IntesisBox[®] KNX

Modbus RTU master

User's Manual

© Intesis Software S.L. All Rights Reserved.

Information in this document is subject to change without notice. The software described in this document is furnished under a license agreement or nondisclosure agreement. The software may be used only in accordance with the terms of those agreements. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or any means electronic or mechanical, including photocopying and recording for any purpose other than the purchaser's personal use without the written permission of Intesis Software S.L.

Intesis Software S.L. Milà i Fontanals, 1 bis, 1º 08700 Igualada Spain

TRADEMARKS All trademarks and tradenames used in this document are acknowledged to be the copyright of their respective holders.

Gateway for the integration of Modbus RTU slave devices with KNX TP-1 (EIB) control systems.

Three models are available for this gateway, with the following **Order Codes**:

IBOX-KNX-MBRTU-100

Tiny version with capacity of 254 Modbus slave devices and 100 internal points.

IBOX-KNX-MBRTU-A

Basic version with capacity of 254 Modbus slave devices and 500 internal points.

IBOX-KNX-MBRTU-B

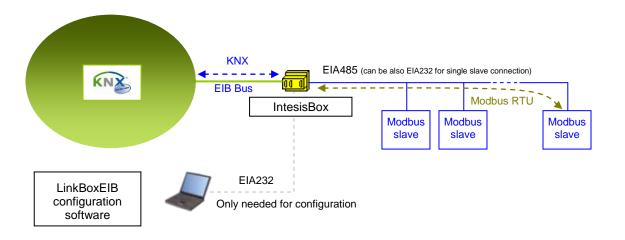
Extended version with capacity of 254 Modbus slave devices and 3000 internal points.

INDEX

1.	Description	5
1.1	Introduction	5
1.2	Functionality	6
1.3	Capacity of IntesisBox	7
2.	KNX System	8
2.1	Description	8
2.2	Points definition	9
3.	Modbus interface of IntesisBox	. 10
3.1	Description	. 10
3.2	Points definition	
4.	Integration of IntesisBox [®] in ETS	
5.	LinkBoxEIB. Configuration & monitoring tool for IntesisBox KNX series.	. 14
5.1	Introduction	. 14
5.2	Project definition	. 14
5.3	Connection configuration	. 19
5.4	Signals configuration	. 22
5.	4.1 Remember	. 28
5.	4.2 Restrictions	. 28
5.5	Saving the configuration and sending it to IntesisBox	. 29
5.6	Signals viewer	. 30
5.7	System commands	31
5.8	Files	. 32
6.	Setup process and troubleshooting	. 33
6.1	Pre-requisites	. 33
6.2	Setup procedure	. 33
7.	Connections	36
8.	Mechanical & electrical characteristics	. 38
9.	Dimensions	39

1. Description

1.1 Introduction


This document describes the integration of KNX TP-1 (EIB) systems with Modbus RTU slave devices or systems using the gateway *IntesisBox KNX Modbus RTU master*.

This document assumes that the user is familiar with KNX and Modbus technology and technical terms.

From now on, and with the aim of easy the read of this document, just the word "IntesisBox" will be used instead of the full gateway model description "IntesisBox KNX Modbus RTU master".

The aim of this integration is to make accessible signals and resources of any Modbus RTU slave device (for example Merlin Gerin electricity meters) from any KNX TP-1 (EIB) control system.

For this, IntesisBox acts as a Modbus RTU master device in its Modbus interface, reading/writing points of the Modbus slave device(s), and offering this point's values through its KNX interface, acting in the KNX system as one more KNX device of the system. The readings of the Modbus slave device(s) is performed by IntesisBox by automatic continuous polling.

Integration of Modbus and KNX using IntesisBox KNX - Modbus RTU master gateway

1.2 Functionality

The integration operation is as follow:

From the Modbus system point of view, after the start up process, IntesisBox reads continuously the points configured to be read in the Modbus slave devices, and updates in its memory all the values received from the Modbus system.

Every one of the mentioned Modbus points is associated to a *KNX group address*, with this, all the Modbus system is seen as *one more KNX device* from the KNX system point of view, with the same configuration and operation characteristics.

When a change in any Modbus point occurs, a write telegram is sent to the KNX bus, of the associated *KNX Group*. See details in section 4.

When a telegram is received from the KNX bus, of a *KNX Group address* associated to a Modbus point, a message is sent immediately to the corresponding Modbus device to perform the corresponding action.

In the continuous polling of the Modbus devices, if a non response of the Modbus device is detected, the corresponding virtual signal inside IntesisBox will be activated indicating communication error with the Modbus device. These virtual signals indicating communication status in real time with the Modbus devices are also accessible from KNX, like the rest of the points of IntesisBox.

1.3 Capacity of IntesisBox

Element	Max. (Tiny version)	Max. (Basic version)	Max. (Extended version)	Notes
Type of Modbus slave devices				Those supporting <i>Modbus RTU</i> protocol. Communication over EIA485 network (2-Wire) or EIA232 point to point.
Points	100	500	3000	Maximum number of points that can be defined into IntesisBox.
Modbus slave devices	254	254	254	Maximum number of Modbus slave devices allowed by IntesisBox.

There are three different versions of $IntesisBox^{(m)} KNX - Modbus RTU master$ with different capacity every one of them.

- Tiny version with capacity of 100 points and 254 slave devices. *Ref.: IBOX-KNX-MBRTU-100.*
- Basic version with capacity of 500 points and 254 slave devices. *Ref.: IBOX-KNX-MBRTU-A.*
- Extended version with capacity of 3000 points and 254 slave devices. *Ref.: IBOX-KNX-MBRTU-B.*

2. KNX System

In this section, a common description for all IntesisBox KNX series gateways is given, from the point of view of KNX system which is called from now on *internal system*. The Modbus system is also called from now on *external system*.

2.1 Description

IntesisBox KNX connects directly to the KNX TP-1 (EIB) bus and behaves as one more devices into the KNX system, with the same configuration and operational characteristics as other KNX devices.

Internally, the circuit part connected to the KNX bus is opto-isolated from the rest of the electronics.

IntesisBox KNX receives, manages and sends all the telegrams related to its configuration to the KNX bus.

On receiving telegrams of KNX Groups associated to the external system (Modbus in this case), the corresponding messages are sent to the external system to maintain both systems synchronised in every moment.

When a change in a signal of the external system is detected, a telegram is sent to the KNX bus (of the associated KNX group) to maintain both systems synchronised in every moment.

The status of the KNX bus is checked continuously and, if a bus drops down is detected, due to a failure in the bus power supply for example, when the KNX bus is restored again, IntesisBox will retransmit the status of all the KNX groups marked as "*T*" *Transmit*. Also the *Updates* of the groups marked as "*U*" *Update* will be performed. The behaviour of IntesisBox for every point is determined by the flags configured per every point. See details in section 4.

2.2 Points definition

Every signal of the external system (Modbus) to use has the following KNX properties:

Property	Description
Signal	Signal's Description. Only for informative purposes, allows identifying the signal comfortably.
EIS (Datapoint)	It's the KNX data type used to code the signal's value. It will depend on the type of signal associated in the external system in every case. In some integration it is selectable, in others it is fixed due to the intrinsic characteristics of the signal.
Group	It's the KNX group to which the signal is associated. It is also the group to which the read (R), write (W), transmit (T) and update (U) flags are applied. Is the sending group.
Listening addresses	They are the addresses that will actuate on the signal, apart of the Group address.
R	Read flag. If activated, read telegrams of this group will be allowed.
W	Write flag. If activated, write telegrams of this group will be allowed.
т	Transmit flag. If activated, when the signal's value changes, due to a change in the external system, a write telegram of the group will be sent to the KNX bus.
U	Update flag. If activated, on IntesisBox start-up or after a KNX bus reset detection, read telegrams of the sending group will be sent to the KNX bus, and the value received will be sent to the external system as if it has been received by a write telegram.
Active	If activated, the signal will be active in IntesisBox, if not, the behaviour will be as if the signal is not defined. Allows deactivating signals without the need of delete them for possible future use.

