### merten

#### KNX fan coil actuator REG-K

Operating instructions



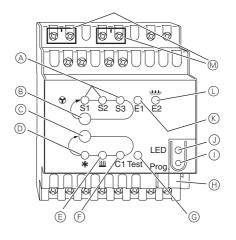
Art. no. 645094

#### For your safety



#### DANGER

#### Risk of fatal injury due to electrical current:


All work on the device should only be carried out by qualified electricians. Observe the countryspecific regulations as well as the valid KNX guidelines.

#### Fan coil actuator introduction

The fan coil actuator is a DIN rail-mounted device suitable for connection to a KNX bus. The device is called "actuator" in the following. The actuator is suitable for 2-pipe and 4-pipe systems. It controls up to 3 fan speeds as well as 2- or 3-point heating or cooling valves respectively. An additional electrical speed can be activated using an additional relay.

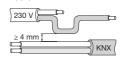
The actuator has 2 inputs for floating contacts, a window contact and condensate monitor for example (the input for the window contact can be parameterised as a temperature sensor in the ETS software).

#### Operating and display elements

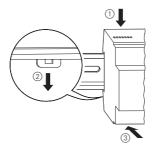


- (A) S1 S3
  - LEDs for displaying fan speeds
- $\ensuremath{\mathbb{B}}$  Test push-button for fan speeds
- © Test push-button for the valves and additional relay C1
- LED on = Cooling valve is open
   LED flashes if the heating valve should be opened
   but the cooling valve is still open
- © LED on = Heating valve is open LED flashes if the cooling valve should be opened but the heating valve is still open
- F LED for additional relay

- LED "Test" on, when test mode is active (can be disabled using application)
  - (H) Bus connecting terminal
  - ① Programming button
  - ① Programming LED
  - E1: Window contact or actual value sensor LED on = Closed contact LED flashing = Sensor break
  - LED on = Closed contact
  - Mains terminal cover


#### Mounting the actuator

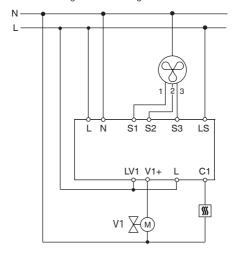
# 1


#### WARNING

#### Risk of fatal injury from electrical current. The device could become damaged.

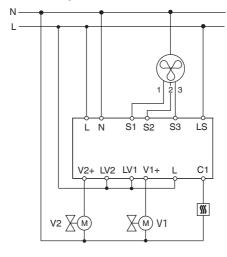
Safety clearance must be guaranteed in accordance with IEC 60664-1. There must be at least 4 mm between the individual cores of the 230 V supply cable and the KNX line.




① Position the actuator on the DIN rail.



- Connect KNX. (see operating and display elements
  (H))
- When connected, mount the mains terminal cover on the connection screws of the mains terminals. (see operating and display elements (M))


#### Connecting 2-point valves heating/ cooling and additional level

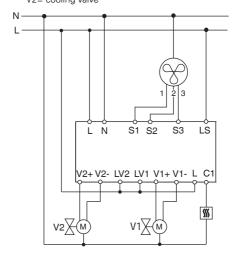
① Connect 2-point valves and additional level. V1= heating valve or cooling valve



# Connecting 2-point valves heating valve or cooling and additional level

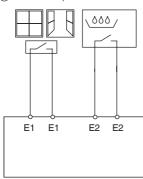
Connect 2-point valves and additional level.
 V1= heating valve
 V2= cooling valve




#### Connecting 3-point valves heating/ cooling and additional level

① Connect 3-point valves and additional level. V1= heating valve or cooling valve




# Connecting 3-point valves heating valve or cooling and additional level

Connect 3-point valves and additional level.
 V1= heating valve
 V2= cooling valve



#### Connecting inputs

① Connect inputs 1 and 2.



#### Commissioning the actuator

1 Press the programming button.

The programming LED lights up.

② Load the physical address and application into the device from the ETS.

The programming LED goes out.

The application has been loaded successfully; the device is operative.

#### Test mode

Test mode checks the system during commissioning or troubleshooting, for example. In this mode, the valves and fan can be set manually using the push-buttons on the device. A temperature sensor or the window contact (inputs 1 and 2) can also be checked as required.

#### Note on Test mode:

- Neither the controller nor the bus telegram has an effect on the device.
- All settings are possible without restrictions.
- The fan speeds and the valves are switched in sequence independently of the parameters.
- The valves and fan remain switched on until they are turned off manually.
- The condensate alarm is ignored.



Avoid operational states that are not permitted, like heating and cooling valve opened at the same time or one valve permanently switched on for example.

#### **Activating Test mode without loaded application**

- After a reset, meaning after a download or application of bus voltage, the Test LED flashes for 1 minute and then the actuator is in Normal mode.
- If an application program is not loaded, the LED Test flashes permanently.
- As long as the LED is flashing, Test mode can be started by pressing Test push-buttons (B) and (C).
   The actuator switches to Test mode status and LED Test is permanently lit up.

#### Switching the fan on

Press Test push-button (B) (see operating and display elements). The fan speeds are switched on one after the other.

# Controlling the valves and switching the additional relay on

Press Test push-button © (see operating and display elements) several times. The required valve or additional relay C1 is selected.

The active function and the status of the output are displayed by the relevant LED.

## Status display heating and cooling valve in Test

LED status 3-point valves 2-point valves OFF Valve is not Valve is not 继 activated activated Valve is open (V2+) Valve is open (V2+) On Flash Valve is closed (V2- Valve is closed 繖 es OFF Valve is not Valve is not **\$\$** activated activated Valve is open (V1+) Valve is open (V1+) On Flash Valve is closed (V1- Valve is closed es

#### Checking the temperature sensor

- If a temperature sensor is connected to input E1, the measured room temperature at KNX object 14 is output. The application software has to be parameterised for this.
- A sensor break or short circuit on the sensor lead is reported by entry -60°C (KNX object 14). LED E1 on the device also flashes.

#### Checking the window contacts

- If a temperature sensor is connected to input E1, the status (open or closed) at KNX object 14 is output.
   The application software has to be parameterised for this.
- Input E2 can be checked the same way (KNX object 16, condensate monitor or window contact).

#### **Exiting Test mode**

- The Test mode is exited with a reset. A reset can be retrieved by the following statuses:
- 1 Pressing push-buttons (B) and (C) (>2 s) at the same time (see operating and display elements)

#### Network/bus failure



In the event of network/bus failure, all relays connected are opened regardless of how they have been parameterised via the software.



#### Network failure detection for 3-point valves

If the mains voltage fails while a 3-point valve is being positioned, the valve position is unknown upon mains recovery. This is why the mains voltage at terminals L and N is monitored. Upon mains recovery, the valve is first completely closed and then moved to the correct position. This function is only possible when the device and the valves are connected to the same electrical circuit.

#### Technical data

Operating voltage: 230 V AC +/- 10%

Nominal frequency: 50 Hz Power consumption: max. 3 W

Power supply from DC 24 V, max. 12 mA

bus: Maximum cable

length E1 and E2: 5 m
Mode of operation: Type 1

Outputs:

Valves 0.5 A (24 - 230 V AC)

Additional relay (C1) 16 A Fan relay: 8 A

Ambient temperature: -5°C to +45°C

Protection class: II when installed correctly
Type of protection: IP 20 in accordance with EN

60529

Device standard: EN 60730-1

Low voltage directive:

73/23/EWG

EMV directive: 89/336/EWG

Merten GmbH & Co. KG, Solutions for intelligent buildings Service Center, Fritz-Kotz-Straße 8, Industriegebiet Bomig-West D-51674 Wiehl

 Phone:
 +49 2261 702-204

 Fax:
 +49 2261 702-136

 E-Mail:
 servicecenter@merten.de

 Internet:
 www.merten.de

InfoLine:

Phone: +49 1805 212581\* or +49 800 63783640 Fax: +49 1805 212582\* or +49 800 63783630

E-Mail: infoline@merten.de

<sup>\*</sup> fee required

# The KNX fan coil actuator application overview

- Parameter pages
- Communication objects
- Parameters
- Start-up
- Monitoring actuating value
- Set characteristic valve curve
- Set point adjustment
- Frost protection
- Dead zone
- Determining the current operating mode
- Fan control
- Temperature control

# • Parameter pages

| C. va ation           | Description                                                        |  |
|-----------------------|--------------------------------------------------------------------|--|
| Function              | Description                                                        |  |
| General               | Supported functions, operation, filter change                      |  |
| Fan                   | Number of fan steps, switching thresholds etc.                     |  |
| Heating valve         | Base settings for heating valve                                    |  |
| Cooling valve         | Base settings for cooling valve                                    |  |
| Heating/cooling valve | Base valve settings for 2-pipe systems                             |  |
| Auxiliary relay       | Use of auxiliary relay C1                                          |  |
| E1 E2                 | Settings for inputs E1 and E2                                      |  |
| Drip tray monitoring  | Reaction to condensation and signal source                         |  |
| Set point adjustment  | Set point adjustment dependent on outdoor temperature              |  |
| Set point values      | Set point value after download, values for night, frost mode etc.  |  |
| Control               | Control parameter settings for the internal temperature controller |  |
| Operating mode and    | Base settings for changing operating modes                         |  |
| operation             |                                                                    |  |
| Filter monitoring     | Base settings for filter change                                    |  |

# • Communication objects

### Object characteristics

The KNX fan coil acutator features 28 communication objects. Some objects can assume various functions depending on their configuration.

### Key

|   | Flag | Name          | Meaning                                          |
|---|------|---------------|--------------------------------------------------|
|   | С    | Communication | Object can communicate                           |
|   | R    | Read          | Object status can be viewed (ETS / display etc.) |
| ĺ | W    | Write         | Object can receive                               |
| ĺ | Т    | Transmit      | Object can transmit                              |

| No.  | Function                            | Object name                     | Tuno                       |          | Fla      | igs      |          |
|------|-------------------------------------|---------------------------------|----------------------------|----------|----------|----------|----------|
| INO. | Function                            | Object name                     | Туре                       | С        | R        | W        | Т        |
|      | Receive                             | Actuating value for fan         |                            | ✓        | ✓        | ✓        |          |
|      | Transmit                            | Heating actuating value         |                            | ✓        | ✓        |          | ✓        |
| 0    | Receive                             | Actuating value heating         | 1 byte                     | ✓        | ✓        | ✓        |          |
|      | Transmit                            | Actuating value heating/cooling | EIS 6                      | ✓        | ✓        |          | ✓        |
|      | Receive                             | Actuating value heating/cooling |                            | ✓        | ✓        | ✓        |          |
|      | Receive                             | Actuating value cooling         |                            | ✓        | ✓        | ✓        |          |
|      | Transmit                            | Actuating value cooling         | 1 byte                     | ✓        | ✓        | ✓        | ✓        |
|      | Receive                             | Actuating value cooling         | EIS 6                      | ✓        | ✓        | ✓        |          |
| 1    | Switchover                          | Heating/cooling                 | 1 bit                      | ✓        | ✓        | ✓        |          |
|      | 1 = Heating disabled                | Disable heating                 | EIS 1                      | ✓        | ✓        | ✓        |          |
|      | 1 = Enable cooling                  | Enable cooling                  | LIST                       | ✓        | ✓        | ✓        |          |
| 2    | report                              | Heating status                  | 1 bit<br>EIS 1             | ✓        | ✓        |          | ✓        |
| 3    | report                              | Cooling status                  | 1 bit<br>EIS 1             | <b>✓</b> | <b>✓</b> |          | ✓        |
| 4    | report                              | Fan step                        | 1 byte<br>EIS 6/<br>EIS 14 | <b>√</b> | ✓        |          | <b>✓</b> |
| _    | Switching                           | Auxiliary relay                 | 1 bit                      | ✓        | ✓        | ✓        |          |
| 5    | report                              | Auxiliary relay status          | EIS 1                      | ✓        | ✓        |          | ✓        |
| 6    | 1 = Lock                            | Lock auxiliary ventilation      | 1 bit<br>EIS 1             | <b>✓</b> | ✓        | ✓        |          |
| 7    | 1 = Lock                            | Fan lock                        | 1 bit<br>EIS 1             | <b>✓</b> | <b>✓</b> | ✓        |          |
| 8    | Fan control with % value            | Forced fan step                 | 1 byte<br>EIS 6            | <b>✓</b> | ✓        | <b>✓</b> |          |
| 9    | 0 % = Auto<br>1 %100 % = Limitation | Limitation of fan step          | 1 byte<br>EIS 6            | ✓        | ✓        | ✓        |          |
| 10   | Fan off                             | report                          |                            | ✓        | ✓        |          | ✓        |
| 11   | Fan step 1                          | report                          | 1 bit                      | ✓        | ✓        |          | ✓        |
| 12   | Fan step 2                          | report                          | EIS 1                      | ✓        | ✓        |          | ✓        |
| 13   | Fan step 3                          | report                          |                            | ✓        | ✓        |          | ✓        |
| 14   | Report                              | Actual value from E1            | 2 bytes<br>EIS 5           | ✓        | ✓        |          | ✓        |
| 14   | Report                              | Status of window contact at E1  | 1 bit<br>EIS 1             | ✓        | ✓        |          | <b>✓</b> |
| 15   | switch                              | Manual mode= 1 / Auto = 0       | 1 bit                      | ✓        | ✓        | ✓        |          |

