

Stand 6/2015

Technical Manual MDT LED Controller

> AKD – 0424V.01 AKD – 0324V.01 AKD – 0224V.01 AKD – 0424VR.01

1 Content

1 Content	2
2 Overview	4
2.1 Overview Devices	4
2.2 Structure & Handling	5
2.3 Usage and Areas of Application	6
2.4 Exemplary circuit diagram	7
2.5 Settings at the ETS-Software	8
2.6 Starting up	8
3 Usage of the "Dimming/Switching" function	9
3.1 Communication Objects	10
3.1.1 Summary and Usage	10
3.1.2 Default settings of the communication objects	14
3.2 Reference ETS-Parameter	15
3.2.1 Channel Activation, Alarm and General functions	15
3.2.2 Handling/ basic functions	
3.2.3 Time functions	19
3.2.4 Staircase light	20
3.2.5 Absolute Values	23
3.2.6 specific Dimming settings	25
3.2.7 Central objects	27
3.2.8 Scene function	28
3.2.9 Automatic function	32
3.2.10 Additional functions	34
4 Controlling RGBW/RGB-Stripes	37
4.1 Communication objects	38
4.1.1 Overview and Usage	38
4.1.2 Standard Einstellungen der Kommunikationsobjekte	44
4.2 Color circle presentation/ Controlling via RGBW	45

4.3 Reference ETS-Parameter	46
4.3.1 Selection of the way of controlling	46
4.3.2 Alarm and General functions	47
4.3.2 LED RGB/RGBW Settings	49
4.3.3 LED RGB/RGBW Sequences	53
4.3.4 LED RGB/RGBW Bit Scenes	60
4.3.5 LED RGB/RGBW Scenes	62
5 Index	66
5.1 List of Illustration	66
5.2 List of Tables	67
6 Attachment	69
6.1 Statutory requirements	69
6.2 Routine disposal	69
6.3 Assemblage	69
6.4 Datasheet	70

2 Overview

2.1 Overview Devices

The Manual refers to the following LED Controller (Order Number respectively printed in bold letters):

- **AKD-0424V.01** RGBW Controller for 12/24V LED Stripes, 3A per channel, Common Anode
 - direct controlling of RGBW- or RGB-Stripes, Min-/Max-Values adjustable, Dimming speeds and transitions adjustable, up to 5 sequences available, scenes for Bit and Byte available
 - alternative controlling of up to three individual 12/24V LED stripes, adjustable per channel with staircase function, Scenes, dimming speeds, On-/Off-Delay, blocking functions...
- **AKD-0324V.01** RGBW Controller for 12/24V LED Stripes, 3A per channel, Common Anode
 - direct controlling of RGBW- or RGB-Stripes, Min-/Max-Values adjustable, Dimming speeds and transitions adjustable, up to 5 sequences available, scenes for Bit and Byte available
 - alternative controlling of up to three individual 12/24V LED stripes, adjustable per channel with staircase function, Scenes, dimming speeds, On-/Off-Delay, blocking functions...
- AKD-0224V.01 LED Controller für 12/24V LED Stripes, 3A je Kanal, Common Anode
 - alternative controlling of up to three individual 12/24V LED stripes, adjustable per channel with staircase function, Scenes, dimming speeds, On-/Off-Delay, blocking functions...
- AKD-0424RV.01 RGBW Controller for 12/24V LED Stripes, 3A per channel, Common Anode, MRDC-Version
 - direct controlling of RGBW- or RGB-Stripes, Min-/Max-Values adjustable, Dimming speeds and transitions adjustable, up to 5 sequences available, scenes for Bit and Byte available
 - alternative controlling of up to three individual 12/24V LED stripes, adjustable per channel with staircase function, Scenes, dimming speeds, On-/Off-Delay, blocking functions...

2.2 Structure & Handling

Figure 1: Structure Hardware

2.3 Usage and Areas of Application

All three designs of the LED Controller contains of a relay output, which is connected to an extra connector. The relay output switches automatically due to the active outputs. If no output is active, the relay is switched off and switches on if at least one output is active. The relay output is designed for switching the power supply of the LED stripes. So unnecessary standby consumption is avoided, have also a look at 2.4 Exemplary circuit diagram.

The LED controller in the 2-fold design is designed for controlling white LED stripes. For controlling these LED stripes, different dimming and time function as well as scene and blocking functions are available. The complete description is available in chapter 3 Usage .

The LED Controller in the 3-fold design is designed for controlling RGB Stripes or 3 individual LED stripes. The controller contains of all function as the 2-fold design. Additional functions for controlling RGB-Stripes in RGB- or HSV-Mode are available. Furthermore extended settings for sequences and scenes are available. The complete description of is available in chapter 4 Controlling RGBW/RGB-Stripes.

The LED controller in the 4-fold design is identical to the 3-fold design, but has an additional channel. So also RGBW-Stripes can be controlled.

2.4 Exemplary circuit diagram

Figure 2: Exemplary circuit diagram, here AKD-0424V.01

2.5 Settings at the ETS-Software

Selection at the product database:

<u>Manufacturer:</u> MDT Technologies <u>Product family:</u> Actuators <u>Product type</u>: Dimming actuators <u>Medium Type:</u> Twisted Pair (TP) <u>Product name:</u> addicted to the used type, e.g.: AKD-0424V.01 <u>Order number:</u> addicted to the used type, e.g.: AKD-0424V.01

2.6 Starting up

After wiring, the allocation of the physical address and the parameterization of every channel follow:

- (1) Connect the interface with the bus, e.g. MDT USB interface
- (2) set bus power up
- (3) Press the programming button at the device(red programming LED lights)
- (4) Loading of the physical address out of the ETS-Software by using the interface(red LED goes out, as well this process was completed successful)
- (5) $\ \ Loading \ of the application, with requested parameterization$
- (6) If the device is enabled you can test the requested functions(also possible by using the ETS-Software)

3 Usage of the "Dimming/Switching" function

If the LED Controller should be used with the normal "Dimming/Switching" function, the following settings must be made in the Menu "Global Settings":

Function selection	Dimming, Switch 4-fold	•

Figure 3: Function Selection 1-10V Dimmer

So the Application for the 1-10V Dimmer with all relevant parameters and communication objects is loaded.

3.1 Communication Objects

3.1.1 Summary and Usage

10

Nr.	Name	Object function	Data type	Direction	Info	Usage	Тір
Centra	al Objects:						
60	Central	Switch	DPT 1.001	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication is shown permanently and allows the controlling of the main function Switch On/Off for all channels with activated central function, which is normally connected to all desired control keys.
61	Central	Dim absolutely	DPT 5.001	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication is shown permanently and allows the controlling of the main function Dim Absolutely for all channels with activated central function, which is normally connected to all desired control keys.
88	Central	Current Alarm	DPT 1.005	send	Actuator sends current state	Visualization, Diagnostics	This communication object sends an alarm (= value 1) when at least one channel has a too high current.
89	Central	Over temperature Alarm	DPT 1.005	send	Actuator sends current state	Visualization, Diagnostics	This communication object sends an alarm (= value 1) when the LED actuator has a too high temperature in the power amplifier.

90	Relay	Switch	DPT 1.001	reveice	Actuator reacts to Incoming-telegram	Push Button, Visu	Communication is shown when channel is selected as switching channel
Object	ts per Channel:						
0	Channel A	Switch	DPT 1.001	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is for controlling the main function Switch On/Off for this channel , which is normally connected to all desired control keys.
1	Channel A	Staircase	DPT 1.001	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is for controlling the main function Staircase for this channel , which is normally connected to all desired control keys.
2	Channel A	Dim relatively	DPT 3.007	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is for controlling the main function Dim Up/Down for this channel , which is normally connected to all desired control keys.
3	Channel A	Dim absolutely	DPT 5.001	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is for controlling the main function Dim absolutely for this channel, which is normally connected to all desired control keys.

4	Channel A	State On/Off	DPT 1.011	sending	Actuator sends current state	For display on Visu, Tableau, and Display	This Communication Object is shown when the channel is active and can be used for showing the switching state On/Off of this channel.
5	Channel A	State Dim value	DPT 5.001	sending	Actuator sends current state	For display on Visu, Tableau, and Display	This Communication Object is only shown after activating in the parameter settings and can be used as status indication. (= Additional function if desired)
6	Channel A	Block 1	DPT 1.003	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is shown when the channel is active and can be used for blocking this channel. (= Additional function if desired)
7	Channel A	Block 2	DPT 1.003	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is shown when the channel is active and can be used for an extended blocking function. (= Additional function if desired)

8	Channel A	Scene	DPT 18.001	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu	This Communication Object is only shown after activating in
						for manual control	the parameter settings and can be used for calling scenes. (= Additional function if desired)
11-14	Channel A	Automatic 1-4	DPT 1.017	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is only shown after activating in the parameter settings and can be used for calling of absolute brightness values with a 1 Bit command. (= Additional function if desired)

Table 1: Communication Objects Application Dimmer 1-10V

3.1.2 Default settings of the co	communication objects
----------------------------------	-----------------------

	Default Settings								
Nr.	Name	Object Function	Length	Priority	С	R	w	т	U
0	Channel A	Switch	1 Bit	Low	х		х		
1	Channel A	Staircase	1 Bit	Low	х		Х		
2	Channel A	Dim relative	4 Bit	Low	х		х		
3	Channel A	Dim absolutely	1 Byte	Low	х		х		
4	Channel A	State On/Off	1 Bit	Low	х	х		х	
5	Channel A	State dim value	1 Byte	Low	х	х		х	
6	Channel A	Block I	1 Bit	Low	х		х		
7	Channel A	Block II	1 Bit	Low	х		Х		
8	Channel A	Scene	1 Byte	Low	х		Х		
11	Channel A	Automatic 1	1 Bit	Low	х		Х		
12	Channel A	Automatic 2	1 Bit	Low	х		Х		
13	Channel A	Automatic 3	1 Bit	Low	х		х		
14	Channel A	Automatic 4	1 Bit	Low	х		х		
+15	next Channel						-		
60	Central	Switch	1 Bit	Low	х		х		
61	Central	Dim absolutely	1 Byte	Low	х		х		
88	Central	Overtemperature Alarm	1 Bit	Low	х	х		х	
89	Central	Current Alarm	1 Bit	Low	х	х		х	
90	Relay	Switch 1 Bit Low		Low	х		х		

Table 2: Default Settings Communication Objects (Dimming/Switching Functions)

You can see the default values for the communication objects from the upper chart. According to requirements the priority of the particular communication objects as well as the flags can be adjusted by the user. The flags allocates the function of the objects in the programming thereby stands C for communication, R for Read, W for write, T for transmit and U for update.