These properties are common for all IntesisBox KNX series gateways, although every integration may have specific properties according to the type of signals of the external system in every case.

3. Modbus interface of IntesisBox

3.1 Description

Modbus communication is characterised by the co-existence of just one master and one or more slave devices in a given network, all of them interconnected, and every slave with a unique address into the network. Different types of networks and network topologies are allowed. The more commonly used for Modbus RTU communication are: point to point communication using EIA232, and point to multipoint communication using EIA485 (2-wire or 4-wire).

IntesisBox acts as the master in the Modbus network, and the other Modbus devices connected to the network must be always slave devices. Up to 254 slave devices can be defined in IntesisBox. The types of networks supported by IntesisBox are:

- EIA485 2-wire (up to 254 slave devices are allowed by IntesisBox, thus up to 254 slave devices in the same EIA485 network can be integrated with just one IntesisBox, installing additional line repeaters where necessary).
- EIA232 (for single slave integration).

Modbus slave devices are normally characterised by their communication parameters (baud rate, data bits, parity), some of them sometimes configurable depending on the device, and their predefined *registers address map*, this address map specifies the address, type and characteristics of every internal point (commonly called *register*) of the Modbus slave device, these registers being accessible using Modbus RTU protocol.

Communication parameters of IntesisBox's Modbus interface (baud rate, data bits, stop bits, parity) are fully configurable to adapt to any slave device. Of course IntesisBox and all the slave devices connected to the Modbus network must use the same communication parameters.

Modbus RTU protocol defines different types of function codes to use to read/write different type of registers that can be found in Modbus devices, and also different data formats to encode values. See below (section 3.2) all the function codes and data formats supported by IntesisBox's Modbus interface.

Also the data encoding used for 16 bits registers (big-endian or little-endian) can be configured in IntesisBox's Modbus interface. This is the byte order for data encoding (MSB..LSB or LSB..MSB). This data encoding, although is specified as big-endian in Modbus protocol specification, it varies depending on manufacturer/type of slave.

All this gives great flexibility to integrate a wide range of Modbus slave devices that can be found in the market.

3.2 Points definition

Every point defined in IntesisBox has the following Modbus features associated to it:

Feature	Description							
Modbus Device	Modbus device to which belongs the point, from a list of Modbus slave							
	devices that can be defined in IntesisBox (up to 254).							
	For every Modbus device defined, a virtual signal is created							
	automatically in IntesisBox to inform about the communication with							
	the device, this signal is available also from the KNX interface like the							
	rest of the points.							
Function code	One of the following Modbus function codes can be used:							
	• 1- Read coils.							
	2- Read discrete inputs.							
	3- Read holding registers.							
	4- Read input registers.							
	• 5- Write single coil.							
	• 6- Write single register.							
	• 15- Write multiple coils.							
	16- Write multiple registers.							
Data anding	One of the following Medbus data seding formats can be used:							
Data coding format	One of the following Modbus data coding formats can be used:							
Tormat	Generic:							
	• 1 bit.							
	 16 bits unsigned. 							
	 16 bits signed. 							
	 16 bits signed (two's complement). 							
	 32 bits unsigned. 							
	• 32 bits signed.							
	• 32 bits signed (two's complement).							
	• 32 bits IEEE.							
	• 32 bits IEEE inverted.							
	Device Specific:							
	Bit coded into 16 bits register.							
	• 32 bits IEEE CIAT.							
	• 32 bits Mod10K unsigned.							
	• 48 bits Mod10K unsigned.							
	• 64 bits Mod10K unsigned.							
	• 32 bits Mod10K signed.							
	• 48 bits Mod10K signed.							
	• 64 bits Mod10K signed.							
	• 32 bits Mod1k ION.							
	32 bits ION signed.							
	• 32 bits Invertomatic.							

Register address	The Modbus register address inside the slave device for the point.
Bit inside the	Bit inside the Modbus register (optional). The gateway allows bit decoding from generic 16 bits input/holding Modbus registers.
register	Bit coding into 16 bit input/holding Modbus registers is used for some devices to encode digital values into this type of registers, being these registers normally accessible using Modbus function codes 3 and 4 (read holding/input registers).

4. Integration of IntesisBox[®] in ETS

As explained in previous section the IntesisBox[®] is configured with the LinkBoxEIB but in some projects it might be needed to integrate the gateway in the ETS project, for example to allow the line couplers have a correct configuration of their filter tables. To do so a Dummy device can be used in ETS to simulate the IntesisBox and associate also to this dummy device all group addresses used in IntesisBox

In <u>http://www.intesis.com/down/eib/Dummy Intesis.zip</u> an ETS project containing a Dummy device can be downloaded for this purpose. To use it with your ETS project follow these steps:

- 1) Import the pr3/pr5 file in ETS and follow the instructions
 - ETS3: menu File \rightarrow Import.
 - ETS4: Projects →Import projects
- 2) Open the project named Dummy Intesis.
- 3) In this Dummy Intesis project, in topology tree, you will find the device "Dummy Intesis". Select this device (click on it) and copy it (menu Edit→Copy)
- 4) Open your target project, select the desired line and paste the device there (menu Edit \rightarrow Paste).

Once that is done the group adresses can be configured. To do so the same addresses configured in the LinkBoxEIB need to be written in the right data type.

5. LinkBoxEIB. Configuration & monitoring tool for IntesisBox KNX series.

5.1 Introduction

LinkBoxEIB is a Windows compatible software tool developed specifically to monitor and configure IntesisBox KNX series gateways. It is possible to configure all external protocols available for IntesisBox KNX and to maintain different customer's configurations based on a LinkBoxEIB project for every different installation. Maintaining always on hard disk a copy of the last configuration files for every external protocol and customer, that is to say for every project.

From LinkBoxEIB, as well as configure the integration signals list and connection parameters for every external protocol, it is permitted also to select the serial port to use to connect to IntesisBox and the use of some tools for monitoring and debugging de device. Some of these tools will be explained in this document but only some of them, the rest of available debugging tools and commands will not be explained here because they are for exclusive use under the recommendations of Intesis Software technical support.

LinkBoxEIB allows configuring all IntesisBox KNX series independently of the external system or protocol used. For every external system, LinkBoxEIB has a specific configuration window. Periodically, new free versions of LinkBoxEIB are released incorporating the latest developed integrations for external systems.

5.2 Project definition

The first step to do in LinkBoxEIB, for a new installation, is to create the installation's project giving a descriptive name to it. When you create a project, a new folder is created with the name of the project containing the configuration files needed depending on the external protocol selected for the project. It is strongly recommended that you create a new project for every installation, if not, overwriting of configuration files of previous installations using the same external protocol may occur, loosing the configuration data for those previous installations. The projects folder is located in AppFolder\ProjectsEIB, where AppFolder is the installation folder of LinkBoxEIB (by default C:\Program Files\Intesis\LinkBoxEIB). Inside the projects folder, a new folder will be created for every project defined in LinkBoxEIB with the files needed for the project.

When you open LinkBoxEIB, the project selection window will appear inviting you to select a project or to create a new one. A demo project for every external protocol supported is provided with the standard installation of LinkBoxEIB.

You can create a brand new project, which will create a blank project (only basic parameters will be already configured), or you can select a demo project based on the external protocol desired and create a new project based on this demo project selected (all the configuration of the demo project will be copied into the new project created).