|     |                           |                                        | EIS 1            |          |          |          |          |
|-----|---------------------------|----------------------------------------|------------------|----------|----------|----------|----------|
|     | Report                    | Status of drip tray monitoring         |                  | <b>✓</b> | <b>√</b> |          | ✓        |
| 16  | Input                     | Status of drip tray monitoring         | 1 bit            | <b>√</b> | <b>√</b> | <b>√</b> |          |
|     | Report                    | Status of E2                           | EIS 1            | <b>✓</b> | ✓        |          | ✓        |
| 17  | Input                     | Dew point alarm                        | 1 bit<br>EIS 1   | <b>✓</b> | ✓        | <b>✓</b> |          |
| 18  | Input                     | Outside temperature                    | 2 bytes<br>EIS 5 | ✓        | ✓        | ✓        |          |
| 10  | Delta in K                | Adjust set point                       | 2 bytes          | ✓        | ✓        |          | ✓        |
| 19  | Value in °C               | Adjust set point                       | EIS 5            | ✓        | ✓        |          | ✓        |
| 20  | 1 = Actuating value loss  | Actuating value loss                   | 1 bit<br>EIS 1   | ~        | ✓        |          | ✓        |
| 20  | Sensor failure            | Sensor failure                         | 1 bit<br>EIS 1   | ✓        | ✓        |          | ✓        |
|     | Operating mode preset     | Operating mode preset                  | 1 byte           | ✓        | ✓        | ✓        |          |
| 21  | 1 = Night mode            | Night mode < - > Standby               | 1 bit<br>EIS 1   | ✓        | ✓        | ✓        |          |
| 22  | Input for presence signal | Presence                               | 1 bit            | ✓        | ✓        | <b>✓</b> |          |
| 22  | 1 = Comfort mode          | Comfort                                | EIS 1            | ✓        | ✓        | ✓        |          |
| 23  | Input for window contact  | Window                                 | 1 bit            | ✓        | ✓        | ✓        |          |
| 23  | 1 = Frost protection      | Frost protection                       | EIS 1            | ✓        | ✓        | ✓        |          |
| 24  | Transmit                  | Current operating mode                 | 1 byte           | ✓        | ✓        |          | ✓        |
| 25  | Receive                   | Manual adjustment                      | 2 bytes          | ✓        | ✓        | ✓        |          |
| 26  | Receive                   | Base set point value                   | 2 bytes          | ✓        | ✓        | ✓        |          |
| 27  | Transmit                  | Current set point value                | 2 bytes          | ✓        | ✓        |          | ✓        |
| 28  | Switchover                | Heating/cooling                        | 1 bit<br>EIS 1   | ✓        | ✓        | ✓        |          |
|     | 1 = No energy medium      | No energy medium                       |                  | ✓        | ✓        |          | ✓        |
| 29  | 1 = Heating disabled      | Heating required but heating disabled  | 1 bit<br>EIS 1   | <b>✓</b> | ✓        |          | ✓        |
|     | 1 = Cooling disabled      | Cooling required but cooling disabled  | _ EI3 I          | <b>✓</b> | ✓        |          | ✓        |
| 30  | Time in hours             | Fan duty time since last filter change | 2 byte<br>EIS 10 | ~        | ✓        |          | ✓        |
| 31* | 1 = Change                | Change filter                          | 1 bit<br>EIS 1   | <b>✓</b> | ✓        | <b>✓</b> | <b>✓</b> |
| 32  | Report                    | Test mode                              | 1 bit<br>EIS 1   | ~        | <b>✓</b> |          | <b>✓</b> |
|     |                           |                                        |                  | С        | R        | W        | Τ        |

<sup>\*</sup> Also serves as reset input for filter change status.

| Number of communication objects | 33 |
|---------------------------------|----|
| Number of group addresses       | 64 |
| Number of associations          | 64 |

### • Description of objects

# Object 0 "Actuating value for fan, Actuating value heating/cooling, transmit or receive Actuating value cooling".

The function of the object is connected with the parameters "Supported function" and "Type of controller used" on the "General parameter page".

| Supported           | Kind of controller usea                                                       | Cyatam type                                                           |                                      |
|---------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------|
| function            | internal controller                                                           | remote controller                                                     | System type                          |
| Heating             | Transmits the current actuating value of heating valve                        | Receives the actuating value for the heating valve                    | 4-pipe system or heating only system |
| Cooling             | Transmits the current actuating value of cooling valve                        | Receives the actuating value for the cooling valve                    | cooling only system                  |
| Heating and cooling | Transmits the current actuating value of the common heating and cooling valve | Receives the actuating value for the common heating and cooling valve | 2-pipe system                        |
| Ventilator          | receives the actuating value for fan control                                  |                                                                       | Ventilation                          |

#### Object 1 "Actuating value cooling, Heating/cooling, Disable heating, Enable cooling"

The function of the object is connected with the parameters "Supported function" and "System type" on the "General" parameter page.

| Supported   | System type                                           |                                                 |  |  |
|-------------|-------------------------------------------------------|-------------------------------------------------|--|--|
| function    | 2-pipe system                                         | 4-pipe system                                   |  |  |
| Heating and | Switch between                                        | With remote controller: Receive                 |  |  |
| cooling     | heating and cooling operation                         | actuating value cooling                         |  |  |
| _           | Heating = 0                                           | With internal controller: Transmit              |  |  |
|             | Cooling= 1 actuating value cooling                    |                                                 |  |  |
| Heating     | Disable heating:                                      |                                                 |  |  |
|             | 1 on this object disables the heating function.       |                                                 |  |  |
|             | Lock can be cleared with a 0.                         |                                                 |  |  |
|             | After reset, object value = 0, i.e. heating permitted |                                                 |  |  |
| Cooling     | Enable cooling:                                       |                                                 |  |  |
|             | 1 on this object <b>permits</b> cooling function.     |                                                 |  |  |
|             | 0 on this object disables the cooling funct           | 0 on this object disables the cooling function. |  |  |
|             | After reset, object value = 1, i.e. cooling p         | permitted                                       |  |  |

#### Object 2 "heating status"

Transmits the current heating status:

- 1 =Actuating value heating is greater than 0%, heating is switched on.
- 0 = Actuating value heating is 0%, heating is currently switched off.

#### Object 3 "Cooling status"

Transmits the current cooling status:

- 1 = Actuating value cooling is greater than 0%, cooling is switched on.
- 0 = Actuating value cooling is 0%, cooling is currently switched off.

#### Object 4 "Fan step"

Reports the current fan step.

2 formats can be selected:

- as 1 byte number between 0 and 3.
- as percentage value

See Format and cycle time for object fan step parameter

#### Object 5 "Auxiliary relay, auxiliary relay status"

The function of this object is dependent on the "Switching on auxiliary relay" parameter on "Auxiliary relay" parameter page.

Using the "via object setting, the auxiliary relay can be controlled externally via the bus with object 5. With all other settings object 5 reports the current status of auxiliary relay.

#### Object 6 "Disable auxiliary ventilation"

Disable object for the "auxiliary ventilation" function if this is activated.

1 = Lock

0 = Unlock

#### Object 7 "Fan lock"

Disable object for fan control.

1 = Disable fan

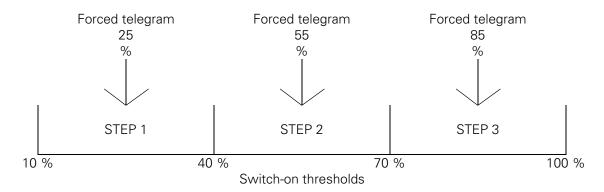
0 = Automatic operation

#### Object 8 "Forced fan step %"

The desired fan step in forced mode can be set as percentage value between 0 % and 100 % .

This can be done either by using the switch on the KNX room thermostat or via a KNX sensor (e.g. push button) configured for that purpose

Forced function is activated by Object 15.


#### Example:

Recommended forced telegrams for the following settings on the "Fan" parameter page:

*Switch-on threshold for fan step 1* = 10 %

Switch-on threshold for fan step 2 = 40 %

Switch-on threshold for fan step 3 = 70 %



#### Object 9 "Limitation of fan step"

This object can be used to set the maximum permitted actuating value and the associated maximum fan step.

The following values are used.

| Value   | Highest permissible fan step                                 |
|---------|--------------------------------------------------------------|
| 0 %     | The fan is not switched on                                   |
| 1 % 99% | Maximum permissible fan step for normal and forced operation |
| 100 %   | No limit, automatic operation (= object value after reset)   |

#### Example:

Configured switch-on thresholds:

Fan step 1 = 10 %

Fan step 2 = 40 %

Fan step 3 = 70 %

| Received value at object 9 | Maximum fan step       |
|----------------------------|------------------------|
| 0 % 9 %*                   | Fan is not switched on |
| 10 % 39 %                  | 1                      |
| 40 % 69 %                  | 2                      |
| 70 % 100 %**               | 3                      |

<sup>\*</sup> Value is under the switch-on threshold for step 1, the fan cannot be switched on.

#### Object 10 "Fan off"

Report object for the fan status.

Transmits a 1 if the fan is switched off.

## Object 11 "Fan step 1"

Report object for the fan status.

Transmits a 1 if the fan is switched to step 1.

<sup>\*\*</sup> Value is greater/equal to the switch-on threshold for level 3, i.e. no limit

#### Object 12 "Fan step 2"

Report object for the fan status. Transmits a 1 if the fan is switched to step 2.

#### Object 13 "Fan step 3"

Report object for the fan status.

Transmits a 1 if the fan is switched to step 3.

#### Object 14 "Actual value from E1, Status window contact to E1"

The object function depends on the "Function of E1" parameter on the "E1" parameter page.

| Parameters "Function of E1" | Meaning                                                                                                          |
|-----------------------------|------------------------------------------------------------------------------------------------------------------|
| E1 = Window contact         | Transmits the current status of the window contact to the bus.  • Only available when using a remote controller. |
| E1 = Actual value sensor    | Transmits the current measured room temperature to the bus.  • Fixed setting when using an internal controller.  |

#### Object 15 "Manual mode = 1 / Auto = 0"

This object is used to activate or leave the forced fan step. The desired fan step for the forced operation is set by Object 8 .

The forced fan step has no effect on valve control.

#### Object 16 "Drip tray monitoring status"

The function of this object depends on the "Source for drip tray monitoring" parameter on the "Drip tray monitoring" page.

| Parameters "Source for drip tray monitoring" | Object function                                          |
|----------------------------------------------|----------------------------------------------------------|
| E2                                           | Transmits the status of the drip tray monitoring         |
| Object 16                                    | Receives the status of the drip tray monitoring from the |
| Object 16                                    | bus                                                      |

#### Object 17 "Dew point alarm"

Receives the dew point alarm telegrams. 1 = Alarm

#### Object 18 "Outdoor temperature"

Receives the outdoor temperature for Set point adjustment

#### Object 19 "Adjust set point"

Reports the current set point adjustment as an amount or as a differential.