3.2 Reference ETS-Parameter

3.2.1 Channel Activation, Alarm and General functions

3.2.1.1 General functions

The following parameters are available in the menu "General settings":

Function selection	Dimming, Switch 4-fold	•
Startup timeout [s]	2	(* (*
Use relais as	switch channel	•
Start-up brigtness for hand control	100%	•
PWM frequency	600 Hz	•
Dimming curve	quadratic	•

Figure 4: General settings

The table shows the available settings for the general settings:

ETS-text	Dynamic range	comment
	[default value]	
Startup timeout	0-65535s	Time between restart and
	[2s]	functional start of the device
Use relay as	Switch channel	Adjustment if the relay is used
	 switching of if all 	as separate switch channel or
	channels = 0%	switches off at the standby
		mode.
		Function available from
		version R1.4
Start-up brightness for hand	 inactive 	Adjustment of the start-up
control	• 10%-100%	brightness when the device is
	[100%]	controlled via manual control.
		Parameter only at MRDC
		version available!
PWM frequency	• 600Hz	Adjustment of the PWM
	• 1kHz	frequency
		Function available from
		version R1.5
Dimming curve	 quadratic 	Adjustment of the dimming
	 semi-logarithmic 	behavior
	linear	Function available from
		version R1.5

Tabelle 1: Allgemeine Einstellungen

The relay can be used to switch the transformer off when all channels are switched off – to avoid standby losses, or as a separate switching channel. If the relay is selected as separate switching channel, an additional communication object is shown for controlling the relay:

Number	Name	Length	Usage
90	Switch Relay	1 Bit	Switching the relay if it is selected as switching
			channel
90	Switch Keldy	I DIL	channel

Table 3: Communication object - Switch Relay

3.2.1.2 Channel Activation

Every channel can be activated or deactivated individually. This setting can be done at the submenu channel activation:

Global setting	Channel A		
Channel activation		acuve	•
Setting Channel A Additional function	Channel B	not active	•
	Channel C	not active	•
	Channel D	not active	•

Figure 5: Channel activation

The chart shows the dynamic range for this parameter:

ETS-text	Dynamic range [default value]	comment
Channel A-[D]	not activeactive	Activation of the depending channel

Table 4: Channel activation

When a channel is activated, a new submenu is shown at the left selection menu. By choosing the submenu for this channel, the further parameterization can be done. Furthermore, a new submenu, with additional functions according the channel, is shown and the depending communication objects are shown.

A channel, which is chosen as "not active", cannot be parameterized. There are no communication objects shown for deactivated channels.

3.2.1.3 Parallel Connection of the channels (only for MRDC-Version!)

For double the maximum output load, the channels A and B or the channels C and D, can be switched parallel. The following parameter activates this option:

Channels setting	parallel A + B and C + D	•
Channel A	active	•
Channel C	not active	•

If the channels are connected parallel, only the channels A and C can be parameterized. The controlling of the channel B is the same as channel A and the controlling of the channel D is the same as channel C. Nevertheless, it is necessary to connect the channels at the output connectors with cables as short as possible.

Please notice the datasheez (siehe 6.4 Datasheet) for the parallel connection!

3.2.1.4 Alarms

The LED Controller contains of 2 different alarm functions. On the one hand the Current Alarm, this is active if at least one channel has a too high current. To the other hand an over temperature alarm, this indicates a too high temperature at the power amplifier. When the current alarm gets active, the channel which has a too high current is switched off. At the over temperature alarm, all channels are switched off. So a damage of the device is avoided. An active alarm is also shown by its

communication object. The communication object is automatically reset, when the alarm is no longer active, but the channel will not be switched on automatically again. The outputs are only switched on again, when a new switching command is sent.

The following table shows the relevant communication objects:

Number	Name	Length	Usage
88	Current Alarm	1 Bit	indicates an active current Alarm
89	Overtemperature Alarm	1 Bit	indicates an active over temperature Alarm

Table 6: Communication Objects Alarm

Table 5: Parallel Connection of the channels

3.2.2 Handling/ basic functions

The basic functions of the dimming actuator are divided in three sections: Switching, dimming relatively and dimming absolutely. As soon as a channel is activated, the communication functions for the basic functions are standardly shown.

3.2.2.1 Switching

A channel can be switched on or off by the switching command. Additional there is a state object, which shows the actual switching state of the output. This object, State On/Off, can be used for visualization. When the actuator shall be switched by a binary input or a push button, this object must be connected with the state object of the binary input or the push button for toggling.

Number	Name	Length	Usage
0	Switch	1 Bit	switches the channel on or off
4	State On/Off	1 Bit	shows the switching state of the channel

Table 7: Communication objects switching

3.2.2.2 Dim relatively

The relative dimming allows continuous dimming. So the lights can be dimmed evenly form 0% to 100% or from 100% to 0%. The relative dimming process can be stopped at every state. The behavior of the dimming process can be adjusted via additional parameters, like dim speed.

Number	Name	Length	Usage
2	Dim relatively	4 Bit	dims the channel continuous up and down
Table 0. Dire velatively			

Table 8: Dim relatively

3.2.2.3 Dim absolutely

A discrete brightness level can be set by the absolute dimming process. By sending an absolute percent value to the 1 Byte object "Dim absolutely", the output assumes a certain brightness level.

Number	Name	Length	Usage
3	Dim absolutely	1 Byte	adjusts a certain brightness level

Table 9: Dim absolutely

3.2.3 Time functions

The dimming actuator has the opportunities of connecting different time functions. Besides the normal on-/off- delay an additional staircase function with different sub functions is available.

3.2.3.1 On-/ Off delay

The on- and off-delay allows a delayed switching. The following chart shows this parameter:

On delay	10 s	•
Off delay	2 min	•

Figure 6: On-/Off-delay

The chart shows the dynamic range for this parameter:

ETS-text	Dynamic range	comment
	[default value]	
On delay/	no delay,	Adjustment of the time at
Off delay	1s,5s,10s,15s,20s,30s,45s,60s	which the switch-on/
	2min,3min,4min,5min,6min,7min,8min,	switch off process shall be
	9min,10min,15min,20min,30min,45min,60min	delayed

Table 10: On-/Off-delay

By using the on-delay and off-delay, switching commands can be delayed. The delay can affect only to the rising edge (switch-on delay) or the falling edge (switch-off delay). Furthermore, both functions can be combined.

The following diagram shows the functional principle of both functions, which are activated in this example:

3.2.4 Staircase light

Staircase light allows an automatic off-switching of the channel, when the adjusted time runs out. To parameterize this function, the staircase light must be activated at the corresponding channel:

Staircase light	not active	•
	not active	
	active	
		-

Figure 7: Staircase light activation

If the staircase light is activated, a new sub menu, called staircase light Channel A-[D] is shown at the left selection menu. At this sub menu, the further parameterization can be done.

Duration for staircase [s]	90	*
Prewarning	active	•
Prewarning duration in [s]	0	×
Value of dimming down	20%	•
Extension	active	•
Deactivation	active	•

Figure 8: Staircase light

The chart shows the dynamic range for this parameter:

ETS-text	Dynamic range	comment
	[default value]	
Duration of staircase	0-30.000s	Duration of the switching process
	[90s]	
Prewarning	active	activates the prewarning
	 not active 	
Prewarning	0-30.000	is only shown, when the prewarning is
duration in [s]	[0s]	activated
Value of dimming	1-100%	is only shown, when the prewarning is
down	[20%]	activated
		Value of which the channel shall be
		dimmed down, when the staircase
		time ran out
Extension	active	Activation of a possible extension of
	 not active 	the staircase light
Deactivation	active	Activation of Deactivation of the
	 not active 	staircase light, before the whole time
		ran out

Table 11: Staircase light

The duration of the staircase light indicates how long the channel shall be switched on after an Onsignal. After lapse of time, the channel is switched off automatically. Via the parameter Extension/ deactivation, the staircase function can be modified. The deactivation allows switching off the channel before the time ran out. The extension allows an extension of the staircase time, by sending another on-telegram, so the time is restarted.

The prewarning function creates a dimming down of the lights after expiration of the staircase time. So the lights are still switched on, but with another value. The lights stay at this position for the duration of the prewarning.

If the staircase function is activated, the communication object "Switch" is replaced by the communication object "Staircaselight":

Number	Name	Length	Usage
1	Staircaselight	1 Bit	switches the staircase function on
Table 12: Communication object staircaselight			

The staircase function has no influence to the relative or absolute dimming.

At the following diagram, the staircase function is shown, with an activated deactivation and extension. The prewarning is activated with a dim down value of 20%:

3.2.5 Absolute Values

The dimming area of the dimming actuator can be restricted by absolute values. Furthermore absolute or saved values can be called, when the actuator is switched on.

3.2.5.1 Starting behavior

The function starting behavior defines the turn off of the channel. The function is parameterize able for every channel individually. The following illustration shows the function with the setting "On-value setting":

Starting behaviour	On-value setting	•
Value of start up	100%	•

Figure 9: Starting behavior

The chart shows the dynamic range for this parameter:

ETS-text	Dynamic range	comment
	[default value]	
On-value setting	Sub-function: Value of start up	If this sub-function is chosen, a new
	1-100%	sub-function is shown, at which an
	[100%]	absolute value for switching on can be
		chosen
Last light value (Memory)		The channel starts with the last value
		before switching off

Table 13: Starting behavior

Via the parameter "Value for startup" an absolute value for switching on, can be assigned to the channel. The value for startup contains the whole technical possible area, so form 1-100%. But if the dimming area is restricted, the dimming actuator will be at least switched on with the lowest allowed value and maximum with the highest allowed value; independent from the chosen Value of startup. The parameter "Last light value", also called "memory function", causes a switching on of the actuator with the value before the last switching off. So the actuator saves the last value. If, for example, the channel is dimmed to 50% and switched off afterwards, the channel will be switched on with 50% again.

The parameterization of the starting behavior affects only to the switching objects, so the objects 0: Switch or 1: Staircase light. If the channel is dimmed up from a power off condition, the channel will be dimmed normal up without any startup behavior.

3.2.5.2 Dimming area

Via the parameters "minimum light" and "maximum light" the dimming area can be restricted.

Minimum light	30% 🗸
Maximum light	100% 🔹

Figure 10: Dimming area

The	chart	shows t	the dvi	namic i	range for	this	parameter:
THC.	circit	5110445	cine ayı			ci ii S	purumeteri

ETS-text	Dynamic range	comment
	[default value]	
Minimum light	1-100%	lowest, minimum allowed light value
	[1%]	
Maximum light	1-100%	highest, maximum allowed light value
	[100%]	

Table 14: Dimming area

If the technical possible dimming area (1-100%) shall be restricted to a lower area, you have to set

values for the minimum light above 1% and for the maximum light under 100%. This restriction of the dimming area is possible for every channel. If the dimming area is restricted, the channel will only move in the adjusted restriction. This setting has also effects to the other parameter: If for example the channel is restricted to a maximum of 85% and the value of startup is chosen as 100%, the channel will switch on with the maximum of 85%. An exceed of the maximum value is no longer possible. The restriction of a dimming area is useful when certain values must not be reached, because of technical reasons, for example preservation of the life span or the avoidance of flickering at lower dim values (especially at Energy saver).