© Intesis Software S.L. - All rights reserved This information is subject to change without notice IntesisBox[®] is a registered trademark of Intesis Software SL

14 / 39

IntesisBox[®] KNX - Modbus RTU master

Project/Folder	IntesisBox	Description
🗐 Demo Airzone	Airzone	1 CS - 5 Zonas
🗐 Demo BACnet	Bacnet	BACnet/IP
🗐 Demo Mitsubishi	MitsubishiG50	1 unidad G50 - 2 Grupos de máquinas activados
🛃 Demo ModBus	Modbus	ModBus RTU

Project selection window

To create a new project, select a project using the same external protocol you want to use in the new project and push *New* button. You will be prompted to create a copy of the selected project (useful for similar installations) or create a brand new one.

If you select *Yes,* you will be prompted to specify a name and a description for the new project that will contain a copy of the configuration of the selected one.

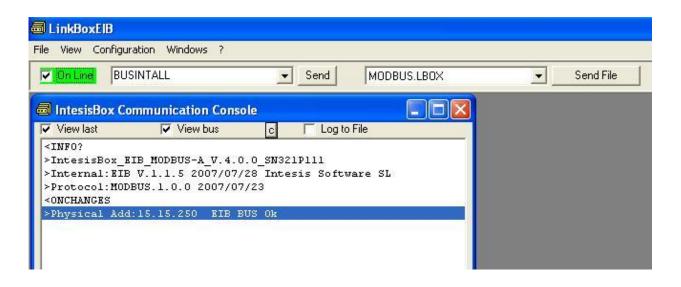
If you select *No*, you can specify a name, a description and an external protocol to use from the list of available external protocols. This will create a brand new project based in the external protocol specified.

Project	MyCustomerBuilding	
Description	Building with KNX-Modbus RTU	J integration
IntesisBox	Modbus	Y

On *Accept*, a new folder will be created inside the projects folder with the name given to the project, this folder will contain the template configuration files if the project is a brand new one, or a copy of the configuration files if it is a copy of a selected one.

A description of the files created for a Modbus RTU protocol based project can be found in section *Files* below in this document.

From all the possibilities of LinkBoxEIB, only changes in configuration for the integration and configuration file generation can be performed while disconnected from IntesisBox (working off-line), allowing you to do these tasks more comfortably in the office. Before any monitoring or downloading action to IntesisBox can be performed, the connection between IntesisBox and the PC running LinkBoxEIB must be established (working on-line). To do so follow these steps:


- 1. Make sure IntesisBox is powered-up and correctly connected to the KNX system via the EIB bus and to the Modbus RTU system via the EIA232 or EIA485 connection (consult details for connection and pin assignments in section *Connections* of this document).
- 2. Connect a free PC serial port to IntesisBox's serial port marked as *PC Console*. (Use the standard serial cable supplied with IntesisBox or makes your own cable following the pin assignments specified in section *Connections* in this document).
- 3. Select in LinkBoxEIB the PC serial port used for the connection to IntesisBox. Use menu Configuration -> Connection.

Serial F	ort —	
, I	COM 2	•
Б	57000	
	57600	

4. Check the checkbox *off-line* under the menu bar (it will change automatically to *on-line*) and LinkBoxEIB will ask for INFO about the IntesisBox connected to it via the serial connection, if the connection is ok then IntesisBox will respond with its identification

(this can be monitored in the *IntesisBox Communication Console* window, as showed below).

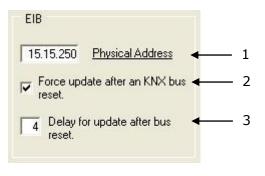
Once connected to IntesisBox, all the options of LinkBoxEIB are fully operative.

To monitor the communication between IntesisBox and the KNX system, select the menu *View -> Bus -> EIB*. The *EIB communication Viewer* window will be opened. This window shows in real time all the communication frames between IntesisBox and the KNX system as well as debugging messages referent to the internal protocol (KNX) sent by IntesisBox.

✓ View last	View bus c	🗌 🗌 Registrar a	fichero
TX:bc,ff,f rx:8b,	a,8,5,e2,0,80,	0,29,	^
TX:bc,ff,f rx:8b,	a,8,5,e2,0,80,	4,2d,	
TX:bc,ff,f rx:8b,	a,8,5,e2,0,80,	8,21,	
TX:bc,ff,f rx:8b,	a,8,5,e2,0,80,	4,2d,	
TX:bc,ff,f rx:8b,	a,8,5,e2,0,80,	2,2Ъ,	
TX:bc,ff,f rx:8b,	a,8,5,e2,0,80,	1,28,	
Contraction of the second second	a,8,5,e2,0,80,	4,2d,	

To monitor the communication between IntesisBox and the external system (*Modbus* in this case), select the menu *View -> Bus -> External system*. The *External protocol communication viewer* window will be opened. This window shows in real time all the communication frames between IntesisBox and the Modbus slave devices as well as debugging messages referent to external protocol (Modbus) sent by IntesisBox.

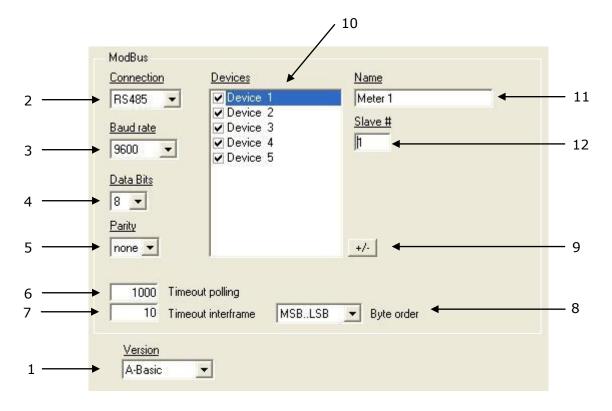
View last	🔽 View bus	£.c	
rx:1,3,2,0,4,	b9,87,		~
TX:1,1,0,1,0,	l,ac,a,		
rx:1,1,1,0,51	.,88,		
TX:1,2,0,2,0,	1,18,a,		
rx:1,2,1,0,al	,88,		
TX:1,3,0,3,0,	1,74,a,		
rx:1,3,2,0,4,	b9,87,		
TX:1,1,0,1,0,	l,ac,a,		
rx:1,1,1,0,51	,88,		
TX:1,2,0,2,0,	1,18,a,		
rx:1,2,1,0,al	,88,		
TX:1,3,0,3,0,	1,74,a,		
rx:1,3,2,0,4,	b9,87,		
TX:1,1,0,1,0,	l,ac,a,		
rx:1,1,1,0,51	,88,		
TX:1,2,0,2,0,	1,18,a,		
rx:1,2,1,0,al	,88,		-
TX:1,3,0,3,0,	1 74 9		


To configure the integration connection parameters, and the points list, select menu *Configuration -> IntesisBox*. The *Modbus Configuration* window will be opened.

5.3 Connection configuration

Select the Connection tab to configure the connection parameters.

Two kinds of information are configured using this window: the parameters of the KNX interface, and the parameters of the Modbus RTU interface.


KNX interface configuration parameters:

KNX configuration

- 1. Enter the physical address desired for IntesisBox inside the KNX network.
- 2. Check this if you want IntesisBox to force the readings in KNX of those points configured with "U" or "U2" flag after a KNX bus reset detection.
- 3. Delay (in seconds) to wait before perform the readings in KNX of those points configured with "U" or "U2" flag after a KNX bus reset detection (configure it at least to 4 seconds to allow all the devices in the KNX bus to start-up correctly after a bus power failure).

Modbus interface configuration parameters:

1. Select the version of IntesisBox used.

Remember you can identify the version of IntesisBox by the order code printed in the front label:

- **IBOX-KNX-MBRTU-100**. Tiny version supporting up to 254 Modbus slave devices and 100 points.
- **IBOX-KNX-MBRTU-A**. Basic version supporting up to 254 Modbus slave devices and 500 points.
- **IBOX-KNX-MBRTU-B**. Extended version supporting up to 254 Modbus slave devices and 3000 points.

You can identify also the version of IntesisBox by its identification given in response to an INFO command, it is something like this:

IntesisBox_EIB_MODBUS-**100**... -> this is the tiny model.