The format of the correction value is set on the set point adjustment parameter page.

| Format of correction value | Object function                                                                                                                            | Example                                                                                               |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Absolute                   | Transmits the amount:  Base set point without adjustment  + Set point correction as set point  value for additional temperature  controls. | Base set point without adjustment = 20°C. Set point adjustment = +2 K  The object transmits : 22 °C * |
| Relative                   | Calculated set point adjustment (in Kelvin) based on outdoor temperature.                                                                  | Base set point without adjustment = 20°C. Set point adjustment = +2 K The object transmits : 2 K *    |

<sup>\*</sup>Important: If the *Use set point adjustment for regulation* parameter is set on "yes", the *base setpoint after reset* (i.e. set point for the internal controller) is also adjusted at the same time. In our example it is raised by 2 K in both cases.

#### Object 20 "Actuating value loss, sensor failure"

The function of the object depends on the "Type of controller used" parameter on the "General" parameter page.

| "Type of controller used" | Object function                                          |
|---------------------------|----------------------------------------------------------|
| Internal controller       | Reports error if the temperature sensor connection is    |
| Internal controller       | interrupted or shorted.                                  |
|                           | Reports whether the actuating value is being received at |
| Pamata controllar*        | regular intervals.                                       |
| Remote controller*        | 1 = Actuating value loss                                 |
|                           | 0 = Actuating value OK                                   |

<sup>\*</sup> Sensor errors are only reported with use of an internal controller.

#### Object 21 "Operating mode preset, Night <-> Standby"

The function of the object depends on the "Object for operating mode preset" parameter on the "Operating mode and operation" parameter page.

| "Objects for setting operating mode"  | Object function                                            |
|---------------------------------------|------------------------------------------------------------|
| new: Operating mode, presence, window | 1 byte object.                                             |
| status                                | One of 4 operating modes can be directly activated.        |
|                                       | 1 = Comfort, 2 = Standby, 3 = Night,                       |
|                                       | 4 = Frost protection (heat protection)                     |
|                                       | If another value is received (0 or >4) the comfort         |
|                                       | operating mode is activated.                               |
|                                       | The details in brackets refer to cooling mode.             |
| old: Comfort, night, frost            | With this setting, this object is a 1 bit object. Night or |
|                                       | standby operating mode can be activated.                   |
|                                       | 0=Standby 1=Night                                          |

### Object 22 "Comfort , Presence"

The object function depends on the "Object for operating mode preset" parameter on the "Operating mode and operation" parameter page.

| "Objects for setting the operating mode" | Object function                                                                                       |
|------------------------------------------|-------------------------------------------------------------------------------------------------------|
| new: Operating mode, presence, window    | Presence:                                                                                             |
| status                                   | The status of a presence indicator (e.g. sensor, movement indicator) can be received via this object. |
|                                          | A 1 on this object activates the comfort operating mode.                                              |
| old: Comfort, night, frost               | Comfort:                                                                                              |
|                                          | A 1 on this object activates the comfort operating mode.                                              |
|                                          | This operating mode takes priority over night and                                                     |
|                                          | standby operation.                                                                                    |
|                                          | Comfort mode is deactivated by sending a 0 to the                                                     |
|                                          | object.                                                                                               |

### Object 23 "Window, frost protection"

| "Objects for setting the operating mode" | Object function                                            |
|------------------------------------------|------------------------------------------------------------|
| new: Operating mode, presence, window    | Window position:                                           |
| status                                   | The status of a window contact can be received via this    |
|                                          | object.                                                    |
|                                          | A 1 on this object activates the frost / heat protection   |
|                                          | operating mode.                                            |
| old: Comfort, night, frost               | Frost/heat protection:                                     |
|                                          | A 1 on this object activates the frost protection          |
|                                          | operating mode.                                            |
|                                          | The heat protection mode is activated during cooling.      |
|                                          | The frost/heat protection operating mode takes top         |
|                                          | priority.                                                  |
|                                          | The frost/heat protection mode remains until it is cleared |
|                                          | again by entering a 0.                                     |

### Objekt 24 "Current operating mode"

Transmits the current operating mode as a 1 byte value (see below: Coding of operating modes). The transmission response can be set on the "Operating mode" parameter page.

| Value | Operating mode        |
|-------|-----------------------|
| 1     | Comfort               |
| 2     | Standby               |
| 3     | Night                 |
| 4     | Frost protection/heat |
|       | protection            |

#### Object 25 "Manual adjustment"

Only available with internal controller.

The object receives a temperature differential in EIS 5 format.

The desired room temperature (current set point)

can adjusted from the base set point value by this differential.

New set point value (heating) = Current set point + manual adjustment.

New set point (cooling) = Current set point + manual adjustment + dead zone + set point adjustment.

Values outside the configurable range (see *Limitation of manual adjustment* on the *Operating mode and operation* parameter page) are limited to the highest or lowest value.

#### Object 26 "Base set point "

The base set point is first specified via the application at start-up and stored in the "base set point" object. Afterwards, it can be specified again at any time using *Object 26* (limited by minimum or maximum valid set point value).

If the bus voltage fails, this object is backed up and the last value is restored when the bus voltage returns. The object can be described as required.

#### Object 27 "Current set point value"

Transmits the current set point value valid for control in EIS 5 format.

#### Object 28 "Heating/cooling"

Is used if automatic switchover between heating and cooling is not required or not possible.

The cooling operation is forced via 1 and the heating operation via 0.

Only available in 4-pipe system when switching via object (internal controller).

# Object 29 "No energy medium, heating required but heating disabled, cooling required but cooling disabled"

Error reporting object:

An error is reported in the following cases:

**Case 1:** Heating operation is forced via the *heating/cooling* object, however the room temperature is so far above the set point temperature that cooling is required.

**Case 2:** Cooling operation is forced via the *heating/cooling* object, however the room temperature is so far above the set point temperature that heating is required.

#### Object 30 "Fan duty time since last filter change"

This object is available if the Should filter change be reported parameter is set to yes.

If selected, the object transmits the current status of internal fan elapsed-time counter.

The fan runtime is transmitted in hours.

The counter is reset via object 31.

### Object 31 "Change filter "

This object is available if the "Should a filter change be reported" parameter is set to "yes".

This object has 2 functions:

#### 1. As a transmission object:

Sends a 1 once the configured operating time of the fan has been reached. See "Report filter change after fan operation (1..127 weeks)" on the "Filter monitoring" parameter page.

#### 2. As a receive object:

Reset for the *Change filter* status and the fan elapsed-time counter (object 30). 0 = Reset.

#### Object 32 "Test mode"

Transmits a telegram if the device is set to test mode (1 = Test mode). See also: Test mode in the start up chapter.

#### Parameters

The standard values are in bold.

#### The General parameter page

| Designation             | Values              | Meaning                           |
|-------------------------|---------------------|-----------------------------------|
| Supported function      | Fan                 | Available system                  |
|                         | Heating             |                                   |
|                         | Cooling             |                                   |
|                         | Heating and cooling |                                   |
| Heating system          | Fan coil            | Type of heating system            |
|                         | Convector           |                                   |
| Cooling system          | Fan coil            | Type of cooling system            |
|                         | Convector           |                                   |
| System type             | 2-pipe system       | There is one single water circuit |
|                         |                     | that is filled with cooling or    |
|                         |                     | heating medium according to       |
|                         |                     | the season.                       |
|                         | 4-pipe system       | The system consists of two        |
|                         |                     | separate water circuits for       |
|                         |                     | heating and cooling.              |
| Type of controller used | Internal controller | The KNX fan coil actuator         |
|                         |                     | measures and controls the room    |
|                         |                     | temperature itself.               |
|                         | Remote controller   | The KNX fan coil actuator         |
|                         |                     | receives an actuating value from  |
|                         |                     | a remote controller and behaves   |
|                         |                     | as an actuator.                   |
| est mode                | activated           | After reset the user can change   |
|                         |                     | to <i>test mode</i> by pressing a |
|                         |                     | button.                           |
|                         | disabled            | Test mode is not possible.        |

| Designation                   | Values | Meaning                                   |
|-------------------------------|--------|-------------------------------------------|
| Should a filter change be     | No     | If YES is selected then the "Filter       |
| reported                      | yes    | monitoring" parameter page is blended in. |
| Should the actuating value be | No     | See appendix:                             |
| monitored                     | Yes    | Monitoring the actuating value            |

### Fan parameter page

IMPORTANT: The difference between the 2 switch-on thresholds must be at least 15%.

| Designation                    | Values                          | Meaning                          |
|--------------------------------|---------------------------------|----------------------------------|
| Number of fan steps            | 1 step                          | Available number of fan steps.   |
|                                | 2 steps                         |                                  |
|                                | 3 steps                         |                                  |
| Switch-on threshold for fan    | 0,4 %, 5 %, <b>10 %</b> , 15 %, | Determines from which            |
| step 1                         | 20 %, 25 %, 30 %                | actuating value step 1 should    |
|                                | 35 %, 40 %                      | switch on.                       |
| Switch-on threshold for fan    | 0 %, 10 %, 20 %                 | Determines at which actuating    |
| step 2                         | <i>30 %, <b>40 %</b>, 50 %</i>  | value step 1 should change to    |
|                                | 60 %, 70 %, 80 %                | step 2.                          |
|                                | 90 %, 100 %                     |                                  |
| Switch-on threshold for fan    | 0 %, 10 %, 20 %                 | Determines at which actuating    |
| step 3                         | 30 %, 40 %, 50 %                | value step 2 should change to    |
|                                | 60 %, <b>70 %</b> , 80 %        | step 3.                          |
|                                | 90 %, 100 %                     |                                  |
| Fan starting strategy          | direct                          | The fan should start directly at |
|                                |                                 | the configured fan step.         |
|                                |                                 |                                  |
|                                | via step 1, 5 s                 | The fan should always start at   |
|                                | via step 1, 10 s                | the lowest level and switch to   |
|                                | via step 1, 15 s                | the configured step after a      |
|                                | via step 1, 20 s                | delay.                           |
|                                | via step 1, 25 s                |                                  |
|                                | via step 1, 30 s                |                                  |
|                                | via maximum step, 5 s           | The fan should always start at   |
|                                | via maximum step, 10 s          | the highest level and switch to  |
|                                | via maximum step, 15 s          | the configured step after a      |
|                                | via maximum step, 20 s          | delay.                           |
|                                | via maximum step, 25 s          | This fan starting strategy must  |
|                                | via maximum step, 30 s          | be selected if this is           |
|                                | via maximum step, 40 s          | recommended by the fan           |
|                                | via maximum step, 50 s          | manufacturer.                    |
|                                | via maximum step, 60 s          | Important:                       |
|                                |                                 | The starting fan step will       |
|                                |                                 | neither be displayed nor         |
| Minimum time at a stay with in | Mana                            | transmitted during operation.    |
| Minimum time to stay within    |                                 | Avoids too frequent a change     |
| a fan step                     | 1 min, <b>2 min</b> , 3 min     | between fan steps if the         |
|                                | 4 min, 5 min, 6 min, 7 min      | actuating value suddenly         |
|                                | 8 min, 9 min, 10 min, 11 min    | changes.                         |
| Additional ventilation         | 12 min, 13 min, 14 min, 15 min  | no additional ventilation        |
| Auditional ventilation         | no                              | no additional ventilation        |
|                                | J                               |                                  |

|                                                    | every 30 min for 3 min step 1 every 30 min for 5 min step 1 every 30 min for 3 min step 2 every 30 min for 5 min step 2 every 60 min for 3 min step 1 every 60 min for 5 min step 1 every 60 min for 3 min step 2 every 60 min for 5 min step 2 | The fan should regularly switch on for the configured time independently of the actuating value.                                                                                                                                         |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | permanent ventilation step 1<br>permanent ventilation step 2<br>permanent ventilation step 3                                                                                                                                                    | Regardless of the actuating value, the fan should permanently run at the selected step.                                                                                                                                                  |
| Warm start                                         | no warm start                                                                                                                                                                                                                                   | Th fan starts as soon as the valve is opened.                                                                                                                                                                                            |
|                                                    | 30 s, 1 min, 1 min 30 s,<br>2 min, 2 min 30 s, 3 min,<br>3 min 30 s, 4 min, 4 min 30 s,<br>5 min, 5 min 30 s, 6 min,<br>6 min 30 s, 7 min,<br>7 min 30 s                                                                                        | The valve is opened first. The fan only starts after configured time has elapsed to prevent cold air being blown into the room. See appendix: Time between heating and cooling and follow-up time phase                                  |
| Follow-up time for utilisation of remaining energy | No fan follow-up                                                                                                                                                                                                                                | The fan is turned off immediately if the valve is closed.                                                                                                                                                                                |
|                                                    | 30 s, 1 min, 2 min, 3 min<br>4 min, 5 min, 6 min, 7 min<br>8 min, 9 min, 10 min, 15 min<br>20 min, 30 min<br>until valve is closed                                                                                                              | If the valve is closed, the fan will carry on running for the set time to feed the remaining energy in the device into the room.                                                                                                         |
| Cyclical transmission of fan step                  | Format counter value, don't transmit cyclically                                                                                                                                                                                                 | Object 4 transmits the current fan step as a number between 0 and 3. Only at change.                                                                                                                                                     |
|                                                    | Format counter value,<br>Cycle time 3 min 60 min                                                                                                                                                                                                | Cyclically and in the event of change                                                                                                                                                                                                    |
|                                                    | Format percentage, don't transmit cyclically                                                                                                                                                                                                    | Object 4 transmits the configured threshold value for the current step as a percentage: Only at change.                                                                                                                                  |
|                                                    | Format percentage,<br>Cycle time 3 min 60 min                                                                                                                                                                                                   | cyclically and in the event of change Example: Configured thresholds: Fan step 1 = 10% Fan step 2 = 40% Fan step 3 = 70% If fan step 2 is running, object 4 transmits a value of 40% Cycle time can be set for between 3 and 60 minutes. |