Example: Minimum light = 25%, maximum light = 85%, Value for startup= 100%

-->

- On telegram
- adjusted light value 85%
- 50% telegram
- --> adjusted light value 50%
- 95% telegram15% telegram
- --> adjusted light value 85%
- --> adjusted light value 25%
- Off telegram
- --> adjusted light value 0% (Off)

3.2.6 specific Dimming settings

The dimming behavior can be adapted individually via the dimming speed. Additional a status object can be activated for visualization.

Dimming speed [s]	5	(A)
Send dimming value after change (min. 2%)	active	•

Figure 11: Specific dimming settings

3.2.6.1 Dimming speed

The dimming speed allows parameterizing the duration of the dimming process individually. The chart shows the dynamic range for this parameter:

ETS-text	Dynamic range [default value]	comment
Dimming speed[s]	1-120s [5s]	indicates the time, which is need for dimming form 0 to 100%

Table 15: Dimming speed

The dimming process can be adapted individually via the setting of the dimming speed. A very long dimming speed allows a very precise dimming. So, almost every dimming value can be controlled. A short adjusted dimming speed causes a fast dimming process. This setting is useful, when it is not necessary to adjust the light very precise or the vernier adjustment is performed by using absolute values, which are switch independent of the dimming speed directly to the adjusted value. Normally values from 5-8s are used for normal used rooms.

3.2.6.2 Send dimming value after change

To visualize the dimming value, for example via a display, the following communication object must be activated:

ETS-text	Dynamic range [default value]	comment
Send dimming value after change (min. 2%)	not activeactive	activates the status object for the dimming process

 Table 16: Send dimming value after change

The communication object for the actual dimming value is shown continuous, but sends only the actual dimming value, when the parameter "Send dimming value after change" is activated. The object of the size 1 Byte sends now the current dimming value at a change of 2% and more.

Number	Name	Length	Usage
5	State dim value	1 Byte	sends the actual dimming value in %

Table 17: Communication object dimming value

3.2.7 Central objects

For each channel can be chosen, whether it should react to the central objects or not. The activation of the central objects can be done at the following parameter:

Central objects	active	
	not active	
	active	

Figure 12: Central objects

If the central function is activated for a channel, the channel will react to the central objects with its individual parameterization.

The chart shows the dynamic range for this parameter:

ETS-text	Dynamic range [default value]	comment
Central objects	not activeactive	sets whether a channel shall react to the central objects or not

Table 18: Central objects

There are two central objects for the handling of the activated channels. At the one hand the 1 Bit switching object, which switches the channels with activated central function on or off and to the other hand the 1 Byte object "Dim absolutely". This object assigns absolute light values to the relevant channels.

To watch at the central objects is, that every channel is called with its individually parameter settings. If for example a channel with activated staircase light function is called by the central objects, the channel will be switched on for the adjusted staircase time and will be switched off afterwards.

Number	Name	Object function	Length	Usage
60	Central	Switch	1 Bit	switches all channels with activated central
				function
61	Central	Dim absolutely	1 Byte	dims all channels with activated central function

 Table 19: Central communication objects

The communication object "device error" is independent from the parameter "central objects". The object sends an 1-signal, if an error occurs at the device.

Number	Name	Object function	Length	Usage
62	Central	Device error	1 Bit	sends a 1-signal in case of an error

Table 20: Central communication object device error

3.2.8 Scene function

When functions of different groups (e.g. light, heating and shutter) shall be changed simultaneously with only one keystroke, it is practical to use the scene function. By calling a scene, you can switch the lights to a specific value, drive the shutter to an absolute position, switch the heating to the day mode and switch the power supply of the sockets on. The telegrams of these functions can have as well different formats as different values with different meaning (e.g. "0" for switch the lights off and open the shutters). If there were no scene function, you would have to send a single telegram for every actuator to get the same function.

The scene function of the switch actuator enables you to connect the channels of the switch actuator to a scene control. For that, you have to assign the value to the appropriated space (scene A..H). It is possible to program up to 8 scenes per switching output. When you activate the scene function at the switching output, a new sub menu for the scenes appears at the left drop down menu. There are settings to activate single scenes, set values and scene numbers and switch the memory function on/off at this sub menu.

Scenes are activated by receiving their scene numbers at the communication object for the scenes. If the memory function of the scenes is activated, the current value of the channel will be saved at the called scene number.

The communication objects of the scenes have always the length of 1 byte.

The following illustration shows the setting options at the ETS-Software for activating the scene function:

Szene	activ	-
	not activ	
	activ	

Figure 13: Scene function

The scene function can only be activated for the normal switching mode. If the staircase light function is activated, the scene function cannot be activated for this channel.

Number	Name	Length	Usage		
8	Scene	1 Byte	Call of the scene		

The following chart shows the communication object for calling a scene:

Table 21: Communication object scene

For calling a certain scene, you have to send the value for the scene to the communication object. The value of the scene number is always one number less than the adjusted scene number. For calling scene 1, you have to send a "0". So the scene numbers have the numbers from 1 to 64, but the values for the scenes only from 0 to 63.

If you want to call scenes by a binary input or another KNX device, you have to set the same number at the calling device as at the receiving device. The calling device, e.g. a binary input, sends automatically the right value for calling the scene.

3.2.8.1 Submenu scene

If a scene is activated, as shown above, a new submenu will appear at the left selection menu. At this submenu, the further parameterization can be done.

For every channel are up to 8 storage options available. These 8 presets have numbers A-H. One of the 64 scene numbers can be assigned to each scene.

The following illustration shows the setting options at the submenu for the scenes (Channel X: Scene) for the scenes A-C (the scenes D-H are identical with first three):

	Scene Channel A		
Save scene	enabled	•	
Scene Nr. A	44	•	
Light value scene A	30% light	•	
Scene Nr. B	41	•	
Light value scene B	40% light	•	
Scene Nr. C	inactive	•	
Light value scene C	Off	•	

Figure 14: Submenu scene

The following chart shows the dynamic range for an activated scene function:

ETS-text	Dynamic range	comment
	[default value]	
Save scene	disabled	adjusts whether the saving function
	 enabled 	shall be enabled for the scenes of
		this channel or not
Scene Nr. A-[H]	1-64, inactive	adjusts the number for calling a
	[inactive]	scene
Light value scene A-[H]	Off, 10%, 20%, 30%, 40%, 50%, 60%,	adjusts the light value for a scene
	70%, 80%, 90%, 100% light	call
	[Off]	

Table 22: Submenu scene

At the submenu for the scenes, a reaction can be assigned for the call of each scene. This reaction includes an absolute light value (0-100%) for this channel. Every channel can react to 8 different scenes. By sending of the pick-up value of the relevant scene, the scene is called and the channel adjusts its parameterized values. The individual parameterization is also watched at calling the scene. If the channel shall dim to 50% at the call of the scene A and the channel has a parameterized switch-on delay of 5s, the channel will be switched on after this 5s and be dimmed to the 50% in compliance to the adjusted dimming speed.

To watch at the programming is that if two or more channels shall react to the same scene number, the communication objects for the scenes of these channels have to be connected to the same group address. By sending of the pick-up value for the scenes, all channels will be called. It is practical to divide the group addresses by scenes at the programming. If a channel shall react now to 8 scenes, the communication object has to be connected to 8 different group addresses.

For calling a scene or saving a new value for the scene, you have to send the accordingly code to the relevant communication object for the scene:

Scene	Scene Retrieve		Save	
	Hex.	Dez.	Hex.	Dez.
1	0x00	0	0x80	128
2	0x01	1	0x81	129
3	0x02	2	0x82	130
4	0x03	3	0x83	131
5	0x04	4	0x84	132
6	0x05	5	0x85	133
7	0x06	6	0x86	134
8	0x07	7	0x87	135
9	0x08	8	0x88	136
10	0x09	9	0x89	137
11	0x0A	10	0x8A	138
12	0x0B	11	0x8B	139
13	0x0C	12	0x8C	140
14	0x0D	13	0x8D	141
15	0x0E	14	0x8E	142
16	0x0F	15	0x8F	143
17	0x10	16	0x90	144
18	0x11	17	0x91	145
19	0x12	18	0x92	146
20	0x13	19	0x93	147
21	0x14	20	0x94	148
22	0x15	21	0x95	149
23	0x16	22	0x96	150
24	0x17	23	0x97	151
25	0x18	24	0x98	152
26	0x19	25	0x99	153
27	0x1A	26	0x9A	154
28	Ox1B	27	0x9B	155
29	0x1C	28	0x9C	156
30	0x1D	29	0x9D	157
31	0x1E	30	0x9E	158
32	0x1F	31	0x9F	159

Table 23: Calling and saving scenes

3.2.9 Automatic function

An automatic function can be activated for every channel. The automatic function allows calling up to 4 absolute exposure values for every channel. Calling can be done via a 1 bit commands. For further setting options, the automatic function of a channel must be activated.

Automatic function	active	•
	not active	
	active	
	Gouro	

Figure 15: Parameter Automatic function

By activation the automatic function a submenu for further parameterization is shown. Furthermore, the following communication objects are shown:

Number	Name	Length	Usage
11	Automatic 1	1 Bit	Calling of the automatic value 1
12	Automatic 2	1 Bit	Calling of the automatic value 2
13	Automatic 3	1 Bit	Calling of the automatic value 3
14	Automatic 4	1 Bit	Calling of the automatic value 4

Table 24: Communication objects automatic function

3.2.9.1 Submenu automatic function

The further parameterization can be done at the submenu of the automatic function.

	Automatic function Channel A	
Automatic function 1 - Exposure value	40% light	•
Automatic function 2 - Exposure value	50% light	•
Automatic function 3 - Exposure value	Off	•
Automatic function 4 - Exposure value	100% light	•

Figure 16: Submenu automatic function

The chart shows the dynamic range for the four automatic slots:

ETS-text	Dynamic range	comment
	[default value]	
Automatic function 1-[4] –	Off , 10%, 20%, 30%, 40%, 50%, 60%,	defines the exposure value for an
Exposure value	70%, 80%, 90%, 100% light	automatic call

 Table 25: Dynamic range automatic function

Every automatic function can be assigned an absolute exposure value (in 10% steps). The call of the automatic function is done by an 1 bit object.

