</u> • 1 s • 2 s • 5 s • 10 s • • 2 h
Switching delay from 1 to 0	None • 1 s • 2 s • 5 s • 10 s • • 2 h
Switching output sends	 on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Send switching output in the cycle of (is sent only if "periodically" is selected)	<u>5 s</u> • 10 s • 30 s • 2 h

Blocking

The switching output can be blocked using an object. Define specifications here for the behaviour of the output when blocked.

Use switching output block	<u>No</u> • Yes
Analysis of the blocking object	At value 1: block At value 0: release
	At value 0: block At value 1: release

Blocking object value before first Call	<u>0</u> • 1
Switching output behaviour	
On blocking	• Do not send message • send 0 • send 1
On release (with 2 seconds release delay)	[Dependent on the "Switching output sends" setting]

The behaviour of the switching output on release is dependent on the value of the parameter "Switching output sends" (see "Switching output")

Switching output sends on change	Do not send messageSend switching output status
Switching output sends on change to 1	 Do not send message if switching output = 1 → send 1
Switching output sends on change to 0	 Do not send message if switching output = 0 → send 0
Switching output sends on change and periodically	Send switching output status
Switching output sends on change to 1 and periodically	if switching output = 1 → send 1
Switching output sends on change to 0 and periodically	if switching output = 0 → send 0

5.5. Temperature PI control

Activate the control if you want to use it.

Use control	<u>No</u> • Yes
-------------	-----------------

General control

Define the type of control. Heating and/or cooling may be controlled in two levels.

Type of control	Single level heating Dual-level heating Single-level cooling Dual-level cooling Single-level heating + single-level cooling Dual-level heating + single-level cooling Dual-level heating + single-level cooling
	Dual-level heating + dual-level cooling

Then configure a temperature control **block** using the blocking object.

Behaviour of the blocking object with value	1 = Blocking regulation
	0 = Releasing regulation
	0 = Blocking regulation
	1 = Releasing regulation

Specify when the current control variables are to be sent to the bus. Periodic transmission is safer if a message does not reach a recipient. You may also set up periodical monitoring by the actuator with this setting.

Send control variable	on change on change and periodically
Send cycle (is sent only if "periodically" is selected)	5 s 2 h

The status object reports the current status of the control variable (0% = OFF, >0% = ON) and may for example be used for visualisation, or to switch off the heating pump as soon as the heating is switched off.

Send status object(s)	 on change on change to 1 on change to 0 on change and periodically on change to 1 and periodically on change to 0 and periodically
Send cycle (is sent only if "periodically" is selected)	5 s 2 h

Set the way in which switching from heating to cooling is to take place.

Switching between heating and cooling	By means of dead zone By means of switching object
Dead zone between heating and cooling (in 0.1°C) (when switched by means of a "dead zone")	1 100; <u>50</u>
Value of the switching object before first call (when switched by means of a switching object)	<u>0</u> • 1

If switching occurs by means of a dead zone, cooling control starts at current temperature >= setpoint + dead zone

Controller setpoint

The setpoint may be adjusted via parameters or communication objects.

Specified setpoint using	Parameter • Communication object	
--------------------------	----------------------------------	--

If the setpoint is set via parameters:

Set the setpoint for heating and/or cooling.

Specified setpoint using	Parameter
Setpoint (heating) in 0.1°C	-300 800
Setpoint (cooling) in 0.1°C	-300 800

If the setpoint is set via communication object:

A starting setpoint value is defined as well as a temperature range in which the setpoint value may be changed.