# Heating valve parameter page

| Des                        | ignation                            | Values                                          | Meaning                                                       |
|----------------------------|-------------------------------------|-------------------------------------------------|---------------------------------------------------------------|
| Type of valve              |                                     | 2-point                                         | For standard actuators                                        |
|                            |                                     |                                                 | (Open / closed)                                               |
|                            |                                     | 3-point                                         | For linear motorised actuators                                |
|                            | Effect of the valve                 | Valve opens when voltage is                     | For valves closed without                                     |
|                            |                                     | applied                                         | current                                                       |
|                            |                                     | Valve closes when voltage is                    | For valves opened without                                     |
|                            |                                     | applied                                         | current                                                       |
|                            | PWM time                            | 3 min, 4 min, <b>5 min</b> , 6 min              | An actuation cycle consists of                                |
|                            |                                     | 7 min, 8 min, 9 min, 10 min                     | one on and one off process                                    |
|                            |                                     | 11 min, 12 min, 13 min, 14 min                  | and forms a PWM period.                                       |
| Z.                         |                                     | 15 min, 16 min, 17 min, 18 min                  |                                                               |
| 2-point valve              |                                     | 19 min, 20 min, 21 min, 22 min                  | Example:                                                      |
| int                        |                                     | 23 min, 24 min, 25 min, 26 min                  | Actuating value= 20%,                                         |
| od.                        |                                     | 27 min, 28 min, 29 min, 30 min                  | PWM time = 10 min: In an                                      |
| 2                          |                                     |                                                 | actuating cycle of 10 min, 2 min                              |
|                            |                                     |                                                 | switched on and 8 min switched                                |
|                            |                                     |                                                 | off                                                           |
| ·                          | Time of a selection of the estimate | O main 1 main 2 main 2 main                     | (i.e. 20% on/ 80% off).                                       |
|                            | Time for closing heating            | 0 min, 1 min, 2 min, <b>3 min</b> ,             | Adjustment of selected actuator.                              |
|                            | valve                               | 4 min, 5 min, 6 min, 7 min,                     | Prevents the cooling valve                                    |
|                            |                                     | 8 min, 9 min, 10 min, 15 min,<br>20 min, 30 min | opening too early.                                            |
| _                          | Time for 100 % hub                  | Manual input                                    | Adjustment to the actuator used                               |
|                            | (5 2,000s)                          | 5 2000s (Standard <b>90 s</b> )                 | to guarantee exact positioning.                               |
|                            | New position at change              | 0 %,                                            | The valve is re-positioned each                               |
| a\                         | of                                  |                                                 | time the control variable is                                  |
| 3-point valve              |                                     |                                                 | changed.                                                      |
| int v                      |                                     | 1 %, 2 %, 3 %,                                  | The valve is never repositioned                               |
| od                         |                                     | 4 %, <b>5 %</b> , 6 %, 7 %                      | until the control variable has                                |
| φ,                         |                                     | 8 %, 9 %, 10 %, 11 %                            | changed from the last position                                |
|                            |                                     | 12 %, 13 %, 14 %, 15 %                          | by more than the set value. This                              |
|                            |                                     |                                                 | avoids unnecessary                                            |
|                            |                                     |                                                 | repositioning.                                                |
| Оре                        | en from actuating value*            | 0,4 %                                           | Valve is opened even with                                     |
|                            |                                     |                                                 | minimum actuating value.                                      |
|                            |                                     | 5 %, 10 %                                       | Valvo is only opened once the                                 |
|                            |                                     | 5 %, 10 %<br>  15 %, 20 %, 25 %                 | Valve is only opened once the actuating value has reached the |
|                            |                                     | 30 %, 35 %, 40 %                                | set value.                                                    |
|                            |                                     | 00 70, 00 70, 40 70                             | This setting prevents possible                                |
|                            |                                     |                                                 | whistling when valve is open.                                 |
| Minimum valve setting*     |                                     | <b>0</b> %, 5 %, 10 %, 15 %                     | Minimum permissible valve                                     |
|                            |                                     | 20 %, 25 %, 30 %, 35 %                          | setting with actuating value < >                              |
|                            |                                     | 40 %, 45 %, 50 %                                | 0%.                                                           |
| Maximum valve setting from |                                     | 0,4 %, 10 %, 20 %, 30 %                         | Actuating value from which the                                |
| actuating value*           |                                     | 40 %, <b>50 %</b> , 60 %, 70 %                  | valve accepts maximum valve                                   |
|                            |                                     | 80 %, 90 %, 100 %                               | setting.                                                      |
| Max                        | kimum valve setting*                | 55 %, 60 %, 65 %, 70 %                          | Maximum permissible valve                                     |
|                            |                                     | 75 %, 80 %, 85 %                                | setting                                                       |
|                            |                                     | 90 %, 95 %,                                     |                                                               |
|                            |                                     | 100 %                                           |                                                               |

| Times between heating and cooling             | <b>0 min</b> , 1 min, 2 min, 3 min,<br>4 min, 5 min, 6 min, 7 min,<br>8 min, 9 min, 10 min, 15 min,<br>20 min, 30 min | Delay when changing from heating to cooling after the heating valve is completely closed. The cooling valve can only be opened after this time has expired. See: Time between heating and cooling and follow-up time phase |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cyclical transmission of heating status every | do not send cyclically 3 min 5 min 10 min 15 min 20 min 30 min 60 min                                                 | Cyclical transmission time for heating status (object 2)                                                                                                                                                                   |

<sup>\*</sup> Setting characteristic valve curve; see Setting characteristic valve curve.

# Cooling valve parameter page

| Des           | signation                                                        | Values                                                                                                                                                                                                                                      | Meaning                                                                                                                                                                                                                                                                                                                             |
|---------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Тур           | e of valve                                                       | 2-point 3-point                                                                                                                                                                                                                             | For standard actuators (Open / closed) For linear motorised actuators                                                                                                                                                                                                                                                               |
|               | Effect of the valve                                              | Valve opens when voltage is applied Valve closes when voltage is applied                                                                                                                                                                    | For valves closed without current For valves opened without current                                                                                                                                                                                                                                                                 |
| 2-point valve | PWM time                                                         | 3 min, 4 min, <b>5 min</b> , 6 min<br>7 min, 8 min, 9 min, 10 min<br>11 min, 12 min, 13 min, 14 min<br>15 min, 16 min, 17 min, 18 min<br>19 min, 20 min, 21 min, 22 min<br>23 min, 24 min, 25 min, 26 min<br>27 min, 28 min, 29 min, 30 min | An actuation cycle consists of one on and one off process and forms a PWM period.  Example: Actuating value= 20%, PWM time = 10 min: In an actuating cycle of 10 min, 2 min switched off (i.e. 20% on/ 80% off).                                                                                                                    |
|               | Time for closing cooling valve                                   | 0 min, 1 min, 2 min, <b>3 min</b><br>4 min, 5 min, 6 min<br>7 min, 8 min, 9 min<br>10 min, 15 min, 20 min<br>30 min                                                                                                                         | Adjustment of selected actuator. Prevents the heating valve opening too early.                                                                                                                                                                                                                                                      |
| 3-point valve | Time for 100 % hub<br>(5 2,000s)<br>New position at change<br>of | Manual input 5 2000s (Standard <b>90 s</b> ) 0 %,  1 %, 2 %, 3 %, 4 %, <b>5</b> %, 6 %, 7 % 8 %, 9 %, 10 %, 11 % 12 %, 13 %, 14 %, 15 %                                                                                                     | Adjustment to the actuator used to guarantee exact positioning.  The valve is re-positioned each time the control variable is changed.  The valve is never repositioned until the control variable has changed from the last position by more than the set value.  Enables frequent, small positioning increments to be suppressed. |

| Designation                              | Values                        | Meaning                          |
|------------------------------------------|-------------------------------|----------------------------------|
| Open from actuating value*               | 0,4 %,                        | Valve is opened even with        |
|                                          |                               | minimum actuating value.         |
|                                          |                               |                                  |
|                                          | 5 %, 10 %                     | Valve is only opened once the    |
|                                          | 15 %, 20 %, 25 %              | actuating value has reached the  |
|                                          | 30 %, 35 %, 40 %              | set value.                       |
|                                          |                               | This setting prevents possible   |
| A 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 20/ 50/ 120/ 150/             | whistling when valve is open.    |
| Minimum valve setting*                   | <b>0</b> %, 5 %, 10 %, 15 %,  | Minimum permissible valve        |
|                                          | 20 %, 25 %, 30 %, 35 %,       | setting with actuating value < > |
| A4 :                                     | 40 %, 45 %, 50 %              | 0%.                              |
| Maximum valve setting from               | 0,4 %, 10 %, 20 %, 30 %       | Actuating value from which the   |
| actuating value*                         | 40 %, <b>50</b> %, 60 %, 70 % | valve accepts maximum valve      |
|                                          | 80 %, 90 %, 100 %             | setting.                         |
| Maximum valve setting*                   | 55 %, 60 %, 65 %, 70 %        | Maximum permissible valve        |
|                                          | 75 %, 80 %, 85 %              | setting                          |
|                                          | 90 %, 95 %,                   |                                  |
|                                          | 100 %                         |                                  |
| Cooling status transmits                 | do not send cyclically        | Cyclical transmission time for   |
| every                                    | 3 min                         | cooling status (object 2)        |
|                                          | 5 min                         |                                  |
|                                          | 10 min                        |                                  |
|                                          | 15 min                        |                                  |
|                                          | 20 min                        |                                  |
|                                          | 30 min                        |                                  |
|                                          | 60 min                        |                                  |

<sup>\*</sup> Setting characteristic valve curve; see appendix: Set characteristic valve curve.