3.2.10 Additional functions

Additional functions can be parameterized for every channel. Via the additional functions, the behavior of the channel for calling the blocking objects can be assigned. Furthermore, the behavior after power off and reset can be defined. The additional functions are shown at the submenu "Additional functions A-[D]":

Behavior at Block I = value 1	Light value	•
Light value	100% light	•
Behavior at Block I = value 0	no change	•
Behavior at Block II = value 1	Light value	•
Light value	100% light	•
Behavior at Block II = value 0	Off	•
Behavior after reset	Last value	•

Figure 17: Additional functions

3.2.10.1 Blocking objects

For both blocking objects an action for activation as well as deactivation can be defined.

ETS-text	Dynamic range	comment
	[default value]	
Behavior at Block 1 =	Off, no change, Light value	Defines the action for activation of
Value 1	(10%,20%,30%,,100%)	the first blocking object
	[no change]	
Behavior at Block 1 =	Off, no change, Light value	Defines the action for deactivation
Value 0	(10%,20%,30%,,100%)	of the first blocking object
	[no change]	
Behavior at Block 2 =	Off, no change, Light value	Defines the action for activation of
Value 1	(10%,20%,30%,,100%)	the second blocking object
	[no change]	
Behavior at Block 2 =	Off, no change, Light value	Defines the action for deactivation
Value 0	(10%,20%,30%,,100%)	of the second blocking object
	[no change]	

Table 26: Dynamic range blocking objects

By using the blocking objects, the channel can be blocked for further usage. Additional, the channel can perform an adjusted function, as dimming to a certain value, switch the channel of or stay in its current state, when it is blocked. The same actions can be performed by the channel, when he is unblocked.

To note is, that the channel cannot be operated when it is blocked. Furthermore the manual usage is blocked during a blocking process. All telegrams, which are sent to the corresponding channel during a blocking process, have no effect for the channel.

If both blocking processes are activated, the first one is of prime importance. But if you activate the second blocking process during the first blocking process, the second blocking process will get active when the first one is deactivated. The action for the deactivation of the first blocking process will not be performed, but the channel calls the adjusted settings for the second blocking process.

Number	Name	Length	Usage
6	Block 1	1 Bit	Activation/Deactivation of the first blocking
			process
7	Block 2	1 Bit	Activation/Deactivation of the second blocking
			process

The communication objects for both blocking processes are shown at the following chart:

Table 27: Communication objects blocking

3.2.10.2 Behavior after power off/ after reset

To avoid an unintended behavior of the channel in case of bus power off, the channel can be parameterized for a reset of the bus power.

The following settings are available:

ETS-text	Dynamic range	comment
	[default value]	
Behavior after reset	Off, On, last value,	defines the behavior at a bus power
	light value(10%,20%,30%,,100%)	reset
	[last value]	

Table 28: Behavior at bus power off/reset

4 Controlling RGBW/RGB-Stripes

→ The following settings are not available at the 2-fold LED-Controller!

If the LED Actuator should be used for controlling RGB LED-Stripes, the following setting must be done in the menu "Global Setting":

Function selection	Dimming RGB LED •

Figure 18: Function Selection Dimming RGB LED

The following setting is omöy available in the 4-fold RGBW LED-Controller!

If the LED Actuator should be used for controlling RGBW LED-Stripes, the following setting must be done in the menu "Global Setting":

Function selection	Dimming RGBW LED	•
Figure 19: Function Selection Dimming RGBW LED		

This setting loads the application for controlling LED stripes with its relevant parameter and communication object. The applications for RGB- and RGBW- Stripes differ only in the point of controlling the white stripe.

4.1 Communication objects

4.1.1 Overview and Usage

Nr.	Name	Object function	Data type	Direction	Info	Usage	Тір
Gener	al Objects per Channel:						
63	LED RGB/RGBW	Switch	DPT 1.001	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication is shown permanently and allows the controlling of the main function LED Stripe On/Off, which is normally connected to all desired control keys.
64	LED RGB/RGBW	Color Setting	DPT 232.600	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is shown if the controlling of the LED Stripe is selected as "RGB/RGBW" via the parameter settings. The Object allows the controlling of the three colors with only one object. The first byte controls red, the second green and the third blue.
65	LED HSV	Color Setting	DPT 232.600	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is shown if the controlling of the LED Stripe is selected as "HSV" via the parameter settings. The Object allows the controlling of color circle with only one object. The first byte controls hue, the second saturation and the third brightness.

72	LED RGB/RGBW	State ON/OFF	DPT 1.011	send	Actuator sends current state	For display on Visu, Tableau, and Display	This Communication is shown permanently and sends the state of the main function LED Stripe On/Off, which is normally connected to all desired display elements.
81	LED RGB/RGBW	Block	DPT 1.003	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication is shown permanently and can be used for blocking the actuator.
82	LED RGB/RGBW	Teach-In for white balance	DPT 1.001	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication is shown permanently and starts the white balance of the connected LED Stripe.
88	LED RGB/RGBW	Current Alarm	DPT 1.005	send	Actuator sends current state	For display on Visu, Tableau, and Display	This communication object sends an alarm(=value: 1), when at least one channel has a too high current.
89	LED RGB/RGBW	Overtemperature Alarm	DPT 1.005	send	Actuator sends current state	For display on Visu, Tableau, and Display	This communication object sends an alarm(=value: 1), when the power amplifier has a too high temperature.
90	Relay	Switch	DPT 1.001	reveice	Actuator reacts to Incoming-telegram	Push Button, Visu	Communication is shown when channel is selected as switching channel

Contro	olling via RGB/RGBW:						
2/ 17/ 32/ 47	LED Red/Green/Blue/White	Change relative	DPT 3.007	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is shown if the controlling of the LED Stripe is selected as "RGB/RGBW" and can be used for relative dimming of each color.
3/ 18/ 33/ 48	LED Red/Green/Blue/White	Change Absolute	DPT 5.001	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is shown if the controlling of the LED Stripe is selected as "RGB/RGBW" and can be used for absolute dimming of each color.
Contro		Alegalista Malua				Duch hutters	This Communication Ohio at is
66	LED H (Hue)	Absolute Value	DP1 5.001	receive	Actuator reacts to Incoming-telegram	Fush buttons, Visu for manual control	shown if the controlling of the LED Stripe is selected as "HSV" and can be used for sending a new absolute value for hue.
67	LED S (Saturation)	Absolute Value	DPT 5.001	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is shown if the controlling of the LED Stripe is selected as "HSV" and can be used for sending a new absolute value for saturation.
68	LED H (Brightness)	Absolute Value	DPT 5.001	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is shown if the controlling of the LED Stripe is selected as "HSV" and can be used for sending a new absolute value for brightness.

69	LED H (Hue)	Change relative	DPT 3.007	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is shown if the controlling of the LED Stripe is selected as "HSV" and can be used for changing hue relative.
70	LED S (Saturation)	Change relative	DPT 3.007	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is shown if the controlling of the LED Stripe is selected as "HSV" and can be used for changing saturation relative.
71	LED H (Brightness)	Change relative	DPT 3.007	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is shown if the controlling of the LED Stripe is selected as "HSV" and can be used for changing brightness relative.
Status	objekte:	·				·	
5/ 20/ 35/ 50	LED Red/Green/Blue/White	Status Wert	DPT 5.001	send	Actuator sends current state	For display on Visu, Tableau, and Display	This Communion Object is only shown if the state objects are activated and can be used for showing the state of each color. (=Additional Function if desired)
73	LED RGB	State RGBW	DPT 232.600	send	Actuator sends current state	For display on Visu, Tableau, and Display	This Communion Object is only shown if the state objects are activated and can be used for showing a 3 Byte State with each color. (=Additional Function if desired)

75	LED H (Hue)	State absolute value	DPT 5.003	send	Actuator sends current state	For display on Visu, Tableau, and Display	This Communion Object is only shown if the state objects are activated and can be used for showing the angle of the color in the color circle. (=Additional Function if desired)
76	LED S (Saturation)	State absolute value	DPT 5.001	send	Actuator sends current state	For display on Visu, Tableau, and Display	This Communion Object is only shown if the state objects are activated and can be used for showing the absolute value of the saturation. (=Additional Function if desired)
77	LED V (Brightness)	State absolute value	DPT 5.001	send	Actuator sends current state	For display on Visu, Tableau, and Display	This Communion Object is only shown if the state objects are activated and can be used for showing the absolute value of the brightness. (=Additional Function if desired)

Seque	nces:						
83- 87	LED RGB/RGBW	Start Sequence 1-5	DPT 1.007	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is only shown if the sequence is activated and enables the calling of the sequences. (=Additional Function if desired)
Scene	function:		T	I		ſ	
78	LED RGB/RGBW	Scene	DPT 18.001	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is only shown if the scenes are activated and enables the calling of scenes. (=Additional Function if desired)
79	LED RGB/RGBW	Bit Scene 1	1.022	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is only shown if the Bit scenes are activated and enables the calling of scenes. (=Additional Function if desired)
80	LED RGB/RGBW	Bit Scene 2	1.022	receive	Actuator reacts to Incoming-telegram	Push buttons, Visu for manual control	This Communication Object is only shown if the Bit scenes are activated and enables the calling of scenes. (=Additional Function if desired)

 Table 29: Communication Objects Controlling RGB/RGBW-Stripes

4.1.2 Standard Einstellungen der Kommunikationsobjekte

	-	Default Setting	gs						-
Nr.	Name	Object Function	Length	Priority	С	R	w	т	U
63	LED RGB/RGBW	Switch	1 Bit	Low	Х		Х		
64	LED RGB/RGBW	Color Setting	3 Bye	Low	Х		Х		
65	LED HSV	Color Setting	3 Byte	Low	Х		х		
72	LED RGB/RGBW	State On/Off	1 Bit	Low	Х	х		Х	
81	LED RGB/RGBW	Block	1 Bit	Low	Х		Х		
82	LED RGB/RGBW	Teach-In for white balance	1 Bit	Low	Х		Х		
2/ 17/ 32/ 47	LED Rot/Grün/Blau/Weiß	Change relative	4 Bit	Low	х		Х		
3/ 18/ 33/ 48	LED Rot/Grün/Blau/Weiß	Change absolute	1 Byte	Low	х		Х		
66	LED H (Hue)	Absolute value	1 Byte	Low	Х		Х		
67	LED S (Saturation)	Absolute value	1 Byte	Low	Х		Х		
68	LED V (Brightness)	Absolute value	1 Byte	Low	Х		Х		
69	LED H (Hue)	Change relative	4 Bit	Low	Х		Х		
70	LED S (Saturation)	Change relative	4 Bit	Low	Х		Х		
71	LED V (Brightness)	Change relative	4 Bit	Low	Х		Х		
5/ 20/ 35/ 50	LED Rot/Grün/Blau/Weiß	State value	1 Byte	Low	х	х		Х	
73	LED RGB	State RGBW	3 Byte	Low	Х	х		Х	
74	LED HSV	State HSV	3 Byte	Low	Х	х		Х	
75	LED H (Hue)	Status Absolut value	1 Byte	Low	Х	х		Х	
76	LED S (Saturation)	Status Absolut value	1 Byte	Low	х	х		х	
77	LED V (Brightness)	Status Absolut value	1 Byte	Low	Х	х		Х	
83-87	LED RGB/RGBW	Start Sequence 1-5	1 Bit	Low	Х		Х		
78	LED RGB/RGBW	Scene	1 Byte	Low	Х		х		
79	LED RGB/RGBW	Bit Scene 1	1 Bit	Low	Х		Х		
80	LED RGB/RGBW	Bit Scene 2	1 Bit	Low	Х		Х		
88	LED RGB/RGBW	Current Alarm	1 Bit	Low	Х	х		х	
89	LED RGB/RGBW	Overtemperature Alarm	1 Bit	Low	Х	х		х	
90	Relay	Switch	1 Bit	Low	Х		Х		

Table 30: Default Settings Communication Objects (RGB/RGBW)

You can see the default values for the communication objects from the upper chart. According to requirements the priority of the particular communication objects as well as the flags can be adjusted by the user. The flags allocates the function of the objects in the programming thereby stands C for communication, R for Read, W for write, T for transmit and U for update.