Specified setpoint using	Communication object
The last communicated value should	 not be retained be retained after power restoration be retained after power restoration and programming (not to be used for first commissioning)
Start setpoint (heating) in 0.1°C valid until first call (only if the last retained value is "not" retained, or retained "after power restoration")	-300 800; <u>200</u>
Object value limit (min) in 0.1°C	-300 800; <u>140</u>
Object value limit (max) in 0.1°C	-300 800; <u>250</u>
Start setpoint (cooling) in 0.1°C valid until first call (only if the last retained value is "not" retained, or retained "after power restoration")	-300 800; <u>200</u>
Object value limit (min) in 0.1°C	-300 800; <u>140</u>
Object value limit (max) in 0.1°C	-300 800; <u>250</u>
Type of setpoint change	Absolute value Increase / Decrease
Interval (only when "increasing/decreasing")	0.1°C • 0.2°C • 0.3°C • 0.4°C • 0.5°C • <u>1°C</u> • 2°C • 3°C • 4°C • 5°C

5.5.1. Heating control level 1/2

If a heating control mode is configured, one or two setting sections for the heating levels are displayed.

In the 1st level, heating is controlled by a PI control, which allows to either enter control parameters or select predetermined applications.

In the 2nd level (therefore only in case of 2-level heating), heating is controlled via a PI or a 2-point-control.

In level 2, the setpoint difference between the two levels must also be specified, i.e. below which setpoint deviation the second level is added.

Setpoint difference between 1st and 2nd level (in 0.1°C) (for level 2)	0100; <u>40</u>
Control type (for level 2, no common control variables)	• 2-point-control • PI control

	• 1 bit object • 8 bit object
common control variables)	

PI control with control parameters:

This setting allows individual input of the parameters for PI control.

Control type	• PI control
Setting of the controller by	Controller parameter
	specified applications

Specify the deviation from the setpoint value at which the maximum control variable value is reached, i.e. the point at which maximum heating power is activated.

The reset time shows how quickly the controller responds to deviations from the setpoint value. In case of a short reset time, the control responds with a fast increase of the control variable. In case of a long reset time, the control responds somewhat less urgently and needs longer until the necessary control variable for the setpoint value deviation is reached.

You should set the time appropriate to the heating system at this point (observe manufacturer's instructions).

Maximum control variable is reached at setpoint/actual difference of	1°C • 2°C • 3°C • 4°C • 5 °C
Reset time in min.	1255; <u>30</u>

Now specify what should be sent when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating level, e.g. for floor heating.

On release, the control variable follows the rule again.

When blocked, the control variable shall	• not be sent • send a specific value
Value (in %) (if a value is sent)	<u>0</u> 100

PI control with predetermined application:

This setting provides fixed parameters for frequent applications.

Control type	• PI control
Setting of the controller by	Controller parameter specified applications
Application	Warm water heating Floor heating Convection unit Electric heating
Maximum control variable is reached at setpoint/actual difference of (in °C)	Warm water heating: 5 Floor heating: 5 Convection unit: 4 Electric heating: 4

Reset time (in min.)	Warm water heating: 150 Floor heating: 240	
	Convection unit: 90 Electric heating: 100	

Now specify what should be sent when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating level, e.g. for floor heating.

On release, the control variable follows the rule again.

When blocked, the control variable shall	not be sent send a specific value
Value (in %) (if a value is sent)	<u>0</u> 100

2-point-control (only level 2):

2-point-control is used for systems which are only set to ON or OFF.

Control type	• 2-point-control
(is determined at a higher level for com-	
mon control variables)	

Enter the hysteresis that prevents frequent on/off switching of temperatures in the threshold range.

Hysteresis in 0.1°C	0100; 20

If separate control variables are used, select whether the control variable of the 2nd level is a 1 bit object (on/off) or an 8 bit object (on with percentage/off).

Control variable is a	• 1 bit object • 8 bit object
Value (in %) (for 8 bit object)	0 <u>100</u>

Now specify what should be sent when the control is blocked. Set a value greater 0 (=OFF) to receive a basic heating level, e.g. for floor heating. On release, the control variable follows the rule again.

When blocked, the control variable shall	• not be sent • send a specific value
Value (in %) only if a value is sent	<u>0</u> 100

5.5.2. Cooling control level 1/2

If a cooling control mode is configured, one or two setting sections for the cooling levels are displayed.

In the 1st level, cooling is controlled by a PI control in which either control parameters can be entered or predetermined applications can be selected.

In the 2nd level (therefore only for 2-level cooling), cooling is controlled via a PI or a 2-point-control.