## "Heating/cooling valve" parameter page (only with 2-pipe system)

| Des           | ignation                      | Values                                                                                                                                                                                                                                                      | Meaning                                                                                                                                                                   |
|---------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Тур           | e of valve                    | 2-point 3-point                                                                                                                                                                                                                                             | For standard actuators (Open / closed) For linear motorised actuators                                                                                                     |
| alve          | Effect of the valve  PWM time | Valve opens when voltage is applied Valve closes when voltage is applied 3 min, 4 min, 5 min, 6 min 7 min, 8 min, 9 min, 10 min 11 min, 12 min, 13 min, 14 min 15 min, 16 min, 17 min, 18 min 19 min, 20 min, 21 min, 22 min 23 min, 24 min, 25 min, 26 min | For valves closed without current For valves opened without current An actuation cycle consists of a switch-on and a switch-off process and forms a PWM period.  Example: |
| 2-point valve |                               | 27 min, 28 min, 29 min, 30 min                                                                                                                                                                                                                              | Actuating value= 20%,<br>PWM time = 10 min: In an<br>actuating cycle of 10 min, 2 min<br>switched on and 8 min switched<br>off<br>(i.e. 20% on/ 80% off).                 |
|               | Time for closing valve        | 0 min, 1 min, 2 min,<br>3 min, 4 min, 5 min,<br>6 min, 7 min, 8 min,<br>9 min, 10 min, 15 min,<br>20 min, 30 min                                                                                                                                            | Adjustment of selected actuator.                                                                                                                                          |

| Des           | ignation                              | Values                          | Meaning                               |
|---------------|---------------------------------------|---------------------------------|---------------------------------------|
|               | Time for 100 % hub                    | Manual input                    | Adjustment to the actuator used       |
|               | (5 2,000s)                            | 5 2000s (Standard <b>90 s</b> ) | to guarantee exact positioning.       |
|               | New position at change                | 0 %,                            | The valve is re-positioned each       |
| ø             | of                                    |                                 | time the control variable is          |
| alv           |                                       |                                 | changed.                              |
| 3-point valve |                                       | 1 %, 2 %, 3 %,                  | The valve is never repositioned       |
| oir           |                                       | 4 %, <b>5 %</b> , 6 %, 7 %      | until the control variable has        |
| 3-6           |                                       | 8 %, 9 %, 10 %, 11 %            | changed from the last position        |
|               |                                       | 12 %, 13 %, 14 %, 15 %          | by more than the set value.           |
|               |                                       |                                 | Enables frequent, small               |
|               |                                       |                                 | positioning increments to be          |
| One           | n from actuating value *              | 0,4 %,                          | suppressed  Valve is opened even with |
| Ορε           | en from actuating value*              | 0,4 %,                          | minimum actuating value.              |
|               |                                       |                                 | minimum actuating value.              |
|               |                                       | 5 %, 10 %                       | Valve is only opened once the         |
|               |                                       | 15 %, 20 %, 25 %                | actuating value has reached the       |
|               |                                       | 30 %, 35 %, 40 %                | set value.                            |
|               |                                       |                                 | This setting prevents possible        |
|               |                                       |                                 | whistling when valve is open.         |
| Min           | imum valve setting*                   | <b>0</b> %, 5 %, 10 %, 15 %,    | Minimum permissible valve             |
|               |                                       | 20 %, 25 %, 30 %, 35 %,         | setting with actuating value < >      |
|               |                                       | 40 %, 45 %, 50 %                | 0%.                                   |
|               | kimum valve setting from              | 0,4 %, 10 %, 20 %, 30 %         | Actuating value from which the        |
| actu          | ıating value*                         | 40 %, <b>50 %</b> , 60 %, 70 %  | valve accepts maximum valve           |
|               | , , , , , , , , , , , , , , , , , , , | 80 %, 90 %, 100 %               | setting.                              |
| Max           | kimum valve setting*                  | 55 %, 60 %, 65 %, 70 %          | Maximum defined valve setting         |
|               |                                       | 75 %, 80 %, 85 %                |                                       |
|               |                                       | 90 %, 95 %,<br><b>100 %</b>     |                                       |
| Alls          | send heating or cooling               | do not send cyclically          | Cyclical transmission time for        |
| stat          |                                       | 3 min                           | heating/cooling status                |
|               |                                       | 5 min                           | (object 2)                            |
|               |                                       | 10 min                          |                                       |
|               |                                       | 15 min                          |                                       |
|               |                                       | 20 min                          |                                       |
|               |                                       | 30 min                          |                                       |
|               |                                       | 60 min                          |                                       |

<sup>\*</sup> Setting characteristic valve curve; see appendix: Set characteristic valve curve.

# Auxiliary relay parameter page

| Designation                     | Values                      | Meaning                                                                                |
|---------------------------------|-----------------------------|----------------------------------------------------------------------------------------|
| Switching on auxiliary relay    | Via object                  | The auxiliary relay is only controlled via the bus (see object 5)                      |
|                                 | If heating is required      | The auxiliary relay is switched on as soon as the heating actuating value is above 0%. |
|                                 | If cooling is required      | The auxiliary relay is switched on as soon as the cooling actuating value is above 0%. |
|                                 | Combined with heating valve | The auxiliary relay only switches on if the heating valve is actually open*.           |
|                                 | Combined with cooling valve | The auxiliary relay only switches on if the cooling valve is actually open*.           |
| All send auxiliary relay status | do not send cyclically      | Cyclical transmission time for                                                         |
|                                 | 3 min                       | the additional relay status.                                                           |
|                                 | 5 min                       |                                                                                        |
|                                 | 10 min                      | With the                                                                               |
|                                 | 15 min                      | via object setting, the status is                                                      |
|                                 | 20 min                      | not transmitted.                                                                       |
|                                 | 30 min                      |                                                                                        |
|                                 | 60 min                      |                                                                                        |

<sup>\*</sup> With an adjusted characteristic valve curve, the valve can remain closed with a low actuating value.

# E1 parameter page

| Des                   | ignation                                 | Values                                                                            | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------|------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fun                   | ction of E1                              | E1 = Window contact  E1 = Actual value sensor                                     | A window contact is connected to input E1. A temperature sensor is connected to E1                                                                                                                                                                                                                                                                                                                                                                               |
| = Window              | Direction of operation of window contact | Contact closed = window closed<br>Contact open = window closed                    | Type of connected contact (NC or NO)                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E1 = M                | Window contact status<br>transmits every | do not send cyclically<br>3 min, 5 min, 10 min, 15 min,<br>20 min, 30 min, 60 min | Cyclical transmission time for window contact                                                                                                                                                                                                                                                                                                                                                                                                                    |
| = Actual value sensor | Actual value offset in 0.1 K (-5050)     | manual input –50 50                                                               | Positive or negative adjustment of measured temperature in 1/10 K increments. Examples: a) Fan coil actuator transmits 20.3°C. A room temperature of 21.0°C is measured using a calibrated thermometer. In order to increase the temperature of Fan coil actuator to 21 °C, "7" (i.e. 7 x 0.1K) must be entered. b) Fan coil actuator transmits 21.3°C. 20.5°C is measured. To reduce the transmitted temperature to 20.5 °C, "8" (i.e8 x 0.1K) must be entered. |
| E1 =                  | Transmits the current value on change    | only cyclically every 0.2 K every 0.3 K every 0.5 K every 1 K                     | Is the current room temperature to be transmitted? If so, from which minimum change should this be retransmitted? This setting keeps the bus load as low as possible.                                                                                                                                                                                                                                                                                            |
|                       | Transmit actual value<br>every           | do not send cyclically 3 min, 5 min, 10 min, 15 min 20 min, 30 min 60 min         | How often should the actual value be sent, regardless of the temperature changes?                                                                                                                                                                                                                                                                                                                                                                                |

# E2 parameter page

This page is only available if the Supported function parameter is set to Heating (General parameter page).

| Designation                 | Values                         | Meaning                        |
|-----------------------------|--------------------------------|--------------------------------|
| Function of E2              | Contact closed = window closed | Type of connected contact (NC  |
|                             | Contact open = window closed   | or NO)                         |
| Cyclical transmission of E2 | do not send cyclically         | Cyclical transmission time for |
| status every                | 3 min, 5 min, 10 min, 15 min,  | input E2                       |
|                             | 20 min, 30 min                 |                                |
|                             | 60 min                         |                                |

### Drip tray monitoring parameter page

| Designation                                        | Values                                                                                       | Meaning                                                             |
|----------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Source for drip tray monitoring                    | E2                                                                                           | Condensate is reported to E2 via a contact                          |
|                                                    | Object 16                                                                                    | Condensate is reported to object 16 via the bus.                    |
| Direction of action of E2                          | Contact closed = Condensate Contact open = Condensate                                        | Type of connected condensate report contact or condensate telegram. |
| Behaviour in case of drip tray alarm               | Cooling off and fan off Cooling off and fan step 1 Cooling off and max. fan step Only report | Reaction to drip tray alarm                                         |
| Cyclical transmission of drip<br>tray status every | do not send cyclically 3 min, 5 min, 10 min, 15 min 20 min, 30 min 60 min                    | Cyclical transmission time for drip tray status                     |

# Set point adjustment parameter page

| Designation                                              | Values                                                                                                                                                                                                                                                  | Meaning                                                                                                                                                                                   |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Also use set point<br>adjustment for internal<br>control | yes                                                                                                                                                                                                                                                     | The basic control set point (= Basic set point value after reset + dead zone) should be adjusted step by step in relation to the outdoor temperature.                                     |
|                                                          | no                                                                                                                                                                                                                                                      | Set point adjustment does not influence the internal controller.                                                                                                                          |
| Set point adjustment from                                | 25 °C, 26 °C, 27 °C<br>28 °C, 29 °C, 30 °C<br>31 °C, 32 °C, 33 °C<br>34 °C, 35 °C, 36 °C<br>37 °C, 38 °C<br>39 °C, 40 °C                                                                                                                                | Activation threshold for set point adjustment.                                                                                                                                            |
| Adjustment                                               | None                                                                                                                                                                                                                                                    | No temperature adjustment                                                                                                                                                                 |
|                                                          | 1 K per1 K outdoor temperature | Strength of set point adjustment: At what change of outdoor temperature should the set point be adjusted by 1 K?                                                                          |
| Format of adjustment value                               | relative                                                                                                                                                                                                                                                | Object 19 transmits a temperature differential in K, in relation to the outdoor temperature. This value can be used as a set point adjustment for additional room thermostats.            |
|                                                          | absolute                                                                                                                                                                                                                                                | Object 19 transmits a set point in °C (basic unadjusted set point). This is increased in relation to the outdoor temperature and serves as set point for additional temperature controls. |
| Base unadjusted set point                                | 15 °C, 16 °C, 17 °C<br>18 °C, 19 °C, 20 °C<br><b>21 °C</b> , 22 °C, 23 °C<br>24 °C, 25 °C, 26 °C,<br>27 °C, 28 °C<br>29 °C, 30 °C                                                                                                                       | Base set point for additional room thermostats. Important: This value should coincide with the base set point of the actuated controller.                                                 |
| Cyclical transmission of set point adjustment every      | do not send cyclically<br>3 min, 5 min, 10 min, 15 min<br>20 min, 30 min<br>60 min                                                                                                                                                                      | Cyclical transmission time for set point adjustment                                                                                                                                       |

# Set point values parameter page (internal controller)

| Designation                                                                                   | Values                                                                                                                           | Meaning                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Base set point after reset                                                                    | 15 °C, 16 °C, 17 °C<br>18 °C, 19 °C, 20 °C<br><b>21 °C</b> , 22 °C, 23 °C<br>24 °C, 25 °C, 26 °C<br>27 °C, 28 °C, 29 °C<br>30 °C | Output set point value for temperature control.                                                                                                                                                                                                                                   |
| Reduction in standby operating mode (during heating) Reduction in night mode (during heating) | 0.5 K, 1 K, 1.5 K<br><b>2 K</b> , 2.5 K, 3 K<br>3.5 K, 4 K<br>3 K, 4 K, <b>5 K</b><br>6 K, 7 K, 8 K                              | How much should the temperature be reduced by in standby operating mode?  How much should the temperature be reduced by in night mode?                                                                                                                                            |
| Set point value for frost protection operation (during heating)                               | 3 °C, 4 °C, 5 °C<br><b>6 °C</b> , 7 °C, 8 °C<br>9 °C, 10 °C                                                                      | Preset temperature for frost protection operation in heating mode (Heat protection operation applies in cooling mode).                                                                                                                                                            |
| Dead zone between heating and cooling                                                         | 1 K, <b>2 K</b> , 3 K<br>4 K, 5 K, 6 K                                                                                           | Specifies the buffer zone between set point values in heating and cooling operations. See glossary: Dead zone                                                                                                                                                                     |
| Increasing in standby mode (during cooling)                                                   | 0.5 K, 1 K, 1.5 K<br><b>2 K</b> , 2.5 K, 3 K<br>3.5 K, 4 K                                                                       | How much should the temperature be raised by in night mode?                                                                                                                                                                                                                       |
| Increase in night mode<br>(during cooling)                                                    | 3 K, 4 K, <b>5 K</b><br>6 K, 7 K, 8 K                                                                                            | How much should the temperature be raised by in night mode?                                                                                                                                                                                                                       |
| Set point value for heat protection (during cooling)                                          | <b>42 °C</b> i.e. almost no heat protection 29 °C 30 °C 31 °C 32 °C 33 °C 33 °C 35 °C                                            | The heat protection represents the maximum permitted temperature for the controlled room. It performs the same function during cooling as the frost protection mode during heating, e.g. saves energy while prohibiting non-permitted temperatures                                |
| Current set point value in comfort mode                                                       | Sends actual value (Heating < > Cooling)                                                                                         | The set point value actually being controlled is always sent (= current set point value). <b>Example</b> withbase set point of 21°C and dead zone of 2K:  During heating 21°C is transmitted and during cooling base set point value + dead zone is transmitted (21°C + 2K = 23°C |
|                                                                                               | Transmits average value between heating and cooling                                                                              | Same value in comfort operation mode during both heating and cooling operation, i.e.:  Base set point value + half dead zone are transmitted to prevent room users being irritated.                                                                                               |

| Designation                                    | Values                                                                             | Meaning                                                                                                                                                                |
|------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                                                                                    | Example with base set point value of 21°C and dead zone of 2K:  Mean value= 21°+1K =22°C  Although control takes place at 21°C during heating and 23°C during cooling. |
| Cyclical transmission of set point value every | do not send cyclically<br>3 min, 5 min, 10 min<br>15 min, 20 min, 30 min<br>60 min | Cyclical transmission time for the current set point value                                                                                                             |