IntesisBox_EIB_MODBUS-**A**... -> this is the basic model.

IntesisBox_EIB_MODBUS-**B**... -> this is the extended model.

- 2. Type of connection used (EIA232 or EIA485).
- 3. Baud rate used for the communication.
- 4. Data bits used.

- 5. Parity used.
- 6. Timeout (in milliseconds) between two consecutive polling cycles.
- 7. Inter-frame timeout (in milliseconds), some devices need inter-frame delay to communicate properly. Increase this timeout if you experience communication problems with slaves.
- 8. Byte order for data fields inside Modbus telegrams (LSB..MSB or MSB..LSB), it will depend on the slave, consult the slave documentation for details. If unknown just try the two possible choices and see if the values read make sense. This affects to all data fields of all slaves defined.
- 9. Use this button to define the number of Modbus slave devices to communicate to. Up to 254 devices.
- 10. List of Modbus slave devices to communicate to. Check the devices you want to activate. Select a device to configure its properties.

For every Modbus device defined, the following properties must be entered:

- 11. Enter the device name (optional, just for identification purposes).
- 12. Enter the slave number configured in the Modbus device.

5.4 Signals configuration

Select the Signals tab to configure the signals list (the IntesisBox's internal points).

										1	T T	7
nection Signals	\		+	· •	\	•	↓		+			1
Dev Modbus code	Format	Add.	Bit	Description	EIS	Group	Listening addresses	R	W	ΤÚ		Frac
1 0-Communication Erro	or -	1 89		 Communication Error 	1 - Switching (1 bit)	1/0/1		R		T	1-Yes	0
2 2 0-Communication Erro	- n	89		 Communication Error 	1 - Switching (1 bit)	1/0/2		R		T	0-No	0
3 0-Communication Error		39-		 Communication Error 	1 - Switching (1 bit)	1/0/3		R		T	0-No	0
4 0-Communication Error		59-		 Communication Error 	1 - Switching (1 bit)	1/0/4		R		T	0-No	0
5 0-Communication Erro				 Communication Error 	1 - Switching (1 bit)	1/0/5		R		T	0-No	0
6 1 1-Read digital outputs	s 1 - 1 bit	1			1 - Switching (1 bit)	1/0/5		R	W	T	1-Yes	0
7 1 2-Read digital inputs	1 - 1 bit	1			1 - Switching (1 bit)	1/0/7		R		T	1-Yes	0
8 1 3-Read analog register	ers 4 - 16 bits sig C2	1			1 - Switching (1 bit)	1/0/8		R	W	T	1-Yes	0
9 1 3-Read analog register	ers 4 - 16 bits sig C2	2			5 - Float (16 bit)	1/1/2		R		T	1-Yes	1
10 1 3-Read analog registe	ers 4 - 16 bits sig C2	3			6 - Scaling (8 bit)	1/1/3		R		T	1-Yes	0
11 1 3-Read analog registe	ers 4 - 16 bits sig C2	4			9 - Float IEEE (32 bit)	1/1/6		R		T	1-Yes	0
12 1 3-Read analog registe	ers 4 · 16 bits sig C2	5			10 - Counter (16 bit)	1/1/7		R		T	1-Yes	0
13 1 3-Read analog registe	ers 7 - 32 bits sig C2	6			11 - Counter (32 bit)	1/1/8		R		T	1-Yes	0
14 1 3-Read analog registe	ers 4 - 16 bits sig C2	7			14 - Counter (8 bit)	1/1/10		R		T	1-Yes	0
15 1 3-Read analog registe	ers 11 - 16 bits digitals	8	()	1 - Switching (1 bit)	1/0/20		R		T	1-Yes	0
16 1 3-Read analog registe	ers 11 - 16 bits digitals	8	1	1	1 - Switching (1 bit)	1/0/21		R		T	1-Yes	0
17 1 3-Read analog registe	ers 11 - 16 bits digitals	8	2	2	1 - Switching (1 bit)	1/0/22		R		T	1-Yes	0
18 1 4-Read analog inputs	4 - 16 bits sig C2	1			5 - Float (16 bit)	1/0/9		R		T	1-Yes	2
19 1 5-Write 1 digital output	at 1-1 bit	2			1 - Switching (1 bit)	1/0/10			W		1-Yes	0
20 1 6-Write 1 analog regis	ster 4 · 16 bits sig C2	10			5 - Float (16 bit)	1/0/11			W		1-Yes	1
21 1 15-Write multiple digit	alout 1 - 1 bit	3			1 - Switching (1 bit)	1/0/12			W		1-Yes	0
1 10 VAL LUNCH STA	LELL A RELATION	4.4			E FLACHERD	120210			14.7		1	-

1. #. Signal's number (edit not permitted). Every row in the grid corresponds to a signal (point). Signals (rows in the grid) can be added or deleted selecting the desired row and clicking Add or Delete buttons. Deletion action can be executed for a single row or even for some consecutive rows, all the rows selected will be deleted. This column is used only to enumerate the rows in the grid (signals).

- 2. Dev. device number to which belongs the point. Referenced to the list of devices defined in Connection Tab. Note that this is not the slave number configured in the Modbus device itself, it is just the order of the device (from top to bottom) in the devices list.
- 3. Modbus Code. Modbus function code to be used by IntesisBox to read, to write or to read/write the point in the slave device. Consult the Modbus slave documentation to know what function codes are supported to read and write points. For points of type read only you should specify function codes 1, 2, 3 or 4. For points of type write only, you should specify function codes 5, 6, 15 or 16. For points of type read/write, see below how to configure *read/write* points. Edit using the mouse right-button-click pop-up menu available on the column as showed in the figure below. One of the showed function codes can be selected:

0-Communication Error 1-Read digital outputs 2-Read digital inputs 3-Read analog registers 4-Read analog inputs 5-Write 1 digital output 6-Write 1 analog register 15-Write multiple digital output 16-Write multiple analog registers

Function code *0* - *Communication error* is a virtual function code associated to the *communication error* virtual signals, it can not be selected for normal use. The rest are general Modbus function codes that can be freely selected.

Consult documentation of Modbus device(s) to integrate for information about function codes supported to read/write their internal points.

4. *Format.* Modbus data format for the point. Edit using the mouse right-button-click popup menu available on the column as showed in the figure below. One of the showed data formats can be selected:

> 1 - 1 bit 2 - 16 bits uns 3 - 16 bits sig 4 - 16 bits sig C2 5 - 32 bits uns 6 - 32 bits sia 7 - 32 bits sig C2 8 - 32 bits IEEE 9 - 32 bits IEEE inv 10 - 32 bits IEEE ciat 11 - 16 bits digitals 12 - 32 bits Mod10k uns 13 - 48 bits Mod10k uns 14 - 64 bits Mod10k uns 15 - 32 bits Mod10k sig 16 - 48 bits Mod10k sig 17 - 64 bits Mod10k sig 18 - 32 bits Mod10k ION 19 - 32 bits sig ION 20 - 32 bits Invertomatic

Formats 1 to 9 are generic Modbus data formats, formats 10 to 20 are *Device specific*. Note that *Format* cell will be filled according to the *Modbus Code* selected for the point, only some of the possible Format values can be selected depending on Modbus Code previously selected.

Consult documentation of Modbus device(s) to integrate for information about Modbus data format of the points desired to integrate

5. *Address*. It's the Modbus register address to use by IntesisBox to read/write the point into the Modbus device.