In level 2, the setpoint deviation between the two levels must also be specified, i.e. above which setpoint value deviation the second level is added.

Setpoint difference between 1st and 2nd level (in 0.1°C) (for level 2)	0100; <u>40</u>
Control type (for level 2, no common control variables)	• 2-point-control • PI control
Control variable is a (for level 2 with 2-point controlling, no common control variables)	• 1 bit object • 8 bit object

PI control with control parameters:

This setting allows individual input of the parameters for PI control.

Control type	• PI control
Setting of the controller by	Controller parameter
	specified applications

Specify the deviation from the setpoint value which reaches maximum variable value, i.e. the point at which maximum cooling power is activated.

The reset time shows how quickly the controller responds to deviations from the setpoint value. In case of a short reset time, the control responds with a fast increase of the control variable. In case of a long reset time, the control responds somewhat less urgently and needs longer until the necessary control variable for the setpoint value deviation is reached. You should set the time appropriate to the cooling system at this point (observe manufacturer's instructions).

Maximum control variable is reached at setpoint/actual difference of	1°C • 2°C • 3°C • 4°C • 5 °C
Reset time in min.	1255; <u>30</u>

Now specify what should be sent when the control is blocked.

On release, the control variable follows the rule again.

When blocked, the control variable shall	• not be sent • send a specific value
Value (in %) (if a value is sent)	<u>0</u> 100

PI control with predetermined application:

This setting provides fixed parameters for a cooling ceiling

Control type	• PI control
Setting of the controller by	• Controller parameter • specified applications
Application	Cooling ceiling

Maximum control variable is reached at setpoint/actual difference of (in °C)	Cooling ceiling: 5
Reset time (in min.)	Cooling ceiling: 30

Now specify what should be sent when the control is blocked.

On release, the control variable follows the rule again.

When blocked, the control variable shall	• not be sent • send a specific value
Value (in %) (if a value is sent)	<u>0</u> 100

2-point-control (only level 2):

2-point-control is used for systems which are only set to ON or OFF.

Control type	• 2-point-control
is determined at a higher level for common	
variables	

Enter the hysteresis that prevents frequent on/off switching of temperatures in the threshold range.

Hysteresis (in 0.1°C)	0100; <u>20</u>

If separate control variables are used, select whether the control variable of the 2nd level is a 1 bit object (on/off) or an 8 bit object (on with percentage/off).

Control variable is a	• 1 bit object • 8 bit object
Value (in %) (for 8 bit object)	0 <u>100</u>

Now specify what should be sent when the control is blocked.

On release, the control variable follows the rule again.

When blocked, the control variable shall	• not be sent • send a specific value
Value (in %) (if a value is sent)	<u>0</u> 100

Night reduction

Use night reduction	No • Yes	
---------------------	----------	--

Decide when night reduction is to be activated.

,	• 1 = active 0 = inactive • 0 = active 1 = inactive
	• 0 = active 1 = illactive

Activation object value before first call	<u>0</u> • 1
Specified setpoint using	Parameter • Communication object

If the setpoint is set via parameters:

Set the setpoint for heating and/or cooling.

Specified setpoint using	Parameter
Setpoint heating in 0.1°C (if the heating regulator is being used)	-300 800; <u>180</u>
Setpoint cooling in 0.1°C (if the cooling regulator is being used)	-300 800; <u>260</u>

If the setpoint is set via communication object:

A starting setpoint value is defined as well as a temperature range in which the setpoint value may be changed.