# Operating mode and operation parameter page (internal controller)

| Designation                                   | Values                                                                             | Meaning                                                                                                                                                                                 |
|-----------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating mode after reset                    | Frost / heat protection Night-time temperature reduction Standby Comfort           | Operating mode after start-up or re-programming                                                                                                                                         |
| Cyclical transmission of operating mode every | do not send cyclically<br>3 min, 5 min, 10 min<br>15 min, 20 min, 30 min<br>60 min | Cyclical transmission time of operating mode (object 24)                                                                                                                                |
| Objects for operating mode selection          | new: Operating mode, presence, window status                                       | Fan coil actuator can switch the operating mode depending on the window and presence contacts.                                                                                          |
|                                               | old: comfort, night, frost (not recommended)                                       | Traditional setting without window and presence status.                                                                                                                                 |
| Type of presence detector                     | Presence indicator                                                                 | The presence sensor activates comfort mode Comfort operating mode as long as the presence object is set.                                                                                |
|                                               | Presence keys                                                                      | If the operating mode object (Object 3) is called up again after setting the presence object the new operating mode will be accepted and the presence object reset.                     |
|                                               |                                                                                    | If the presence object is set during night / frost operation, it is reset after the configured comfort extension finishes (see below).  The presence object is not reported on the bus. |

| Designation                     | Values        | Meaning                           |
|---------------------------------|---------------|-----------------------------------|
| Time for comfort extension      | 30 min        | How long should the controller    |
|                                 | 1 hour        | stay in comfort operating mode    |
|                                 | 1.5 hours     | after presence has been           |
|                                 | 2 hours       | detected? (Only for presence      |
|                                 | 2.5 hours     | push buttons).                    |
|                                 | 3 hours       |                                   |
|                                 | 3.5 hours     |                                   |
|                                 |               |                                   |
| Limitation of manual adjustment | no adjustment | The set point cannot be adjusted. |
|                                 | +/- 1 K       | The set point value can changed   |
|                                 | +/- 2 K       | by the configured amount at the   |
|                                 | +/- 3 K       | most                              |
|                                 | +/- 4 K       | (object 25)                       |
|                                 | +/- 5 K       | -                                 |

# Regulation parameter page (internal controller)

| Designation                 |                                          | Values                                                                                                                                                     | Meaning                                                                                                                                                                                                                                                                                                                        |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sets the control parameters |                                          | Standard                                                                                                                                                   | For standard use. The control parameters are preset.                                                                                                                                                                                                                                                                           |
|                             |                                          | User-defined                                                                                                                                               | Professional application: The control parameters can be individually adjusted. See: Temperature control                                                                                                                                                                                                                        |
| neters                      | Proportional band of heating control     | 1 K, 1.5 K, 2 K<br>2.5 K, 3 K, 3.5 K<br><b>4 K</b> , 4.5 K, 5 K<br>5.5 K, 6 K, 6.5 K<br>7 K, 7.5 K, 8 K<br>8.5 K                                           | Professional setting to adapt the control response to the room. Small values cause large changes in actuating values, larger values cause finer actuating value adjustment. Standard value: 4 K                                                                                                                                |
| User-defined parameters     | Integrated time of heating control       | Pure P control  15 min., 30 min., 45 min., 60 min., 75 min., <b>90 min</b> . 105 min, 120 min 135 min, 150 min 165 min, 180 min 195 min., 210 min. 225 min | Only proportional controllers. See: Temperature control This time can be adapted to suit particular circumstances. If the heating system is over-dimensioned and therefore too fast, shorter values should be used. Conversely, under-dimensioned heating (slow) benefits from longer integrated times. Standard value: 90 min |
| User-defined<br>parameters  | Proportional band of the cooling control | Pure P control  1 K, 1.5 K, 2 K  2.5 K, 3 K, 3.5 K  4 K, 4.5 K, 5 K  5.5 K, 6 K, 6.5 K  7 K, 7.5 K, 8 K                                                    | Only proportional controller. See: Temperature control Professional setting to adapt the control response to the room. Large values cause finer changes to the actuating                                                                                                                                                       |

| Designation                                        | Values                                                                                                                                             | Meaning                                                                                                                                                                                                                                                                      |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | 8.5 K                                                                                                                                              | value with the same control deviation and more precise control than smaller values. Standard value: 4 K                                                                                                                                                                      |
| Integrated time of the cooling control             | Pure P control  15 min., 30 min., 45 min., 60 min., 75 min., <b>90 min</b> . 105 min, 120 min 135 min, 150 min 165 min, 180 min 195 min., 210 min. | Only proportional controllers. See: Temperature control For PI control only: The integrated time determines the reaction time of the control. These times can be adapted to suit particular circumstances. If the cooling system is over-dimensioned and therefore too fast, |
|                                                    |                                                                                                                                                    | shorter values should be used. Conversely, underdimensioned cooling (slow) benefits from longer integrated times. Standard value: 90 min                                                                                                                                     |
| Switchover between heating and cooling             | automatic                                                                                                                                          | Fan coil actuator automatically switches to cooling mode when the actual temperature is above the set point value.                                                                                                                                                           |
|                                                    | via object                                                                                                                                         | Cooling mode can only be activated on the bus via object 28 (1=cooling). Cooling mode remains off for as long as this object is not set (=0).                                                                                                                                |
| Transmission of actuating value                    | on change of 1 % on change of 2 % on change of 3 % on change of 5 % on change of 7 % on change of 10 % on change of 15 %                           | After what percentage change* in the actuating value is the new value to be transmitted?                                                                                                                                                                                     |
| Cyclical transmission of actuating values every    | do not send cyclically<br>3 min, 5 min, 10 min<br><b>15 min</b> , 20 min, 30 min<br>60 min                                                         | Cyclical transmission time for actuating value.                                                                                                                                                                                                                              |
| Report, when cooling required but cooling disabled | Only if object value = 1 Always cyclically                                                                                                         | With Supported function = cooling Transmit error message with object if cooling should be activated because of the temperature but cooling is not enabled (object 1).                                                                                                        |
| Report, if heating required but heating disabled   | Only if object value = 1 Always cyclically                                                                                                         | with Supported function = heating Transmit error message with object 29 if heating should be                                                                                                                                                                                 |

| Designation                   | Values                                                                | Meaning                                                                                                                                                                                                                                                                                                 |
|-------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                                                       | activated because of the temperature but heating is not enabled (object 1).                                                                                                                                                                                                                             |
| Report, when no energy medium | Only if object value = 1 Always cyclically                            | with Supported function = heating and cooling Error message if heating or cooling should be activated because of the temperature and status of "Heating/cooling switch object conflicts with this (for 2-pipe, object 1. With 4-pipe, object 28 when switching between heating and cooling via object). |
| Report cyclically             | every 3 min, 5 min, 10 min<br>15 min, 20 min, <b>30 min</b><br>60 min | Cyclical transmission time for energy medium error message                                                                                                                                                                                                                                              |

<sup>\*</sup>Change since last transmission

### Filter monitoring parameter page

This parameter page is only visible if this function has been selected on the *General* parameter page (parameter: *If a filter change is reported*).

| Designation                     | Values                       | Meaning                                                                              |  |  |
|---------------------------------|------------------------------|--------------------------------------------------------------------------------------|--|--|
| Report filter change after fan  | manual input: 1127           | interval between 2 filter changes                                                    |  |  |
| operation (1127 weeks)          | (Standard <b>12</b> )        | in weeks.                                                                            |  |  |
| Cyclical transmission of filter | only at filter change        | Object 31 only sends when filter                                                     |  |  |
| change                          |                              | change is required:                                                                  |  |  |
|                                 |                              | 1 = Change filter                                                                    |  |  |
|                                 | always cyclically            | Object 31 sends the filter status                                                    |  |  |
|                                 |                              | cyclically:                                                                          |  |  |
|                                 |                              | 0 = Filter OK                                                                        |  |  |
|                                 |                              | 1 = Change filter                                                                    |  |  |
| Transmit fan duty time*         | never transmit               | The fan duty time is counted to                                                      |  |  |
| (in hours)                      | (reading is possible)        | the second internally, but not                                                       |  |  |
|                                 |                              | transmitted.                                                                         |  |  |
|                                 |                              | The counter reading can be read                                                      |  |  |
|                                 |                              | from object 30.                                                                      |  |  |
|                                 | only at change               | The counter reading is transmitted every time the fan duty time increases by 1 hour. |  |  |
|                                 | cyclically and at change     | The counter reading is transmitted at regular intervals and at changes.              |  |  |
| Send cyclically                 | every 3 min., every 5 min.   | Cyclical transmission time for                                                       |  |  |
|                                 | every 10 min., every 15 min. | counter reading.                                                                     |  |  |
|                                 | every 20 min., every 30 min. |                                                                                      |  |  |
| V. T                            | every 45 min., every 60 min. |                                                                                      |  |  |

<sup>\*</sup> To reset the filter status and the counter reading, see object 31.

### Actuating value loss parameter page

This parameter page is only visible if an external controller is used and if the function has been selected on the *General* parameter page (parameter: *If the actuating value is monitored*).

| Designation                   | Values                       | Meaning                           |  |  |
|-------------------------------|------------------------------|-----------------------------------|--|--|
| Monitoring time for actuating | 30 min                       | If no actuating value is received |  |  |
| value                         | 60 min                       | within the configured time, the   |  |  |
|                               |                              | substitute activating value       |  |  |
|                               |                              | applies.                          |  |  |
| Substitute actuating value    | 0 %, 10 %, <b>20 %</b>       | Actuating value for the           |  |  |
| (emergency program)           | 30 %, 40 %, 50 %, 60 %,      | emergency program provided no     |  |  |
|                               | 70 %, 80 %, 90 %, 100 %      | new actuating value is received   |  |  |
|                               |                              | by room temperature controller.   |  |  |
| Report actuating value loss   | only if object value = 1     | Object 20 only transmits at       |  |  |
| cyclically                    |                              | actuating loss.                   |  |  |
| (1 = actuating value loss)    |                              |                                   |  |  |
|                               | always cyclically            | Object 20 always transmits the    |  |  |
|                               |                              | status of actuating value.        |  |  |
|                               |                              | 0 = OK                            |  |  |
|                               |                              | 1 = Actuating value loss          |  |  |
| Report cyclically             | every 3 min., every 5 min.   | Cycle time for actuating value    |  |  |
|                               | every 10 min., every 15 min. | status.                           |  |  |
|                               | every 20 min., every 30 min. |                                   |  |  |
|                               | every 45 min., every 60 min. |                                   |  |  |

#### Start-up

#### **Test mode**

Test mode serves to check the system, e.g. during commissioning or during troubleshooting. In this mode, the valves and the fans can be set by hand as required using the appropriate keys. A temperature sensor and/or the window contacts can also be checked.

#### Important information about the test mode:

- Both the control and the bus telegrams are ineffective.
- All settings are possible without any restrictions.
- The valves are actuated until they are switched off again by hand.
- Condensate alarm is not taken into account.
- The prevention of improper operating conditions (e.g. heating and cooling valves are open simultaneously or a valve is permanently supplied with power, etc.) is the responsibility of the user.