Consult documentation of Modbus device(s) to integrate for information about register addresses of the points desired to integrate

This information is subject to change without notice $IntesisBox^{$ [®] is a registered trademark of Intesis Software SL

© Intesis Software S.L. - All rights reserved

IntesisBox[®] KNX - Modbus RTU master

- 6. *Bit.* Bit used inside the Modbus register to encode the digital value for the point. The gateway allows bit decoding from generic 16 bits input/holding Modbus registers. Bit coding into 16 bit input/holding Modbus registers is used for some devices to encode digital values into this type of registers, being these registers normally accessible to be read/write using Modbus function codes 3 and 4 (read holding/input registers). Specifying bit number is only necessary if data format *11- 16 bits digitals* have been selected.
- 7. *Description*. Signal's description. Used to describe the signal, for identification purposes.
- 8. *EIS*. KNX data type (Data point) to encode the signal's value. Edit using the mouse right-button-click pop-up menu available on the column. Possible values are: switching (1 bit), dimming (4 bit), float (16 bit), scaling (8 bit), drive control (1 bit), priority (2 bit), float IEEE (32 bit), counter (8 bit), counter (16 bit), counter (32 bit), ASCII char (8 bit).
- 9. *Group*. Main EIB group address for the signal. Format: P/I/S or P/S. Flags *R*,*W*,*T*,*U* explained below will only apply for this main EIB group address, not for listening addresses (if defined). Is the sending group address.
- 10. *Listening addresses*. EIB group addresses that will be listen by IntesisBox for this signal, that is to say, if IntesisBox receives an EIB telegram with destination one of these listening addresses, then the telegram will be taken into account and the corresponding action will be performed on this signal. Format: P/I/S or P/S, if more than one is entered then they must be separated by comma.
- 11. *R*. Indicates if this signal is allowed to be read from KNX system. Possible values: "R" or blank. "R" means flag activated. Edit using the mouse right-button-click pop-up menu available on the column. Freely configurable, with some necessary restrictions (see below).
- 12. *W*. Indicates if this signal is allowed to be written from KNX system. Possible values: "W" or blank. "W" means flag activated. Edit using the mouse right-button-click pop-up menu available on the column. Freely configurable, with some necessary restrictions (see below).
- 13. *T*. Indicates if this signal will generate a telegram sending to the KNX system following a change of the signal's value, that is to say, any change of value of this signal received from the Modbus device will be transmitted to the KNX system if this flag is activated. Possible values: "T" or blank. "T" means flag activated. Edit using the mouse right-button-click pop-up menu available on the column. Freely configurable, with some necessary restrictions (see below).
- 14. *U*. Indicates if this signal will be updated whenever IntesisBox starts up or after an EIB bus reset. "U" means flag activated for the main EIB group address (a read of the main EIB group address will be performed in the KNX system for the update). "U2" means flag activated for the first listening address defined (a read of the first listening address defined for the point will be performed in the KNX system for the update). Blank means flag not activated. Edit using the mouse right-button-click pop-up menu available on the column. Freely configurable, with some necessary restrictions (see below).
- 15. *Active*. Indicates if the signal is active or not for the integration. Possible values: 0-No, 1-Yes. Edit using the mouse right-button-click menu available on the column.
- 16. *Frac*. Fractional part to consider for the point's value when read/write.

Some devices encode for example temperature values (integer + fractional part) in common 2-bytes Modbus registers (using data format 16 bits signed two's complement for example), the problem of using 2-bytes registers is that no fractional part can be encoded. To avoid this problem, the real value in the device is sent multiplied by 10 as just integer part (a real value of 25.1 will be sent as 251). For this kind of points for example you can specify a value of 1 in *Frac* column, and then the value decoded by

IntesisBox will be divided by 10 and thus will be the real value in the device (including integer and fractional part).

- 17. Some Modbus devices use 0-based register addresses while others use 1-based register addresses in the Modbus communication (for 0-based devices, the register address 100 is specified as 99 in the Modbus communication frames). Select *0-Jbus* if your Modbus devices use 0-based address map (like PLCs), or select *1-Modbus* if your Modbus devices use 1-based address map.
- 18. Buttons to move the selected row (or rows) up or down inside the grid. To move up or down inside the grid a single row or a group of consecutive rows, just select the row or rows using the left button of the mouse and push the desired up or down button. (This can be done also using the key combinations *ALT+arrow up* or *ALT+arrow down* instead of up or down buttons).

<u>KNX flags</u>

All the mentioned KNX Flags (R,W,T,U,U2) related to the KNX part are configurable for every point in IntesisBox, with the following necessary restrictions:

- Points defined with Modbus function codes 1, 2, 3 and 4 (reads) have the following configuration possibilities for KNX flags:
 - Flag T is mandatory (is automatically activated).
 - Flag R is optional.
 - Flag W can be activated only if Modbus function code selected is *1-Read digital outputs* or *3-Read analog registers.*
 - Flags U and U2 are forbidden.
 - If flag W is activated and IntesisBox receives a write request for this group address from KNX, then the associated Modbus function code to write will be used to write the new value received into the Modbus slave device (see below how to configure read/write points).
- Points defined with Modbus function codes 5, 6, 15 and 16 (writes) have the following configuration possibilities for KNX flags:
 - Flags R and T are forbidden.
 - Flag W is mandatory (is automatically activated).
 - Flags U and U2 are optional.

How to configure read/write points

First of all is important to take into account that different names for Modbus function codes are used in technical literature depending on the manufacturer of the Modbus device. The following table shows the equivalence between nomenclature for function codes used by Intesis Software in IntesisBox and the used in Modbus protocol specification.

<u>IntesisBox</u>	Modbus protocol specification
Read digital outputs	Read Coils
Read digital inputs	Read Discrete Inputs
Read analog registers	Read Holding Registers
Read analog inputs	Read Input Registers
Write 1 digital output	Write Single Coil
Write 1 analog register	Write Single Register
Write multiple digital outputs	Write Multiple Coils
Write multiple analog registers	Write Multiple Registers
	Read digital outputs Read digital inputs Read analog registers Read analog inputs Write 1 digital output Write 1 analog register Write multiple digital outputs

Given a point in a Modbus slave device, if this point allows to be read and written, different Modbus function codes must be used for read and for write actions (consult the slave documentation for details of what function codes must be used for read and for write). Use the following criteria for configuration of this kind of points in IntesisBox:

- 1. If the Modbus function code to use for read is *03* and the function code to use for write is *06* (which is very common), then <u>select the function code *3-Read analog registers* in column *Modbus Code* and <u>activate KNX flag W</u>. With this, IntesisBox will use function code 03 for read the point in every polling cycle, and whenever a write request for the point is received from KNX, the new value will be written in the Modbus slave device using function code 06.</u>
- 2. If the Modbus function code to use for read is 01 and the function code to use for write is 05 (which is also very common), then <u>select the function code 1-Read digital outputs</u> in column Modbus Code and <u>activate KNX flag W</u>. With this, IntesisBox will use function code 01 for read the point in every polling cycle, and whenever a write request for the point is received from KNX, the new value will be written in the Modbus slave device using function code 05.
- 3. If the Modbus function code to use for read and the function code to use for write are different than 01-05 or 03-06 (sometimes found with specific devices), then you have to declare two points in IntesisBox to perform the read and the write separately. The way to configure this is better explained using an example.

Imagine you have a device in which a given analog point (register address 100 for example) of type read/write must be read using function code 03 and must be write using function code 16. Let's imagine also that this point must be linked to the KNX group address 1/0/45.

To be able to read and write this Modbus point from KNX using a single group address you have to configure two points into IntesisBox like the following:

Nb	Dev	Modbus Code	Format	Add.	Bit	Description	EIS	Group	Listening add.	R	w	т	U	Active	Frac.
1	1	3-Read analog registers	4 - 16 bits sig C2	100		example of R/W Modbus point	5 - Float (16 bit)	1/0/45		R		т		1-Si	1
2	1	16-Write multiple analog registers	4 - 16 bits sig C2	100		example of R/W Modbus point	5 - Float (16 bit)		1/0/45		W			1-Si	1

The important configuration parameters to obtain the desired functionality are highlighted in green colour, the rest of configuration parameters are irrelevant in this example. Note that both points must have the same Modbus Address and the same Modbus Format.