4.2 Color circle presentation/ Controlling via RGBW

There are two options for controlling RGB-/RGBW-Stripes. On the one hand the LED-Stripes can be controlled easily by RGB/RGBW values. This method gives each color separately a value. So the user can mix the desired value by sending a value to each color.

On the other hand the LED Stripes can be controlled via HSV value, the so called color circle presentation. Here, the color is set via the "H-value". The color circle represents the color space from 0°-360° (have a look at the cone). If a color is set, the brightness V and the Saturation S can be selected (have a look at the triangle).

The following illustration gives a first impression of controlling the color via the color circle:

Figure 20: Color Circle

Attention should be paid to the fact that every LED Stripes reacts different due to manufacturing tolerances. So every LED Stripes can react a bit different. These facts must be proofed in detail for each LED Stripes.

4.3 Reference ETS-Parameter

4.3.1 Selection of the way of controlling

As described in the chapter before, controlling of LED Stripes can be done by HSV or by RGB/RGBW values. The communication objects for both ways of controlling are standardly shown. These can be dimmed relative or absolutely.

For controlling via HSV the following objects are relevant:

Number	Name	Length	Usage
66	LED H – Absolute value	1 Byte	Sending a new absolute value for Hue
			(in degree)
67	LED S – Absolute value	1 Byte	Sending a new absolute value for Saturation
			(in %)
68	LED V – Absolute value	1 Byte	Sending a new absolute value for Brightness
			(in %)
69	LED H – Change relative	4 Bit	Changing the color manual via relative dimming
70	LED S – Change relative	4 Bit	Changing the saturation manual via relative
			dimming
71	LED V – Change relative	4 Bit	Changing the brightness manual via relative
			dimming

 Table 31: Communication Objects controlling via HSV

The controlling via RGB/RGBW controls every color separately. So every color has its own communication object for manual and absolute dimming:

Number	Name	Length	Usage
2	LED Red – Change	4 Bit	Relative dimming of the color red
	relative		
3	LED Red – Absolute value	1 Byte	Sending a new absolute value for color red (in
			%)
17	LED Green – Change	4 Bit	Relative dimming of the color green
	relative		
18	LED Green – Absolute	1 Byte	Sending a new absolute value for color green (in
	value		%)
32	LED Blue – Change	4 Bit	Relative dimming of the color blue
	relative		
33	LED Blue – Absolute	1 Byte	Sending a new absolute value for color blue (in
	value		%)
47	LED White – Change	4 Bit	Relative dimming of the color white
	relative		
48	LED White – Absolute	1 Byte	Sending a new absolute value for color white (in
	value		%)

Table 32: Communication Objects RGB-/RGBW Controlling

As well as at relative dimming of the colors as at sending a new absolute value the dimming speeds, as described in 4.3.2.3 Dimming speed, are kept.

|--|

Number	Name	Length	Usage
LED RGB	Color Setting	3 Byte	Color Setting of the RGB values via 3 Byte
LED HSV	Color Setting	3 Byte	Color Setting of the HSV values via 3 Byte

Table 33: Communication Objects 3 Byte Color Setting

At RGB controlling, the color setting via 3 Byte controls with the first byte the color red, with the second byte the color green and with the third byte the color blue.

At HSV controlling, the first byte defines the color, the second byte the saturation and the third byte the brightness.

The 3 Byte object is defined with the DPT 232.600.

4.3.2 Alarm and General functions

4.3.2.1 General functions

The following parameters are available in the menu "General settings":

Function selection	Dimming, Switch 4-fold 🔹		
Startup timeout [s]	2	(*) (*)	
Use relais as	switch channel	•	
Start-up brigtness for hand control	100%	•	
PWM frequency	600 Hz	•	
Dimming curve	quadratic	•	

Figure 21: General settings

The table shows the available settings for the general settings:

ETS-text	Dynamic range	comment
	[default value]	
Startup timeout	0-65535s	Time between restart and
	[2s]	functional start of the device
Use relay as	Switch channel	Adjustment if the relay is used
	 switching of if all 	as separate switch channel or
	channels = 0%	switches off at the standby
		mode.
		Function available from
		version R1.4

Start-up brightness for hand control	 inactive 10%-100% [100%] 	Adjustment of the start-up brightness when the device is controlled via manual control. Parameter only at MRDC- version availabel!
PWM frequency	 600Hz 1kHz 	Adjustment of the PWM frequency Function available from version R1.5
Dimming curve	 quadratic semi-logarithmic linear 	Adjustment of the dimming behavior Function available from version R1.5

Tabelle 2: Allgemeine Einstellungen

The relay can be used to switch the transformer off when all channels are switched off – to avoid standby losses, or as a separate switching channel. If the relay is selected as separate switching channel, an additional communication object is shown for controlling the relay:

Number	Name	Length	Usage
90	Switch Relay	1 Bit	Switching the relay if it is selected as switching channel

Table 34: Communication object - Switch Relay

4.3.2.2 Alarms

The LED Controller contains of 2 different alarm functions. On the one hand the Current Alarm, this is active if at least one channel has a too high current. To the other hand an over temperature alarm, this indicates a too high temperature at the power amplifier. When the current alarm gets active, the channel which has a too high current is switched off. At the over temperature alarm, all channels are switched off. So a damage of the device is avoided. An active alarm is also shown by its communication object. The communication object is automatically reset, when the alarm is no longer active, but the channel will not be switched on automatically again. The outputs are only switched on again, when a new switching command is sent.

The following table shows the relevant communication objects:

Number	Name	Length	Usage
88	Current Alarm	1 Bit	indicates an active current Alarm
89	Overtemperature Alarm	1 Bit	indicates an active over temperature Alarm

Table 35: Communication Objects Alarm

4.3.2 LED RGB/RGBW Settings

All parameter in the chapter 4.4.2 refer to the menu LED RGB/RGBW Settings.

4.3.2.1 White Balance/Teach-In

By using the white balance, bad balanced RGB LEDs can be taught a clear white. If you take the color circle theory as basis, the 3 colors red, green and blue should generate the color white when all colors have the same intensity. This means for RGB Stripes, that when all colors are set to 100%, the color white should be reflected. This looks often different in reality. For getting a real white, the white balance is available. The white balance causes a proportional adaption off all color. So after setting all colors to 100% the adjusted clear white appears. So you can define your own white color as reference by using the white balance.

Attention should be paid due to the fact that the white balance always reduce the maximum brightness of the LED Stripe, because dominating colors must be set to a lower value. For starting a white balance, this must be activated in the parameter settings:

White balance	active	•
White balance	active	

Figure 22: White balance/Teach-In

Thereupon the relevant communication object for controlling the white balance is shown:

Number	Name	Length	Usage		
82	Teach-In for white	1 Bit	Starting of the white balance		
	balance				

 Table 36: Communication Object Teach-In

The process of the Teach-In is as follows:

- 1. Sending the value 0 to the Communication Object "Teach-In for white balance". Now the colors Red, Green and Blue are set to 0%. At RGBW Stripes also the white color is set to 0%.
- 2. Now the colors Red, Green and Blue must be controlled to a clear white by sending absolute or relative dimming commands. For example, if the color Blue dominates, this one must be controlled down until all colors are balanced.
- Now the value 1 must be send to the Communication Object "Teach-In for white balance" for stopping the Teach-In process and saving the adjusted values. The proportionality is saved in the device. The three colors are set to 0% again. The White balance is completed.

The white balance is also kept after a new download or a bus power failure.

For resetting the white balance: Sending a 0 to the object "Teach-In for white balance" and without sending any other commands a 1 to the same object.

4.3.2.2 State values

For visualization of the dimming process, different state objects can be shown. There as well single objects for the state as combined 3 Byte state objects. The following illustration shows how to activate the state objects:

Output Status:		
Output RGB Status	at dim end	•
Output HSV Status	at dim end	•
Output 3 Byte status	at dim end	•

Figure 23: State Objects

0					
Number	Name	Length	Usage		
5	LED Red-Status Value	1 Byte	Sending the State 0-100% for the Color Red		
20	LED Green-Status Value	1 Byte	Sending the State 0-100% for the Color Green		
35	LED Blue-Status Value	1 Byte	Sending the State 0-100% for the Color Blue		
50	LED White-Status Value	1 Byte	Sending the State 0-100% for the Color White		
Table 27. Ca	Table 27. Communication Objects DOD (DODW to dividually				

The Parameter "Output RGB/RGBW State" shows the objects for each color:

Table 37: Communication Objects RGB/RGBW individually

The parameter "Output HSV state" shows the state objects for Hue(H), Saturation(S) and Brightness(V):

Number	Name	Length	Usage
75	LED Hue(H)	1 Byte	Sending of the state 0°-360° for color in the
			color circle
76	LED Saturation(S)	1 Byte	Sending of the state 0-100% for the saturation
77	LED Brightness(V)	1 Byte	Sending of the state 0-100% for the brightness

Table 38: Communication objects HSV individually

The Parameter "Output 3 Byte State" shows additional combined 3 Byte State objects. The combined state objects at HSV sends on the first byte information about Hue, on the second byte about saturation and at the third byte about brightness. The object for RGB has the same structure (Byte 1 = Red, Byte 2 = Green, Byte 3 = Blue). Also at RGBW Stripes, the object has only the length of 3 Bytes. The state of color white is not displayed in this object.