#### Allow / suppress test mode:

The test mode is allowed or suppressed via the *Test mode after reset* parameter on the *General* parameter page.

#### Activate test mode:

Reset, i.e. via download or bus voltage application:

→ The test mode LED flashes for 1 minute.

During this time, the test mode can be started by pressing the valve (8) or fan button(%). The KNX fan coil actuator  $\rightarrow$  switches to test mode and the "test" LED is permanently illuminated.

#### End test mode:

The test mode can be ended by simultaneously pressing both buttons or reset.



If no buttons are pressed while the test mode LED is flashing, the KNX fan coil actuator automatically moves to normal operating mode after one minute.

At initial start-up, i.e. no application program, the LED flashes without time limit.

#### **Operation:**

#### Fan control:

The following operating conditions are accepted in sequence if button A (fan) is pressed.

| Keystroke | Function   | LED       |
|-----------|------------|-----------|
| 1         | Fan step 1 | S1 on     |
| 2         | Fan step 2 | S2 on     |
| 3         | Fan step 3 | S3 on     |
| 4         | Fan off    | S1-S3 off |

Control valves, switch on auxiliary relay:

The following operating conditions are accepted in sequence if button B (valves) is pressed.

| Keystroke LED         |                     | Output             |
|-----------------------|---------------------|--------------------|
| 1                     | Cooling LED on      | After 2 sec V2+ on |
| 2 Cooling LED flashes |                     | After 2 sec V2- on |
| 3 Heating LED on      |                     | After 2 sec V1+ on |
| 4                     | Heating LED flashes | After 2 sec V1- on |
| 5                     | LED C1 on           | After 2 sec C1 on  |
| 6                     | All LEDs off        | All outputs off    |

Via the delayed switching of the outputs the user can skip the individual modes without altering the valve position by quickly pressing the buttons.

Status display, heating and cooling valve:

| LED                                              | Status   | Meaning                               |                               |  |
|--------------------------------------------------|----------|---------------------------------------|-------------------------------|--|
| LLD                                              |          | with 3-way valves                     | with 2-way valves             |  |
|                                                  | is OFF   | Cooling valve is not actuated         | Cooling valve is not actuated |  |
| <del>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del> | is ON    | Cooling valve is opened (C+)          | Cooling valve is opened (C+)  |  |
| <b>***</b>                                       | Flashing | Cooling valve is closed (C-)          | Cooling valve is closed       |  |
|                                                  |          |                                       | (i.e. is no longer actuated). |  |
|                                                  | is OFF   | heating valve is not actuated         | heating valve is not actuated |  |
|                                                  | is ON    | Heating valve is opened (H+)          | Heating valve is opened (C+)  |  |
| )))                                              | Flashing | Flashing Heating valve is closed (H-) | Heating valve is closed       |  |
|                                                  |          |                                       | (i.e. is no longer actuated). |  |

#### **Checking the temperature sensor:**

If a temperature sensor is connected to input E1, and E1 is configured accordingly in the application, the measured room temperature is transmitted by object 14.

A sensor break or short-circuit in the sensor line are reported by the value -60 °C.

#### **Checking the window contacts:**

If a window contact is connected to input E1 and E1 is configured accordingly in the application, the window status is sent to the configured group address (object 14).

Likewise, input E2 can be checked (object 16, drip tray monitoring or window contact).

#### Behaviour in delivery condition:

Before the application software is downloaded for the first time, inputs E1, E2 and the auxiliary relay C1 are connected via a common group address:

E1 = 7/4/100

E2 = 7/4/101

C1 = 7/4/100, 7/4/101

If the contact is connected to E1 or E2, the auxiliary relay C1 is switched on.

This allows both inputs to be checked without bus monitor.

#### Exit test mode

Test mode is closed with a reset, i.e.:

- by simultaneously pressing both buttons (A+B)
- by downloading the application
- by interrupting and resetting the bus voltage

#### **Device LEDs in automatic mode**

| LE<br>D          | Function        | Explanation                                                                              |  |  |  |
|------------------|-----------------|------------------------------------------------------------------------------------------|--|--|--|
| S1               | Fan step 1      | Lights up if fan step 1 is active ( <i>Starting strategy</i> is not taken into account). |  |  |  |
| S2               | Fan step 2      | Lights up if fan step 2 is active (Starting Strategy is not taken into account).         |  |  |  |
| S3               | Fan step 3      | Lights up if fan step 3 is active (Starting strategy is not taken into account).         |  |  |  |
| *                | Cooling         | Lights up if the cooling valve is open.                                                  |  |  |  |
| 1241             |                 | Flashes if opening of the cooling valve is delayed, because the heating valve is         |  |  |  |
|                  |                 | not completely closed or the <i>time between heating and cooling</i> has run out.        |  |  |  |
| <i>\$</i> \$\$\$ | Heating         | Lights up if the heating valve is open.                                                  |  |  |  |
|                  |                 | Flashes if opening of the heating valve is delayed, because the cooling valve is         |  |  |  |
|                  |                 | not completely closed or the <i>time between heating and cooling</i> has run out.        |  |  |  |
| C1               | Auxiliary relay | Lights up if the auxiliary relay is switched on.                                         |  |  |  |
| Tes              | Test mode       | Flashes after reset if <i>test mode</i> is selected or if the device has not been        |  |  |  |
| t                |                 | programmed.                                                                              |  |  |  |
|                  |                 | Lights up if the device is in <i>test mode</i> .                                         |  |  |  |
| E1               | Input 1         | When used as a window contact:                                                           |  |  |  |
|                  |                 | Lights up if contact is closed.                                                          |  |  |  |
|                  |                 | When used as an actual value sensor.                                                     |  |  |  |
|                  |                 | Stays off in normal temperature range (i.e10 °C 60 °C).                                  |  |  |  |
|                  |                 | Flashes with interruption or short-circuit in the sensor line and temperatures           |  |  |  |
|                  |                 | outside the normal range.                                                                |  |  |  |
| E2               | Input 2         | For use as a window contact (only with supported function = heating or                   |  |  |  |
|                  |                 | ventilation):                                                                            |  |  |  |
|                  |                 | Lights up if contact is closed.                                                          |  |  |  |
|                  |                 | With supported function = heating and cooling or cooling:                                |  |  |  |
|                  |                 | Flashes at drip tray alarm, regardless of source for drip tray monitoring.               |  |  |  |

### Mains power failure detection for 3-Point valves

In case of mains power failure during the positioning of a 3-point valve, this one would stay in an undefined position after power reset.

Therefore the tension at the L and N connection terminals is monitored and the 3-point valves will be closed after power reset. Afterwards, a new positioning will be started.

#### Important:

This feature is only available if the valves and the KNX fan coil actuator are part of the same circuit.

#### • Monitoring actuating value

### **Application**

Should the remote room temperature controller (RTR) fail, despite the last sent actuating value being 0%, all valves remain closed, irrespective of the continued temperature characteristic curve.

This can result in considerable damage, if for example, cold air enters the room when the ambient temperature is below zero.

To avoid this situation, Fan coil actuator is able to guarantee the following functions:

- 1. monitor the correct function of the room thermostat
- 2. start an emergency program on actuating value failure
- 3. transmit the status obtained from actuating value monitoring

### **Principle**

Fan coil actuator drive monitors whether, within the configured time value, at least 1 actuating value telegram is received and assumes a pre-defined actuating value should the actuating value fail.

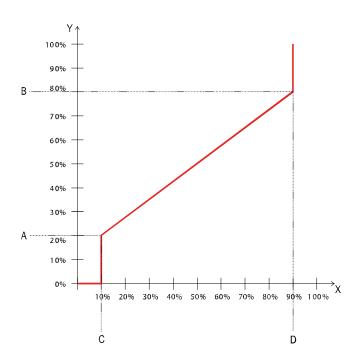
#### **Practice**

The RTR is configured for cyclical transmission of the actuating value.

On the KNX fan coil actuator, the monitoring time is set to a value that is at least twice the cycle time of the RTR.

If the RTR transmits an actuating value every 15 minutes, the monitoring time must be at least 30 minutes.

After an actuating value loss, normal operation is resumed as soon as a new actuating value is received.


If the disable function is activated (object 1: *disable heating* = 1 or *enable cooling* = 0) only the actuating value loss telegram is transmitted.

The relevant valve remains/is closed and assumes the configured emergency program actuating value once the lock is removed.

#### • Set characteristic valve curve

The parameters on the *heating valve* and *cooling valve* pages enable exact adjustment to the available valve type or enable the adjustment of the control.

Example for a valve that starts to open from a position of 10% and is completely open by 80%.



|   | Description                                       | Value   |
|---|---------------------------------------------------|---------|
| Χ | Actuating value of the controller                 | 0 100 % |
| Υ | Resulting valve position                          | 0 100 % |
| Α | Parameters: Minimum valve position*               | 20 %    |
| В | Parameters: Maximum valve position                | 80%     |
| С | Parameters: Open from actuating value             | 10 %    |
| D | Parameters: Maximum valve position from actuating | 90 %    |
|   | value                                             |         |

### Set point adjustment

The current set point can be adjusted via object 25" manual adjustment" by up to +/- 5 K With every alteration, the adjusted set point is transmitted by the current set point value object (object 27). The limits of the adjustment are set on the operating mode and operation parameter page with the limitation of manual adjustment parameter. The set point adjustment enables a dynamic adjustment of the set point to the outdoor temperature when cooling. If the outdoor temperature exceeds a set threshold, adjustment is activated and a relevant increase of the set point is calculated.

#### Use with an internal controller

The set point adjustment can be applied to the internal controller, if the *use set point adjustment for control* parameter is set to yes.

In this case the set point value of the internal controller (*Base set point after reset*) is always relatively adjusted, i.e. increased or decreased by the calculated adjustment value (see figure 2 below).

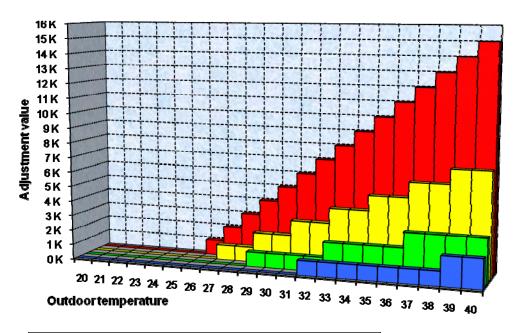
Moreover, an independent set point value can be produced, which makes adjustment available for other controllers in the building (see below: Format of set point adjustment: Absolute).

#### Use with a remote controller

There are 2 types of set point adjustment available for remote controllers, the relative and absolute. See also: Set point adjustment parameter page.

#### Format of set point adjustment: Relative

Set point adjustment is sent from object 19 as a temperature differential.


Provided theset point adjustment threshold (set point adjustment from) has not been reached, the value 0 is sent.

If the set point value threshold is exceeded, the value is increased each time by 1 K if the outdoor temperature has risen above the configured value (*adjustment*).

Object 19, adjust set point, is typically linked to the

manual set point adjustment object of the room thermostat.