Useful tips for a more quick and comfortable use and configuration of the signals table:

The columns *Modbus Code, Format, EIS, R, W, T, U* and *Active* can be modified selecting one or just more than one consecutive cells in the same column and using the contextual menu appearing with mouse right button click over the cells selected.

The columns *R*, *W*, *T*, *U* and *Active* can be also modified using mouse-left-button doubleclick over the desired cell.

In columns *Dev, Addr* and *Frac* you can enter the desired value individually per cell or you can auto enumerate some consecutive cells, for this last follow these steps:

- 1. Select using the left mouse button (clicking and dragging) the field (Dev,Addr,Frac) of all the rows in the list to which you want to automatically assign values (must be consecutive rows).
- 2. Click right mouse button over the selected fields and select *Auto Enumeration* option from the pop-up menu that will appear.

Ħ	Dev	Modbus code	Format	Add.	Bit	Description
3	3	0-Communication Error	-	35		- Communication Error
4	4	0-Communication Error		35		Communication Error
5	5	0-Communication Error	-	35		Communication Error
6	1	3-Read analog registers	4 - 16 bits sig C2			
7	1	3-Read analog registers	4 - 16 bits sig C2			
8	1	3-Read analog registers	4 - 16 bits sig C2			
9	1	3-Read analog registers	4 - 16 bits sig C2		A 4	-
10	1	3-Read analog registers	4 - 16 bits sig C2		Auc	o Enumeration
11	1	3-Read analog registers	4 - 16 bits sig C2			
12	1	3-Read analog registers	4 - 16 bits sig C2			
13	1	3-Read analog registers	4 - 16 bits sig C2			
14	1	3-Read analog registers	4 - 16 bits sig C2			
15	1	3-Read analog registers	4 - 16 bits sig C2			
16	1	3-Read analog registers	4 - 16 bits sig C2			
17	1	3-Read analog registers	4 - 16 bits sig C2			
18	1	3-Read analog registers	4 - 16 bits sig C2			
19	1	3-Read analog registers	4 - 16 bits sig C2			
20	1	3-Read analog registers	4 - 16 bits sig C2			
21	1	3-Read analog registers	4 - 16 bits sig C2			
22	1	3-Read analog registers	4 - 16 bits sig C2			
23	1	3-Read analog registers	4 - 16 bits sig C2			

3. Enter the first value to assign.

🗖 Auto Enumer	ration	
Add.		
100	Accept	Cancel

4. Enter the increment between consecutive assignments. For example selecting 100 for the first value and an increment of 1, the values generated will be 100, 101, 102, 103, 104.. and so on. To assign the same value to all the rows (useful to assign the same Device number in the column *Dev* for some consecutive rows) just select the desired value and an increment of 0.

5.4.1 Remember

- If "R" is not activated, the KNX group address could not be read by Read Requests from KNX.
- If "W" is not activated, no write on the group address could be done from KNX, neither on the links (listening addresses).
- If "U" is activated, after IntesisBox start-up or a KNX bus reset, READ Requests will be sent to KNX to update the sending group.
- The groups defined as just links, will take the EIS of the first linked group.
- The data of the groups read from KNX due to read requests between other KNX devices, will be treated as writes on the groups (standard behaviour BCU1).
- The signals that are inputs to KNX must be configured as: T (mandatory), R (optional).
- The signals that are outputs from KNX must be configured as: W (mandatory), U (optional).
- Automatic type conversion is performed by IntesisBox, for example if an EIS5 is received by a group of type EIS1, then it is performed the conversion EIS1=(EIS5<>0), or EIS5=EIS9 and EIS9=EIS5, EIS6=EIS5(0..255), etc.
- It is recommended that listening addresses associated to different groups maintain the same EIS in all the groups, if not, none desired conversions can be performed.
- A write from KNX is propagated to the external system through the group address and also through the listening addresses.
- A write from the external system is NOT propagated to KNX through the listening addresses, but DO update the local sending groups that are used as listening addresses.
- If a sending group is used as listening address with other local sending groups, a write from the external system will update the sending group but not the listening addresses.

5.4.2 Restrictions

- It is allowed group numbers in format P/I/S, P/S or directly the group number coded.
- It is not allowed duplicated sending groups (column Group).
- Group 0 is not allowed, it is used for signals without sending group.
- NO signal is allowed with none of R-W-T-U flags activated.
- Empty groups are allowed, but only if they have just W activated and one or more listening addresses.
- Duplicated groups in the same listening address field are not allowed.
- It is not allowed a listening address that is the same as the sending group (circular reference).
- Listening addresses are not allowed if the flag W is not activated. Without W activated, the listening addresses would not work.
- Only those EIS defined are allowed.

5.5 Saving the configuration and sending it to IntesisBox

When the configuration is finished, click on button *Save* to save it to the project folder on hard disk. You will be prompted to generate the configuration file to send to IntesisBox, if you select *Yes*, the binary file containing the configuration for IntesisBox will be generated and saved also into the project folder.

Once the configuration has been saved and the configuration file for IntesisBox has been generated, to send this configuration file to IntesisBox, click on the button **Send File**. The process of file transmission can be monitored in the IntesisBox Communication Console window. If the file transmission is ok, IntesisBox will reboot automatically with the new configuration loaded.

5.6 Signals viewer

Once IntesisBox is running with the correct configuration, to supervise the status of the configured signals, select menu *View -> Signals*. The Signals Viewer window will be opened. This window shows all the active IntesisBox's signals with its main configuration parameters and its real time value in the column Value. After a reset of IntesisBox or after sending a configuration file to the IntesisBox, all the signal's values will be updated automatically in the signals viewer, in case you connect to the IntesisBox when it is already running, you should press the *Update* button to get updated values, press just once the button to update all the signal values, from this moment the signal values will be maintained updated until the connection is closed.

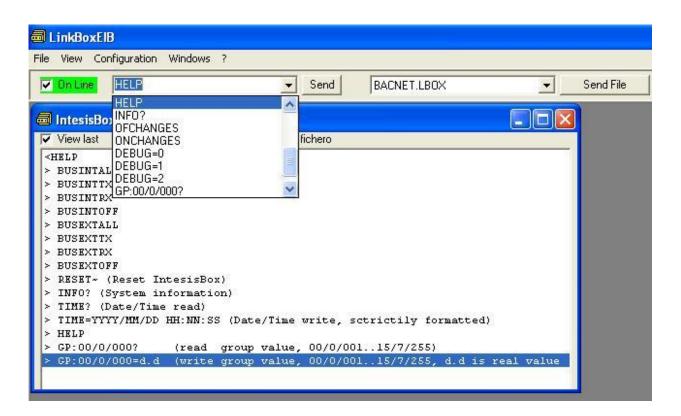
-	Dev.	Cod	I Ident.	Signal	EIS	Group	Listening add	B	W	τT	U Value
1) - Add: 0	Communication Error	1 - Switching (1 bit)	1/0/1		B		T	
2		1 1	1 1 - 1 bit Add: 1		1 - Switching (1 bit)	1/0/5	1			Т	
3		1 2	2 1 - 1 bit Add: 1		1 - Switching (1 bit)	1/0/7	1	B		Т	
4		1 3	3 4 - 16 bits sig C2 Add: 100	example of R/W Modbus point	5 - Float (16 bit)	1/0/45		R		Т	
5		1 16	6 4 - 16 bits sig C2 Add: 10(example of R/W Modbus point	5 - Float (16 bit)		1/0/45		W		
6		1 3	3 4 - 16 bits sig C2 Add: 2		5 - Float (16 bit)	1/1/2	1	R		Т	
7		1 3	3 4 - 16 bits sig C2 Add: 3		6 - Scaling (8 bit)	1/1/3		R		Т	
8		1 3	3 4 - 16 bits sig C2 Add: 4		9 - Float IEEE (32 bit)	1/1/6	1	R		Т	
9		1 3	3 4 - 16 bits sig C2 Add: 5		10 - Counter (16 bit)	1/1/7	1	R		Т	
10		1 3	3 7 - 32 bits sig C2 Add: 6		11 - Counter (32 bit)	1/1/8		R		T	
11		1 3	3 4 - 16 bits sig C2 Add: 7		14 - Counter (8 bit)	1/1/10		R		Т	
12		1 3	3 11 - 16 bits digitals Add: 8		1 - Switching (1 bit)	1/0/20		R		T	
13		1 3	3 11 - 16 bits digitals Add: 8		1 - Switching (1 bit)	1/0/21		R		T	
14		1 3	3 11 - 16 bits digitals Add: 8		1 - Switching (1 bit)	1/0/22	1	R		T	
15		1 4	4 - 16 bits sig C2 Add: 1		5 - Float (16 bit)	1/0/9		R		T	
16		1 5	5 1 - 1 bit Add: 2		1 - Switching (1 bit)	1/0/10			W		
17		1 6	6 4 - 16 bits sig C2 Add: 10		5 - Float (16 bit)	1/0/11			W		
18		1 15	5 1 - 1 bit Add: 3		1 - Switching (1 bit)	1/0/12			W		
19		1 16	6 4 - 16 bits sig C2 Add: 11		5 - Float (16 bit)	1/0/13			W		