Number	Name	Length	Usage
73	Status RGB	3 Byte	Sending of the 3 Byte State for RGB
74	Status HSV	3 Byte	Sending of the 3 Byte State for HSV

Table 39: Communication Objects 3 Byte State

4.3.2.3 Dimming speed

For adjusting transitions and Soft-Start/Stop, the dimming speeds can be adjusted:

Dimm speed:		
Dimm speed for relative dimming [s]	10	*
Dimm speed for absolute dimming [s]	1	•
On speed [s]	2	
Off speed [s]	2	
Transition time at scenes [s]	5	*

Figure 24: Dimming Speeds

The parameters have the following effects:

• Dim speed for relative dimming

Defines the time for all relative dim processes related to relative dimming process of 100%. If a time of 10s is adjusted, the relative dimming from 0% to 100% and vice versa would last 10s. So the relative dimming from 0% to 50% would last 5s.

• Dim speed for absolute dimming

Defines the time for all absolute dimming processes related to an absolute dimming process of 100%. If a time of 10s is adjusted, the absolute dimming from 0% to 100% and vice versa would last 10s. So the absolute dimming from 0% to 50% would last 5s.

• On Speed

The On Speed realizes a Soft Start function. The On Speed refers only to the "hard" switching via the object 63 "LED RGB/RGBW switch" or a Reset and not to the dimming up from 0%. At an On Speed of 2s, the LED stripes will be dimmed up to 100% in 2s at switching on.

• Off Speed

The On Speed realizes a Soft Stop function. The Off Speed refers only to the "hard" switching via the object 63 "LED RGB/RGBW switch" and not to the dimming down to 0%. At an Off Speed of 2s, the LED stripes will be dimmed down to 0% in 2s at switching off.

• Transition time at scenes

The transition times between scenes defines the transition behavior between single scenes. The time refers as well to Bit Scenes (have a look at 4.3.4 LED RGB/RGBW Bit Scene) as to normal scenes (have a look at 4.3.5 LED RGB/RGBW Scene). It causes soft color transitions between two scenes. A time off 0s causes a hard switchover from one to the other scene.

4.3.2.4 Block Function

The block function blocks the RGB/RGBW-Stripe for further control and can call defined states. The following illustration shows the parameter for the blocking process:

Block function		
Behavior at Block value = 1	no change	•
Behavior at Block value = 0	switch to hue	•
Hue	Red	•

Figure 25: Block function

The following table shows the available settings:

ETS-text	Dynamic range [default value]	comment
Behavior at Block value = 1	 off no change switch to Hue 	defines the behavior of the RGB/RGBW-Stripe at activating the block function
Hue	• Red,	If the parameter "Behavior at Block" is set to "switch to Hue", a predefined color can be called.
Behavior at Unblock value = o	 off no change switch to Hue 	defines the behavior of the RGB/RGBW-Stripe at deactivating the block function
Hue	• Rot,	If the parameter "Behavior at Unblock" is set to "switch to Hue", a predefined color can be called.

Table 40: Parameter block function

The following table shows the relevant communication object:

Number N	Name	Length	Usage
81 B	Block	1 Bit	blocks the RGB/RGBW stripe

Table 41: Communication Object block function

4.3.3 LED RGB/RGBW Sequences

Up to 5 sequences can be adjusted. These sequences can be set with predefined sequences or own sequences. The own sequences can be adjusted by using RGBW values or HSV values and can have up to 5 steps.

The following illustration shows the activation of the sequences:

Global setting LED RGBW settings	Sequence 1	active	•
LED RGBW sequences	Sequence 2	not active	•
Sequence 1			
LED RGBW Bit scene	Sequence 3	not active	•
LED RGBW Scene	Sequence 4	not active	•
	Sequence 5	not active	•

Figure 26: Activation of sequences

A submenu is shown for each activated sequence in which the sequences can be adjusted in detail. Furthermore a communication object, for starting and stopping, is shown for each sequence:

Number	Name	Length	Usage
83	Start sequence 1	1 Bit	1 = Start Sequence 1, 0 = Stop Sequence 1
84	Start sequence 2	1 Bit	1 = Start Sequence 2, 0 = Stop Sequence 2
85	Start sequence 3	1 Bit	1 = Start Sequence 3, 0 = Stop Sequence 3
86	Start sequence 4	1 Bit	1 = Start Sequence 4, 0 = Stop Sequence 4
87	Start sequence 5	1 Bit	1 = Start Sequence 5, 0 = Stop Sequence 5

 Table 42: Communication Object Sequences

Applies to all sequences: If the sequence is adjusted and controlled in the RGB/RGBW behavior, the state values only the RGB/RGBW state values are transmitted. At sequences in HSV behavior, only HSV state values are transmitted.

At the end of the dimming process all state values are transmitted.

4.3.3.1 Predefined sequences

If the following parameter is selected, a number of predefined sequences are available:

Sequence 1

predefined sequences

Figure 27: Predefined sequences

The following sequences can be selected:

Colorful

The sequence "Colorful" runs through all colors of the color circle. At the initial step, the color circle will be run through clockwise. In the second step, the color circle will be run through contraclockwise. The starting point is the color red (0° or 360°°). The sequence is an endless loop, which means it will be swing back and forth in the color circle. The sequence has the following parameter:

Saturation: Defines the saturation of the colors, which will be run through.

Brightness: Defines the brightness of the colors, which will be run through.

Transition time up to step 2: Defines the time, which is need for the run-through clockwise. **Transition time up to step 3:** Defines the time, which is need for the run-through contraclockwise

• Warm Colors

The sequence "Warm Colors" contains 3 steps and runs through the colors Red->Orange ->Yellow, this means the first quarter of the color circle. This sequence is an endless loop. The sequence has the following parameter:

Saturation: Defines the saturation of the colors, which will be run through.

Brightness: Defines the brightness of the colors, which will be run through.

Transition time up to step 2: Defines the time which is need for the transition from red to orange.

Transition time up to step 3: Defines the time which is need for the transition from orange to yellow.

Transition time up to step 4: Defines the time which is need for the transition from yellow back to red(starting point).

Cold Colors

The sequence "Cold Colors" contains of 4 steps and runs through the colors Aquamarine green->Turquoise->Mint->Blue. So the lower part of the color circle will be ran through. The sequence has the following parameter:

Saturation: Defines the saturation of the colors, which will be run through.

Brightness: Defines the brightness of the colors, which will be run through.

Transition time up to step 2: Defines the time which is need for the transition from aquamarine green to turquoise.

Transition time up to step 3: Defines the time which is need for the transition from turquoise to mint.

Transition time up to step 4: Defines the time which is need for the transition from mint to blue.

• TV simulation/presence simulation

The "TV simulation/presence simulation" is an endless loop, which is built up completely with random values. That means as well the called colors as the transition times and the hold times are completely random. This sequence simulates the behavior of a TV.

• Sunrise

The sequence "sunrise" dims from an off state in the steps Red with low intensity->Red with higher intensity->Orange->Yellow. So the sunrise from the early red sky to the rise of the sun is simulated. The sequence has only one run-through.

The length of the "sunrise" can be adjusted via the parameters hold time and transition time.

• Lounge random

The sequence "Lounge random" runs through the whole color circle from 0° to 360° with middle saturation. This sequence is an endless loop.
The sequence has the following parameter:
Brightness: Defines the brightness of the colors, which will be run through.
Transition time[s]: Defines the transition time between the steps.
Hold time in 100ms: Defines the hold time of the steps in multiple of 100ms.

• Indicate HSV

The sequence "Indicate HSV" toggles between 2 free parameterizable colors. This sequence is an endless loop.

The sequence has the following parameter:

On- Values:

Hue H: Defines the color which is called by switching on.Saturation S: Defines the saturation which is called by switching on.Brightness: V: Defines the brightness which is called by switching on.Period in 100ms: Defines the time how long a color is hold.

The Off-Values can be parameterized in the same way.

4.3.3.2 Manual Sequences RGBW/HSV

There are two choices for the manual sequences available. On the one hand the manual sequences can be parameterized via RGB/RGBW and on the other hand via HSV. The available options are basically the same, only the presentation and the selection of the colors are different.

The following basic settings can be done:

Sequence 1	manual sequence HSV	•
Switch sequence with	fixed values	•
Hue setting with	predefined color	•
Endless loop	not active	•
Number of execution	1	
Continuation sequence	not active	•

Figure 28: Basic settings manual sequences

The following table shows the available settings:

ETS-text	Dynamic range	comment	
	[default value]		
Switch sequence with	 fixed values 	defines whether the colors of the	
	 random values 	steps are fixed or random values are	
		generated for each step	
Number of parameter	1-5	defines the number of steps of this	
steps	[1]	sequence	
Random transition	 not active 	only at random values	
time	active	defines whether the time between	
		two steps should be random or fixed	
Endless loop	 not active 	defines whether the sequence shall	
	active	run in an endless loop or not	
Number of	1-255	is only shown if no endless loop is	
execution	[1]	active	
		Parameter defines the number of	
		executions	
Continuation	not active	is only shown if no endless loop is	
sequence	• 1	active	
	• 2	Parameter defines the sequence	
	• 3	which shall be called after this	
	• 4	sequence	
	• 5		

Table 43: Basic settings manual sequence

Sequence with fixed values:

When the sequence is controlled with fixed values, the fixed values which are called can be adjusted. The following figure shows the available settings for fixed values with HSV-Control:

Hue	Red (H=0°)	•
Saturation S	100%	•
Brightness V	100%	•
Hold time in 100 ms	5	
Transition time up to next step [s]	10	(A)

Figure 29: Manual sequence with fixed values

As shown at the upper figure, for every step a predefined color can be called. Additional the saturation and the brightness can be called at the HSV-Control. The hold time defines how long a step is hold, which means the sequence stays for the adjusted time at this step. The transition time defines the time how long the dimming takes from one step to the next one. Furthermore it is possible to select predefined colors or adjust them by your own. The following parameter switches between predefined colors and manual configuration:

Hue setting with	predefined color	

Figure 30: Manual Sequence RGB/RGBW Hue setting

Sequence with random values:

If the sequence is switched with random values, the colors will be generated randomly of the device. The random values can be restricted. The following illustration shows the sequence with random values at RGB –Control:

Lower limit for Hue Red	0%	•
Upper limit for Hue Red	100%	•
Lower limit for Hue Green	0%	•
Upper limit for Hue Green	100%	•
Lower limit for Hue Blue	0%	•
Upper limit for Hue Blue	100%	•
Lower limit for Hue White	0%	•
Upper limit for Hue White	100%	•
Hold time in 100 ms	5	

Figure 31: Manual sequence with random values

As seen on the upper picture, every color can be restricted. These settings are in the same way available for HSV-Control. In this setting the values for H, S and V can be restricted. The hold time defines how long a step is hold, which means the sequence stays for the adjusted time at this step. Furthermore the transition time can be switched between random or fixed values:

Random transition time	not active 🔹

Figure 32: Transition time

A random transition time can be restricted from zero to fixed maximum value. So the random time has an upper maximum.