Specified setpoint using	Communication object
The last communicated value should	 not be retained be retained after power restoration be retained after power restoration and programming (not to be used for first commissioning)
Start setpoint heating in 0.1°C valid until first call (if the heating regulator is being used and only if the last retained value is "not" retained, or retained "after power restoration")	-300 800
Limitation of object value H(min)\r\n in 0.1°C	-300 800
Limitation of object value H(max)\r\n in 0.1°C	-300 800
Start setpoint cooling in 0.1°C valid until first call (if the cooling regulator is being used and only if the last retained value is "not" retained, or retained "after power restoration")	-300 800
Limitation of object value C(min)\r\n in 0.1°C	-300 800
Limitation of object value C(max)\r\n in 0.1°C	-300 800
Type of setpoint change	Absolute value Increase / Decrease
Interval (only when "increasing/decreasing")	0.1°C • 0.2°C • 0.3°C • 0.4°C • 0.5°C • 1°C • 2°C • 3°C • 4°C • 5°C

Frost/heat protection

1	Use frost/heat protection	No • Yes
	·	l

Set the setpoint for heating (frost protection) and/or cooling (heat protection) and adjust the activation delay. The delay allows you to leave the building before the controls switch to frost/heat protection mode.

Setpoint heating in 0.1°C (if the heating regulator is being used)	-300 800
Activation delay (after opening windows)	none • 1 s 2 h
Setpoint cooling in 0.1°C (if the cooling regulator is being used)	-300 800
Activation delay (after opening windows)	none • 1 s 2 h
Window status before first call	Closed • Open

5.6. Logic

The device provides 8 communication objects for logic inputs, four AND and four OR logic gates.

Activate the communication objects of the logic inputs.

Logici input communication objects do not releas	e • <u>release</u>
--	--------------------

Activate the required logic outputs.

AND logic

AND logic 1	not active • active
AND logic	not active • active
AND logic 4	not active • active

OR logic

OR logic 1	not active • active
OR logic	not active • active
OR logic 4	not active • active

5.6.1. AND logic 1-4 and OR logic outputs 1-4

The same setting options are available for AND and OR logic.

Each logic output may transmit one 1-bit or two 8-bit objects. Determine what the out put should send if logic = 1 and logic = 0.

1. / 2. / 3. / 4. Input	do not use Communication object logic inputs 18 Communication object logic inputs 18 inverted all switching events that the device provides (see the chapter Connection inputs for AND or OR logic)
Logic output sends	never sends sends one 1-bit object sends two 8-bit objects

Set the starting values for various situations:

If the logic output sends one 1-bit object:

If logic = 1 ==> object value	<u>1</u> •0
If logic = 0 ==> object value	1 • <u>0</u>

If the logic output sends two 8-bit objects:

If logic = 1 ==> Object A value	0 255; <u>127</u>
if logic = 1 ==> object B value	<u>0</u> 255
If logic = 0 ==> Object A value	0 255; <u>127</u>
If logic = 0 ==> Object B value	<u>0</u> 255

Set the output send pattern.

Communication object logic X sends	 on change of logic on change of logic to 1 on change of logic to 0 on change of logic and periodically on change of logic to 1 and periodically on change of logic to 0 and periodically
Send periodically every (if sent periodically)	<u>5 s</u> • 10 s • 30 s • 2 h

5.6.2. AND logic connection inputs

Do not use
Communication object logic input 1
Communication object logic input 1 inverted
Communication object logic input 2
Communication object logic input 2 inverted
Communication object logic input 3
Communication object logic input 3 inverted
Communication object logic input 4
Communication object logic input 4 inverted

Communication object logic input 5
Communication object logic input 5 inverted
Communication object logic input 6
Communication object logic input 6 inverted
Communication object logic input 7
Communication object logic input 7 inverted
Communication object logic input 8
Communication object logic input 8 inverted
Temperature threshold value 1
Temperature threshold value 1 inverted:
Temperature threshold value 2
Temperature threshold value 2 inverted:
Temperature threshold value 3
Temperature threshold value 3 inverted:
Temperature threshold value 4
Temperature threshold value 4 inverted:
Sensor malfunction
Sensor malfunction inverted

5.6.3. OR logic connection inputs

The OR logic connection inputs are the same as those for the AND logic. In addition the following inputs are available for the OR logic:

AND logic output 1
AND logic output 1 inverted
AND logic output 2
AND logic output 2 inverted
AND logic output 3
AND logic output 3 inverted
AND logic output 4
AND logic output 4 inverted

Sohlengrund 16 75395 Östelsheim Germany