The signals viewer can be used although only one system is connected to the IntesisBox, *KNX* or *Modbus*, and is very useful for supervision and test.

It is possible to force a specific value to any signal for test purposes, to do so just double click on the row and select the desired value and Accept in the Data Test window. If the signal has T activated, its value will be updated and a telegram will be sent to KNX indicating the new value, the same way as if it has been received from *Modbus* system. If the signal has W activated, the new value entered will be sent to the external system, Modbus in this case, the same way as if it has been received from *KNX*.

🗖 example of R/W Modbus point 🛛 🛛 🔤					
Grupo EIB: EIS:5 - Float (16 bit)					
32	Accept	<u>C</u> ancel			

© Intesis Software S.L. - All rights reserved This information is subject to change without notice IntesisBox[®] is a registered trademark of Intesis Software SL



http://www.intesis.com info@intesis.com +34 938047134 This tool is very useful to test any of the systems connected to the IntesisBox, KNX and *Modbus* without the need to actuate on the real signals.

The signals viewer window has a button to copy to the Windows Clipboard all the contents of the window (in tab separated text format).

5.7 System commands

LinkBoxEIB includes an option to send to IntesisBox a set of system commands for debugging and control purposes; this list is available in the commands list as shown in the figure below. To send a command to IntesisBox just select it from the list, or type it with the correct format, and press *Enter* or click on button *Send*. IntesisBox will act accordingly with the command received; the process can be monitored in the IntesisBox Communication Console window. The use of some of these commands can be critical for IntesisBox normal operation, having this in mind use only these commands following the recommendations of Intesis Software technical support. A list of the more commonly used commands and the way to use them will be returned by IntesisBox after sending the command HELP.

5.8 Files

LinkBoxEIB saves IntesisBox configuration in the following files inside the project folder:

PROJECT.INI	.ini file containing general information referent to the project
MODBUS.INI	.ini file containing the information referent to the connection
	window and other special adjustments
MODBUS.DAT	Text file (tab separated values) with the signals information (signals list). This file can be edited (with Excel for example) to change the configuration quicker and easier. Later on, when selecting <i>Configuration -> IntesisBox</i> in LinkBoxEIB, if the changes have been made respecting the correct format, all the changes in the configuration done from Excel can be seen in the signals list.
MODBUS.LBOX	Binary file created from the information in the files described above. This is the file really uploaded to IntesisBox.

It is strongly recommended to back up the project folder containing these files in external media, once the installation process is finished. This way you will be able to do future configuration changes in case of reinstallation of LinkBoxEIB due, for example, to a failure of the hard disk in the PC where LinkBoxEIB was previously installed.

The configuration cannot be downloaded from IntesisBox to LinkBoxEIB, only can be uploaded; the upload file MODBUS.LBOX does not contain all the integration information, as for example the signals description.

6. Setup process and troubleshooting

6.1 Pre-requisites

It is necessary to have a KNX TP-1 (EIB) system operative and ready to be connected to the KNX port of IntesisBox.

It is necessary to have the Modbus network connection near IntesisBox with all Modbus slave devices connected to this network.

Connectors, connection cables, and PC for LinkBoxEIB are not supplied by Intesis Software for this standard integration. The items supplied by Intesis Software for this integration are:

- IntesisBox KNX gateway with KNX internal protocol and Modbus RTU master external protocol firmware loaded.
- Console cable. Standard DB9F-DB9M cable 1.8 meters long.
- LinkBoxEIB software.
- Product documentation.

6.2 Setup procedure

- 1. Install LinkBoxEIB on your laptop.
- 2. Install IntesisBox in the desired installation site. The mounting can be on DIN rail or on a stable not vibrating surface (DIN rail mounting inside a metallic industrial cabinet connected to ground is recommended).
- 3. Connect the KNX TP-1 (EIB) bus cable to the port marked as **KNX TP-1 (EIB)** of IntesisBox. (See details for this bus cable in section *Connections* of this document).
- 4. Connect the communication cable coming from the Modbus network to the port marked as **MODBUS** of IntesisBox, use the EIA485 port if the network is EIA485 2-wire, or use the EIA232 port if the connection is point to point to one single slave. (See details for this communication cable in section *Connections* of this document).
- 5. Power up IntesisBox. The supply voltage can be 9 to 30 Vdc or just 24 Vac. You can use also the standard plug-in power supply 220/125VAC-12VDC/300mA supplied with the device (if requested). If not, a power supply with a NEC Class 2 or Limited Power Source (LPS) and SELV rated is to be used. Take care of the polarity of the supply voltage applied.

WARNING! In order to avoid earth loops that can damage IntesisBox and/or any other equipment connected to it, we strongly recommend:

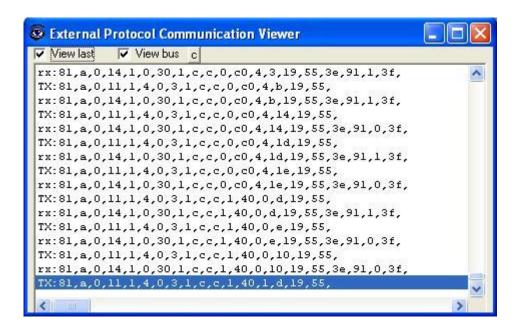
- The use of DC power supplies, floating or with the negative terminal connected to earth. Never use a DC power supply with the positive terminal connected to earth.
- The use of AC power supplies only if they are floating and not powering any other device.
- 6. Connect the communication cable coming from the serial port of your laptop PC to the port marked as **PC Console** of IntesisBox. (See details for this communication cable in section *Connections* of this document).

IntesisBox[®] KNX - Modbus RTU master

7. Open LinkBoxEIB, create a new project selecting a copy of the one named **DEMO Modbus** and give it the name desired, select the serial port used to connect to IntesisBox (menu Configuration -> Connection) and switch working mode to *on-line* (checkbox *off-line/on-line*). The IntesisBox identification must appear in the IntesisBox communication console window as showed below.