The following parameter is shown for a random transition time:

Random time up to next step (0 to[s])	10	

Figure 33: Random transition time

If the parameter "Random transition time" is switched to not active, a fixed value for the transition time must be adjusted.

The transition time defines the time of the dimming process between two steps.

Number of executions:

The number of executions can be defined with the following setting:

Number of execution	1
Continuation sequence	not active

Figure 34: Manual sequence - Number of Executions

If the sequence is defined as endless loop, the sequence runs as long it will be stopped by sending a stop command to its communication object. Further settings for the number of executions are not available for this setting.

If the endless loop is not active, the number of executions can be defined. Furthermore a continuation sequence can be called. For example, sequence 1 can call sequence2, which calls sequence 3, which calls again sequence 1. So an endless loop with 3 sequences is performed. Furthermore this parameter can be used for extending a sequence with 5 more steps per continuation sequence.

4.3.4 LED RGB/RGBW Bit Scenes

Two different Bit scenes can be adjusted. The Bit scene-function enables calling absolute values with a one Bit communication object. As well for the value 1 as for the value 0 colors can be adjusted, which can be selected via RGB/RGBW or HSV.

The following illustration shows the parameter for the Control mode of Bit scene 1:

Bit Scene 1	active	•
Mode	RGBW	•

Figure 35: Bit scene - Control Mode

The color selection can be done with predefined values of by manual control:

Hue setting with	predefined color

Figure 36: Hue setting with predefined colors

At the setting "predefined color", for each value and each Bit scene individual settings are available. The following settings are available for HSV-Control:

ETS-text	Dynamic range	comment	
	[default value]		
Hue for Bit value 0/1	Red, Orange, Yellow,	Adjustment of the color, which should	
	[Red]	be called	
Saturation S for Bit value	0-100%	Adjustment of the saturation, which	
0/1	[100%]	should be called	
Brightness H for Bit value	0-100%	Adjustment of the brightness, which	
0/1	[100%]	should be called	

Table 44: Bit scenes-HSV with predefined values

The following settings are available for RGB/RGBW-Control:

ETS-text	Dynamic range	comment
	[default value]	
Hue for Bit value 0/1	Red, Orange, Yellow,	Adjustment of the color, which should
	[Red]	be called

Table 45: Bit scenes-RGB with predefined values

At the setting "manual setting", for each value and each Bit scene individual settings are available. The following settings are available for HSV-Control:

ETS-text	Dynamic range	comment
	[default value]	
Hue for Bit value 0/1	0°-360°	Adjustment of the angle which shall
	[Red H=0°]	be called in the color circle
Saturation S for Bit value	0-100%	Adjustment of the saturation which
0/1	[100%]	shall be called
Brightness V for Bit value	0-100%	Adjustment of the brightness which
0/1	[100%]	shall be called

 Table 46: Bit scenes-HSV Control with manual setting

The following settings are available for RGB/RGBW-Control:

ETS-text	Dynamic range [default value]	comment
Hue Red for Bit value 0/1	0%-100% [0%]	Adjustment of the absolute value for the red channel
Hue green for Bit value 0/1	0%-100% [0%]	Adjustment of the absolute value for the red channel
Hue blue for Bit value 0/1	0%-100% [0%]	Adjustment of the absolute value for the red channel
Hue white for Bit value 0/1	0%-100% [0%]	Adjustment of the absolute value for the red channel

Table 47: Bit scenes-RGB/RGBW Control with manual setting

The following communication objects call the Bit-Scenes:

Number	Name	Length	Usage
79	Bit Scene 1	1 Bit	Calling Bit Scene 1
80	Bit Scene 2	1 Bit	Calling Bit Scene 2

 Table 48: Communication objects Bit scenes

The communication objects for the Bit scenes are only shown if the bit scenes are activated.

The transition time for the scenes can be defined as described in 4.3.2.3 Dimming speed.

4.3.5 LED RGB/RGBW Scenes

Up to 8 scenes can be programmed, which can be assigned one of the 64 available scene numbers. The following illustration shows the available settings for submenu LED RGBW scenes:

Scenes	active	•
Save scene	disabled	•
Mode	RGBW	•
Scene A	not active	•
Scene B	not active	•
Scene C	not active	•
Scene D	not active	•
Scene E	not active	•
Scene F	not active	•
Scene G	not active	•
Scene H	not active	•

Figure 37: LED RGB/RGBW scenes

ETS-text	Dynamic range	comment	
	[default value]		
Save scenes	disabled	defines if the memory function shall	
	 enabled 	be enabled for the scenes	
Mode	• RGB/RGBW	Adjustment of the Control Mode	
	• HSV		
Scene Nr. A-[H]	 not active 	Activation/Deactivation of the	
	active	scenes	
Scene number	1-64	defines the value for calling this	
	[1]	scene	
Hue setting with	predefined color	Adjustment how the color for this	
	 manual setting 	scene shall be set	

The following table shows the available settings for an activated scene function:

Table 49: Scene function

According to the adjusted mode and the selection of the hue setting, the color which shall be called, can be adjusted in different ways.

Ear the HSV/ Mada with	prodofined colors	the following	cottings are	available
For the HSV-would with	predenned colors,	the following	settings are	available.

ETS-text	Dynamic range	comment	
	[default value]		
Hue	Rot, Orange, Gelb,	Adjustment of the color	
	[Rot]		
Saturation S	0-100%	Adjustment of the saturation	
	[100%]		
Brightness V	0-100%	Adjustment of the brightness	
	[100%]		

Table 50: Scenes- HSV control with predefined colors

For the RGB/RGBW-Mode with predefined colors, the following settings are available:

ETS-text	Dynamic range	comment
	[default value]	
Hue	Rot, Orange, Gelb,	Adjustment of the color
	[Rot]	

 Table 51: Scenes-RGB control with predefined colors

For the HSV-Mode with manual setting, the following settings are available:

ETS-text	Dynamic range	comment	
	[default value]		
Hue	0°-360°	Adjustment of the angle in the color	
	[Rot = 0°]	circle	
Saturation S	0-100%	Adjustment of the saturation	
	[100%]		
Brightness V	0-100%	Adjustment of the brightness	
	[100%]		

Table 52: Scenes-HSV control with manual setting

For the RGB/RGBW-Mode with manual setting, the following settings are available:

ETS-text	Dynamic range	comment	
	[default value]		
Hue Red	0%-100%	Adjustment of the absolute value for	
	[0%]	the red channel	
Hue Green	0%-100%	00% Adjustment of the absolute value for	
	[0%]	the green channel	
Hue Blue	0%-100%	0%-100% Adjustment of the absolute value for	
	[0%]	the blue channel	
Hue White	0%-100%	Adjustment of the absolute value for	
	[0%]	the white channel	

Table 53: Scenes-RGB Control with manual setting

The following communication object calls the adjusted scenes:

Number	Name	Length	Usage
78	Scene	1 Byte	Calling the scenes

 Table 54: Communication object scene

The communication object for the scenes is only shown if the scenes are active.

The transition time of the scenes can be adjusted as described in 4.3.2.3 Dimming speed.

For calling a scene or saving a scene with a new value, the corresponding code must be sent to the communication object for the scenes:

Scene	Calling		Saving	
	Hex.	Dec.	Hex.	Dec.
1	0x00	0	0x80	128
2	0x01	1	0x81	129
3	0x02	2	0x82	130
4	0x03	3	0x83	131
5	0x04	4	0x84	132
6	0x05	5	0x85	133
7	0x06	6	0x86	134
8	0x07	7	0x87	135
9	0x08	8	0x88	136
10	0x09	9	0x89	137
11	0x0A	10	0x8A	138
12	0x0B	11	0x8B	139
13	0x0C	12	0x8C	140
14	0x0D	13	0x8D	141
15	0x0E	14	0x8E	142
16	0x0F	15	0x8F	143
17	0x10	16	0x90	144
18	0x11	17	0x91	145
19	0x12	18	0x92	146
20	0x13	19	0x93	147
21	0x14	20	0x94	148
22	0x15	21	0x95	149
23	0x16	22	0x96	150
24	0x17	23	0x97	151
25	0x18	24	0x98	152
26	0x19	25	0x99	153
27	0x1A	26	0x9A	154
28	Ox1B	27	0x9B	155
29	0x1C	28	0x9C	156
30	0x1D	29	0x9D	157
31	0x1E	30	0x9E	158
32	0x1F	31	0x9F	159

Table 55: Calling and saving scenes

5 Index

5.1 List of Illustration

Figure 1: Structure Hardware	5
Figure 2: Exemplary circuit diagram, here AKD-0424V.01	7
Figure 3: Function Selection 1-10V Dimmer	9
Figure 4: General settings	15
Figure 5: Channel activation	16
Figure 6: On-/Off-delay	19
Figure 7: Staircase light activation	20
Figure 8: Staircase light	21
Figure 9: Starting behavior	23
Figure 10: Dimming area	24
Figure 11: Specific dimming settings	25
Figure 12: Central objects	27
Figure 13: Scene function	28
Figure 14: Submenu scene	29
Figure 15: Parameter Automatic function	32
Figure 16: Submenu automatic function	33
Figure 17: Additional functions	34
Figure 18: Function Selection Dimming RGB LED	37
Figure 19: Function Selection Dimming RGBW LED	37
Figure 20: Color Circle	45
Figure 21: General settings	47
Figure 22: White balance/Teach-In	49
Figure 23: State Objects	50
Figure 24: Dimming Speeds	51
Figure 25: Block function	52
Figure 26: Activation of sequences	53
Figure 27: Predefined sequences	53
Figure 28: Basic settings manual sequences	56
Figure 29: Manual sequence with fixed values	57
Figure 30: Manual Sequence RGB/RGBW Hue setting	57
Figure 31: Manual sequence with random values	58
Figure 32: Transition time	58
Figure 33: Random transition time	58
Figure 34: Manual sequence - Number of Executions	59
Figure 35: Bit scene - Control Mode	60
Figure 36: Hue setting with predefined colors	60
Figure 37: LED RGB/RGBW scenes	62

5.2 List of Tables

Table 1: Communication Objects Application Dimmer 1-10V	13
Table 2: Default Settings Communication Objects (Dimming/Switching Functions)	14
Table 3: Communication object - Switch Relay	16
Table 4: Channel activation	16
Table 5: Parallel Connection of the channels	17
Table 6: Communication Objects Alarm	17
Table 7: Communication objects switching	18
Table 8: Dim relatively	18
Table 9: Dim absolutely	18
Table 10: On-/Off-delay	19
Table 11: Staircase light	21
Table 12: Communication object staircaselight	22
Table 13: Starting behavior	23
Table 14: Dimming area	24
Table 15: Dimming speed	25
Table 16: Send dimming value after change	26
Table 17: Communication object dimming value	26
Table 18: Central objects	27
Table 19: Central communication objects	27
Table 20: Central communication object device error	27
Table 21: Communication object scene	28
Table 22: Submenu scene	29
Table 23: Calling and saving scenes	31
Table 24: Communication objects automatic function	32
Table 25: Dynamic range automatic function	33
Table 26: Dynamic range blocking objects	35
Table 27: Communication objects blocking	35
Table 28: Behavior at bus power off/reset	36
Table 29: Communication Objects Controlling RGB/RGBW-Stripes	43
Table 30: Default Settings Communication Objects (RGB/RGBW)	44
Table 31: Communication Objects controlling via HSV	46
Table 32: Communication Objects RGB-/RGBW Controlling	46
Table 33: Communication Objects 3 Byte Color Setting	47
Table 34: Communication object - Switch Relay	48
Table 35: Communication Objects Alarm	48
Table 36: Communication Object Teach-In	49
Table 37: Communication Objects RGB/RGBW individually	50
Table 38: Communication objects HSV individually	50
Table 39: Communication Objects 3 Byte State	50
Table 40: Parameter block function	52
Table 41: Communication Object block function	52
Table 42: Communication Object Sequences	53
Table 43: Basic settings manual sequence	56
Table 44: Bit scenes-HSV with predefined values	60
Table 45: Bit scenes-RGB with predefined values	60
Table 46: Bit scenes-HSV Control with manual setting	61
Table 47: Bit scenes-RGB/RGBW Control with manual setting	61
Table 48: Communication objects Bit scenes	61

Table 49: Scene function	. 63
Table 50: Scenes- HSV control with predefined colors	63
Table 51: Scenes-RGB control with predefined colors	63
Table 52: Scenes-HSV control with manual setting	64
Table 53: Scenes-RGB Control with manual setting	64
Table 54: Communication object scene	. 64
Table 55: Calling and saving scenes	65

6 Attachment

6.1 Statutory requirements

The above-described devices must not be used with devices, which serve directly or indirectly the purpose of human, health- or lifesaving. Further the devices must not be used if their usage can occur danger for humans, animals or material assets.

Do not let the packaging lying around careless, plastic foil/ -bags etc. can be a dangerous toy for kids.

6.2 Routine disposal

Do not throw the waste equipment in the household rubbish. The device contains electrical devices, which must be disposed as electronic scrap. The casing contains of recyclable synthetic material.

6.3 Assemblage

Risk for life of electrical power! All activities on the device should only be done by an electrical specialist. The county specific regulations and the applicable EIB-directives have to be observed.

6.4 Datasheet

MDT RGB LED Controller

Version			
AKD-0324V.01	RGB LED Controller	For 12/24V RGB LED Stripes	
AKD-0424V.01	RGBW LED Controller	For 12/24V RGBW LED Stripes	
AKD-0224V.01	LED Controller	For white LED Stripes	

The MDT LED Controller receives KNX/EIB telegrams and controls 12/24V RGB LED stripes.

These functions are available:

- Absolute and relative dimming (HSV and RGB)
- Scene function
- Random function
- Dimming speed and hold time programmable
- Predefined sequences (e.g. sunrise)
- Repeating of sequences
- Defining of colors
- Overcurrent supervision
- Overtemperature supervision
- Suitable for 12/24V LED Stripes, 3A for each color channel (Common Anode)
- Suitable for LED with constant voltage (CV)
- Relay output to control external LED power supply maximum switching curent 16A, capacitive load max. 140µF
- Commissioning with ETS4/5

The MDT LED Controller is an installation device for installation in dry rooms.

For project design and commissioning of the MDT Controller it is recommended to use the ETS4/ETS5 or later. Please download the application software at www.mdt.de/Downloads.html

AKD-0324V.01

- Production in Germany, certified according to ISO 9001
- Absolute and relative dimming (HSV and RGB)
- Scene function
- Random function
- Dimming speed and hold time programmable
- Predefined sequences (e.g. sunrise)
- Repeating of sequences
- Defining of colors
- Overcurrent supervision
- Overtemperature supervision
- Suitable for 12/24V LED Stripes, 3A for each color channel (Common Anode)
- Suitable for LED with constant voltage (CV)
- Relay output to control external LED power supply maximum switching curent 16A, capacitive load max. 140µF
- Commissioning with ETS4/5
- Dimensions (W x H x D): 46mm x 25mm x 113mm
- Integrated bus coupling unit
- 3 years warranty

MDT LED Controller

Technical Data	AKD-0324V.01	AKD-0424V.01	AKD-0224V.01
Number of outputs	3	4	2
Dimming process*	PWM 600Hz	PWM 600Hz	PWM 600Hz
Switching voltage relay output	230VAC/50Hz	230VAC/50Hz	230VAC/50Hz
Max. fuse relay output	16A	16A	16A
Maximum current relay output	16A/140µF	16A/140µF	16A/140µF
LED power supply	12/24VDC +10%	12/24VDC +10%	12/24VDC +10%
Max. current for each color channel	ЗА	3A	3A
Max. current external power supply	12A	12A	12A
Recommended length supply line**	< 3m, max. 10m	< 3m, max. 10m	< 3m, max. 10m
Permitted wire gauge			
Screw terminal	0,5 - 4,0mm ² solid core 0,5 - 2,5mm ² finely stranded	0,5 - 4,0mm ² solid core 0,5 - 2,5mm ² finely stranded	0,5 - 4,0mm ² solid core 0,5 - 2,5mm ² finely stranded
KNX busconnection terminal	0,8mm Ø, solid core	0,8mm Ø, solid core	0,8mm Ø, solid core
Power supply	KNX bus	KNX bus	KNX bus
Power consumption KNX bus typ.	< 0,3W	< 0,3W	< 0,3W
Operation temperature range	0 to + 45°C	0 to + 45°C	0 to + 45°C
Enclosure	IP 20	IP 20	IP 20
Dimensions (W x H x D)	46mm x 25mm x 113mm	46mm x 25mm x 113mm	46mm x 25mm x 113mm

* We suggest to use the LED Controller only to create light moods. If you use PWM devices for main light sensitive persons can be irritated by strobe effects or flickering.
 ** The length of the single supply lines must be the same.
 *** It is required to use a power suppy according to EN 61347-2-13.

Examplary circuit diagram AKD-0324V.01

Examplary circuit diagram AKD-0224V.01

Examplary circuit diagram AKD-0424V.01

MDT technologies GmbH • 51766 Engelskirchen • Papiermühle 1

Tel.: +49-2263-880 • Fax: +49-2263-4588 • knx@mdt.de • www.mdt.de Stand: 0614

MDT RGBW LED Controller

Version			
AKD-0424R.01	RGBW LED Controller	For 12/24V RGBW LED Stripes	

The MDT LED Controller receives KNX/EIB telegrams and controls 12/24V RGB LED stripes. If required the channels A/B and C/D can be connected in parallel to control higher loads up to 8A.

These functions are available:

- Absolute and relative dimming (HSV and RGB)
- Scene function
- Random function
- Dimming speed and hold time programmable
- Predefined sequences (e.g. sunrise)
- Repeating of sequences
- Defining of colors
- Overcurrent supervision
- Overtemperature supervision
- Suitable for 12/24V LED Stripes, 4A for each color channel (Common Anode)
- Suitable for LED with constant voltage (CV)
- Relay output to control external LED power supply maximum switching curent 16A, capacitive load max. 140µF
- Commissioning with ETS4/5

The MDT LED Controller is a modular installation device for fixed installation in dry rooms. It fits on DIN 35mm rails in power distribution boards or closed compact boxes.

For project design and commissioning of the MDT LED Controller it is recommended to use the ETS4/ETS5 or later. Please download the application software at www.mdt.de/Downloads.html

AKD-0424R.01

- Production in Germany, certified according to ISO 9001
- Absolute and relative dimming (HSV and RGB)
- Scene function
- Random function
- Dimming speed and hold time programmable
- Predefined sequences (e.g. sunrise)
- Repeating of sequences
- Defining of colors
- Overcurrent supervision
- Overtemperature supervision
- Suitable for 12/24V LED Stripes, 4A for each color channel (Common Anode)
- Suitable for LED with constant voltage (CV)
- Relay output to control external LED power supply maximum switching curent 16A, capacitive load max. 140µF
- Commissioning with ETS4/5
- Modular installation device for DIN 35mm rails
- Integrated bus coupling unit
- 3 years warranty

MDT RGBW LED Controller

Technical Data	AKD-0424R.01	
Number of outputs	4	
Switching voltage relay output	230VAC/50Hz	
Max. fuse relay output	16A	
Maximum current relay output	16Α/140μF	
LED power supply*	12/24VDC +10%	
Max. current for each color channel**	4/8A**	
Max. current external LED power supply	16A	
Recommended wire gauge of LED supply line***		
Length < 20m, current 2A	1,5mm²	
Length < 35m, current 2A	2,5mm²	
Length < 10m, current 4A	1,5mm²	
Length < 18m, current 4A	2,5mm²	
Length < 9m, current 8A**	2,5mm²	
Permitted wire gauge		
Screw terminal	0,5 - 4,0mm ² solid core 0,5 - 2,5mm ² finely stranded	
KNX busconnection terminal	0,8mm Ø, solid core	
Dimming process****	PWM 600/1000Hz	
Power supply MCU	KNX bus	
Power consumption KNX bus typ.	< 0,3W	
Operation temperature range	0 to + 45°C	
Enclosure	IP 20	
Dimensions MDRC (Space Units)	4SU	

* t is required to use a power suppy according to EN 61347-2-13.

** Only if the channels A/B and C/D are connected in parallel. The channels have to be bridged directly at the connection terminals.

*** The declared length refer to a voltage drop below <1V abd separate wiring of go and return line. If a common return line is used the wire gauge has to be increased accordingly.

**** We suggest to use the LED Controller only to create light moods. If you use PWM devices for main light sensitive persons can be irritated by strobe effects or flickering.

Examplary circuit diagram AKD-0424R.01

DIN EN ISO 9001 TAW Cert UU Zert.Nr.1905606

Tel.: +49-2263-880 • Fax: +49-2263-4588 • knx@mdt.de • www.mdt.de Stand: 0715