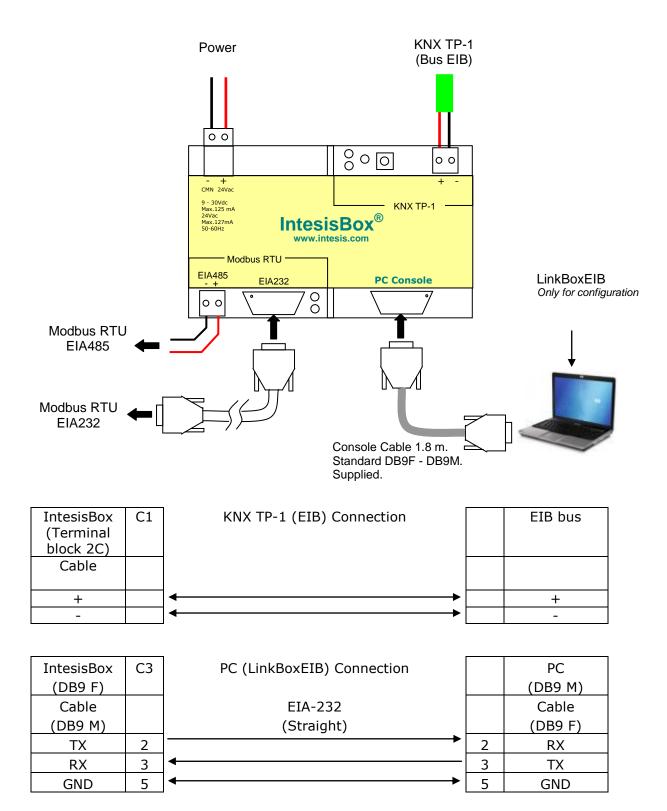
🗐 LinkBoxElB			
File View Configuration Windows ?			
On Line BUSINTALL	✓ Send	MODBUS.LBOX	Send File
IntesisBox Communication Console			
View last View bus <pre> View last View bus </pre> <pre> View bus </pre> View bus View bus <	Intesis Softwa		

8. Open the *EIB Communication Viewer* window (menu View -> Bus -> EIB) and check that there is communication activity, some TX frames and some other rx frames. This means that the communication with the KNX system is ok. In case there is no communication activity between IntesisBox and the KNX system check that KNX bus is operative and well connected to the IntesisBox.


😨 Visor Comunicación EIB	
View last 🔽 View bus 🙄 🔽 Registrar a fichero	
rx:b, TX:bc,ff,ff,8,b,e1,0,81,20, rx:b.	<u>^</u>
TX:bc,ff,ff,8,c,e1,0,81,27, rx:b,	
TX:bc,ff,ff,8,d,e3,0,80,c,9c,b5, rx:8b,	
TX:2, rx:7,	
UART:07 TX:2,	
FX:7, UART:07	
	~

9. Open the *External Protocol Communication Viewer* window (menu View -> Bus -> External system) and check that there is communication activity, some TX frames and some other rx frames as showed in the figure below. This means that the communication with the Modbus slave devices is ok.

© Intesis Software S.L. - All rights reserved This information is subject to change without notice IntesisBox[®] is a registered trademark of Intesis Software SL


http://www.intesis.com info@intesis.com +34 938047134

In case there is no response from the Modbus devices to the frames sent by IntesisBox, check that they are operative and configured with the correct communication parameters and with the correct slave number, check the IntesisBox's Modbus interface connection. See details for the communication cable between IntesisBox and Modbus devices in section *Connections* of this document.

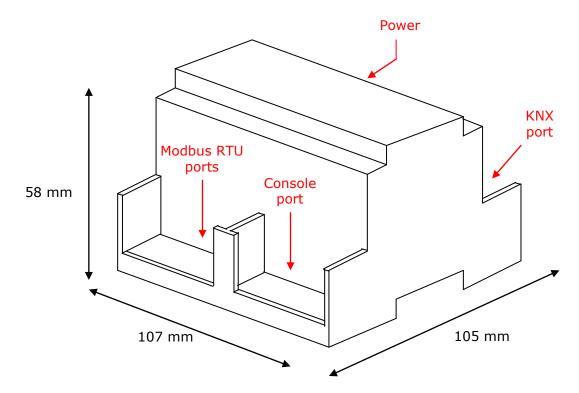
7. Connections

© Intesis Software S.L. - All rights reserved This information is subject to change without notice IntesisBox[®] is a registered trademark of Intesis Software SL

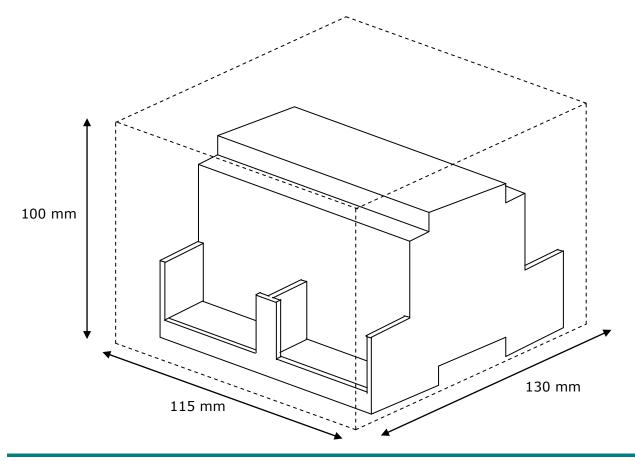
IntesisBox[®] KNX - Modbus RTU master

IntesisBox (DB9 M)	C2	Modbus RTU Connection		Master RTU (DB9 M)
Cable (DB9 F)		EIA-232 (Crossed)		Cable (DB9 F)
RX	2	<	2	RX
TX	3		3	ТХ
GND	5	← →	5	GND
Terminal block 2C		or EIA-485		
TX/RX+	+	└		TX/RX+
TX/RX-	-	▲		TX/RX-

8. Mechanical & electrical characteristics


Enclosure	Plastic, type PC (UL 94 V-0).					
	Dimensions: 107mm x 105mm x 58mm.					
Colour	Light Grey. RAL 7035.					
	9 to 30Vdc +/-10%, Max.: 125mA.					
	24Vac +/-10% 50-60Hz, Max.: 127mA					
Power	Must use a NEC Class 2 or Limited Power Source (LPS) and SELV rated					
	power supply.					
	Plug-in terminal block for power connection (2 poles).					
Terminal wiring (for	Per terminal: solid wires or stranded wires (twisted or with ferrule)					
power supply and	1 core: 0.5mm ² 2.5mm ²					
low-voltage signals)	2 cores: 0.5mm ² 1.5mm ²					
iow-voltage signals)	3 cores: not permitted					
Mounting	Wall.					
Mounting	DIN rail EN60715 TH35.					
Madhua DTU sauta	1 x EIA485. Plug-in screw terminal block (2 poles). SELV					
Modbus RTU ports	1 x EIA232. DB9 male connector (DTE). SELV					
	1 x KNX TP1 (EIB) port opto-isolated. Plug-in terminal bloc (2 poles).					
KNX port	TNV-1					
	1 x Power.					
LED indicators	2 x KNX port activity (Tx, Rx).					
LED indicators	2 x Modbus RTU port activity (Tx, Rx).					
	1 x KNX programming/bus. ¹					
Push buttons	1 x KNX programming. ¹					
Console port	EIA232. DB9 female connector (DCE). SELV					
Configuration	Via console port. ²					
Firmware	Allows upgrades via console port.					
Operational	-40°C to +70°C					
temperature	-40°C (0 +70°C					
Operational	EV/ to 0.50% pap condensing					
humidity	5% to 95%, non condensing					
Protection	IP20 (IEC60529).					
RoHS conformity	Compliant with RoHS directive (2002/95/CE).					
	CE conformity to EMC directive (2004/108/EC) and Low-voltage					
Norms and	directive (2006/95/EC)					
standards	EN 61000-6-2, EN 61000-6-3, EN 60950-1, EN 50491-3					

¹ Not operational for the moment. Reserved for future use.


² Standard cable DB9male-DB9female 1,8 meters long is supplied with the device for connection to a PC COM port for configuring and monitoring the device. The configuration software, compatible with Windows[®] operating systems, is also supplied.

9. Dimensions

Free space recommended installing the device into a cabinet (wall or DIN rail mounting), with spacing enough for external connections:

http://www.intesis.com info@intesis.com +34 938047134

© Intesis Software S.L. - All rights reserved This information is subject to change without notice