Example: Transmitted adjustment value Set point adjustment from: 25 °C

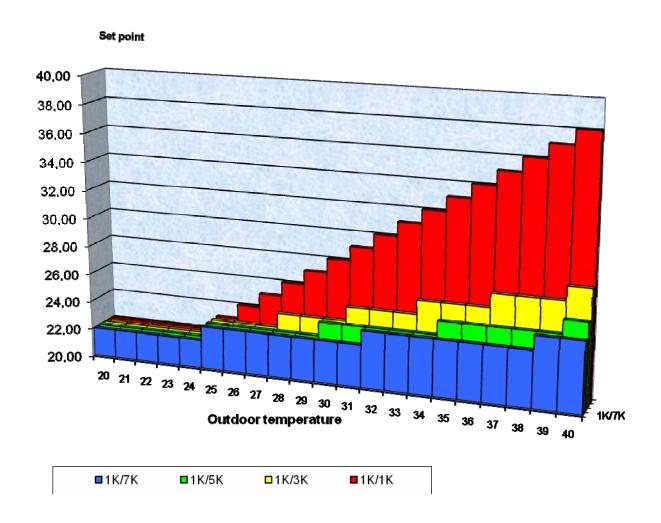


■1K per 7K outdoor temperature ■1K per 4K outdoor temperature ■1K per 2K outdoor temperature ■1K per 1K outdoor temperature

#### Adjustment values:

| Outdoor     |       |       |       |       |       |       |       |
|-------------|-------|-------|-------|-------|-------|-------|-------|
| temperature | 1K/1K | 1K/2K | 1K/3K | 1K/4K | 1K/5K | 1K/6K | 1K/7K |
| 20          | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   |
| 21          | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   |       |
|             |       |       |       |       |       |       | 0 K   |
| 22          | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   |
| 23          | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   |
| 24          | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   |
| 25          | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   |
| 26          | 1 K   | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   |
| 27          | 2 K   | 1 K   | 0 K   | 0 K   | 0 K   | 0 K   | 0 K   |
| 28          | 3 K   | 1 K   | 1 K   | 0 K   | 0 K   | 0 K   | 0 K   |
| 29          | 4 K   | 2 K   | 1 K   | 1 K   | 0 K   | 0 K   | 0 K   |
| 30          | 5 K   | 2 K   | 1 K   | 1 K   | 1 K   | 0 K   | 0 K   |
| 31          | 6 K   | 3 K   | 2 K   | 1 K   | 1 K   | 1 K   | 0 K   |
| 32          | 7 K   | 3 K   | 2 K   | 1 K   | 1 K   | 1 K   | 1 K   |
| 33          | 8 K   | 4 K   | 2 K   | 2 K   | 1 K   | 1 K   | 1 K   |
| 34          | 9 K   | 4 K   | 3 K   | 2 K   | 1 K   | 1 K   | 1 K   |
| 35          | 10 K  | 5 K   | 3 K   | 2 K   | 2 K   | 1 K   | 1 K   |
| 36          | 11 K  | 5 K   | 3 K   | 2 K   | 2 K   | 1 K   | 1 K   |
| 37          | 12 K  | 6 K   | 4 K   | 3 K   | 2 K   | 2 K   | 1 K   |
| 38          | 13 K  | 6 K   | 4 K   | 3 K   | 2 K   | 2 K   | 1 K   |
| 39          | 14 K  | 7 K   | 4 K   | 3 K   | 2 K   | 2 K   | 2 K   |
| 40          | 15 K  | 7 K   | 5 K   | 3 K   | 3 K   | 2 K   | 2 K   |

# Format of set point adjustment: Absolute


Object 19 transmits the adjusted set point value to the bus for additional room thermostats. It is typically linked to the room thermostat *base set point value* object.

This set point value consists of:

Unadjusted base set point + dead zone + adjustment.

## Example:

Set point adjustment from: 25 °C, unadjusted base set point: 21 °C, dead zone = 2 K



# KNX Fan Coil Actuator Application 4253

#### Set point values

| Outdoor     |       |       |       |       |       |       |       |
|-------------|-------|-------|-------|-------|-------|-------|-------|
| temperature | 1K/1K | 1K/2K | 1K/3K | 1K/4K | 1K/5K | 1K/6K | 1K/7K |
| 20          | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 |
| 21          | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 |
| 22          | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 |
| 23          | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 |
| 24          | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 | 22,00 |
| 25          | 23,00 | 23,00 | 23,00 | 23,00 | 23,00 | 23,00 | 23,00 |
| 26          | 24,00 | 23,00 | 23,00 | 23,00 | 23,00 | 23,00 | 23,00 |
| 27          | 25,00 | 24,00 | 23,00 | 23,00 | 23,00 | 23,00 | 23,00 |
| 28          | 26,00 | 24,00 | 24,00 | 23,00 | 23,00 | 23,00 | 23,00 |
| 29          | 27,00 | 25,00 | 24,00 | 24,00 | 23,00 | 23,00 | 23,00 |
| 30          | 28,00 | 25,00 | 24,00 | 24,00 | 24,00 | 23,00 | 23,00 |
| 31          | 29,00 | 26,00 | 25,00 | 24,00 | 24,00 | 24,00 | 23,00 |
| 32          | 30,00 | 26,00 | 25,00 | 24,00 | 24,00 | 24,00 | 24,00 |
| 33          | 31,00 | 27,00 | 25,00 | 25,00 | 24,00 | 24,00 | 24,00 |
| 34          | 32,00 | 27,00 | 26,00 | 25,00 | 24,00 | 24,00 | 24,00 |
| 35          | 33,00 | 28,00 | 26,00 | 25,00 | 25,00 | 24,00 | 24,00 |
| 36          | 34,00 | 28,00 | 26,00 | 25,00 | 25,00 | 24,00 | 24,00 |
| 37          | 35,00 | 29,00 | 27,00 | 26,00 | 25,00 | 25,00 | 24,00 |
| 38          | 36,00 | 29,00 | 27,00 | 26,00 | 25,00 | 25,00 | 24,00 |
| 39          | 37,00 | 30,00 | 27,00 | 26,00 | 25,00 | 25,00 | 25,00 |
| 40          | 38,00 | 30,00 | 28,00 | 26,00 | 26,00 | 25,00 | 25,00 |

## Frost protection (or heat protection) via window contact

#### with remote controller:

The window contact is connected to E1. The window status is transmitted to the bus by object 14 as a command to the remote controller.

This can change automatically in frost or heat protection mode when a window is opened.

The function of E1 parameter on the E1 parameter page must be E1 = window contact.

#### with internal controller:

This function is only possible if the *objects for operating mode selection* parameter on the *operating mode and operation* parameter page is set to *new: Operating mode, presence, window status.* 

The information "window is open" can be recorded in two ways:

- The window contact is connected to a binary input and the window status is received on object 23.
- The window contact is connected to E2 (only possible with *supported function* = *heating*). Important: The corresponding switch object (object 16 *status E2*) must be connected via the group address with object 23 (*window contact input*).

Fan coil actuator will recognise the opening of a window and independently change to frost protection mode (heat protection mode).

When the window is closed the previously set operating mode will be restored.

#### Dead zone

The dead zone is a buffer area between heating and cooling operation. Neither heating nor cooling takes place within this dead zone.

Without this buffer zone, the system would switch continuously between heating and cooling. As soon as the set point value has been under-run, the heating is activated and the set point value would not be achieved. If cooling were then to be started immediately, the temperature would fall below the set point value and switch on the heating again.

# Determining the current operating mode

The currenlt setpoint value can be adjusted to the relevant requirements via the choice of operating mode. The operating mode can be set via objects 21 .. 23.

There are two methods available:

## New operating modes

If, on the parameter page, new operating mode is selected by the "Determining operating mode" parameter, the current operating mode can be defined as follows:

| Operating mode preset<br>Object 21 | Presence<br>Object 22 | Window status<br>Object 23 | current operating mode (Object 24) |
|------------------------------------|-----------------------|----------------------------|------------------------------------|
| Any                                | any                   | 1                          | frost / heat protection            |
| Any                                | 1                     | 0                          | comfort                            |
| Comfort                            | 0                     | 0                          | comfort                            |
| Standby                            | 0                     | 0                          | standby                            |
| Night                              | 0                     | 0                          | night                              |
| frost / heat protection            | 0                     | 0                          | frost / heat protection            |

# Old operating modes

If, on the parameter page, old operating mode is selected by the "determining operating mode" parameter, the current operating mode can be defined as follows:

| Night<br>Object 21 | Comfort<br>Object 22 | Object 23 frost/heat protection | current operating mode<br>Object 24 |
|--------------------|----------------------|---------------------------------|-------------------------------------|
| Any                | any                  | 1                               | frost / heat protection             |
| Any                | 1                    | 0                               | comfort                             |
| standby            | 0                    | 0                               | standby                             |
| night              | 0                    | 0                               | night                               |

The old method has two advantages over the new method:

- 1. To switch from comfort to night operating mode, 2 telegrams (2 timer channels if necessary) are required.
  - Object 4 must be set to "0" and object 3 to "1".
- 2. If during periods when "frost / heat protection" is selected via the timer, the window is opened and then closed again, the "frost / heat protection" mode is cleared.

# **Determining the setpoint value**

# Calculating the set point value in heating operation

# Current set point value during heating

| Current set point value                                              |
|----------------------------------------------------------------------|
| Basesetlpoint value* +/- set point adjustment                        |
| Base set point* +/- set point adjustment – reduction in standby mode |
| Base set point +/- set point adjustment – reduction in night mode    |
| configured set point for frost protection mode                       |
|                                                                      |

<sup>\*</sup> Base set point after reset

### Example:

Heating in comfort mode.

## Parameter settings:

| Parameter page               | Parameters                        | Setting |
|------------------------------|-----------------------------------|---------|
| Set point values             | Base set point after reset        | 21 °C   |
|                              | Reduction in standby mode (during | 2 K     |
|                              | heating)                          |         |
| Operating mode and operation | Limitation of manual adjustment   | +/- 2 K |

The set point value was previously increased via object 25 by 1 K.

#### **Calculation:**

Current set point value = base set point + set point adjustment  
= 
$$21^{\circ}\text{C} + 1\text{K}$$
  
=  $22^{\circ}\text{C}$ 

If operation is switched to standby mode, the current set point value is calculated as follows:

Current set point = base set point + set point adjustment – reduction in standby mode = 
$$21^{\circ}\text{C} + 1\text{K} - 2\text{K}$$
 =  $20^{\circ}\text{C}$ 

# Calculating the setpoint value in cooling operation

## Current set point value during cooling

| Operating mode          | Current set point value                                                      |
|-------------------------|------------------------------------------------------------------------------|
| Comfort                 | Baseset point* + set point adjustment + dead zone                            |
| Standby                 | Base set point + set point adjustment + dead zone + increase in standby mode |
| Night                   | Base set point + set point adjustment + dead zone + increase in night mode   |
| Frost / heat protection | configured set point value for heat protection mode                          |

<sup>\*</sup> Base set point after reset

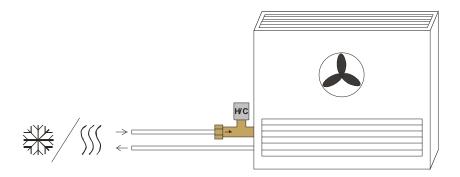
#### Example:

Cooling in comfort mode.

The room temperature is too high and Fan coil actuator has switched to cooling operation

# Parameter settings:

| Parameter page               | Parameters                            | Setting             |
|------------------------------|---------------------------------------|---------------------|
| General                      | Supported function                    | Heating and cooling |
| Set point values             | Base set point after reset            | 21 °C               |
| Set point values for cooling | Dead zone between heating and cooling | 2 K                 |
|                              | Increase in standby operation         | 2 K                 |
| Operating mode and operation | Limitation of manual adjustment       | +/- 2 K             |

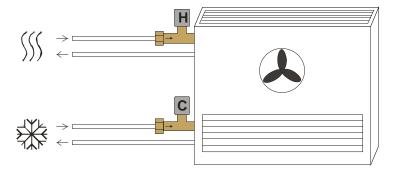

The set point value was previously lowered by 1 K via object 25.

#### Calculation:

Changing to standby mode causes a further increase in the set point value (energy saving) and gives rise to the following set point value.

= 24°C

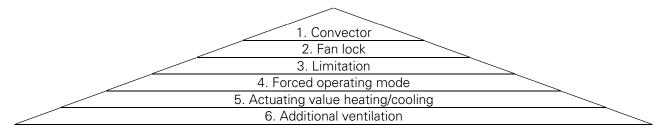
### Heating and cooling in the 2 pipe system




The following points must be observed for use in a 2 pipe heating/cooling system:

- In the 2-wire system heating and cooling mediums (depending on the season) are fed through the same channels and controlled by the same valve.

  This is connected to the terminals for the V1 valve.
- The switchover between heating and cooling mediums is performed by the system and must therefore be passed on to the controller.
   The heating/cooling system must send a 0 for heating mode and a 1 for cooling mode to Object 1 "Switching between heating and cooling" in Fan coil actuator.


## Heating and cooling in the 4 pipe system



When used in a 4-pipe heating/cooling system the heating valve is connected to the V1 terminals and the cooling valve to the V2 terminals.

## • Fan control

#### **Priorities**



The heating system = convector / fan coil and cooling system = convector / fan coil parameters have the highest priority (1.). The fan is not actuated with the convector.

The *additional ventilation* parameter has the lowest priority and is only activated if the fan is to be switched off due to the actuating value and *additional ventilation* is permitted via parameters.

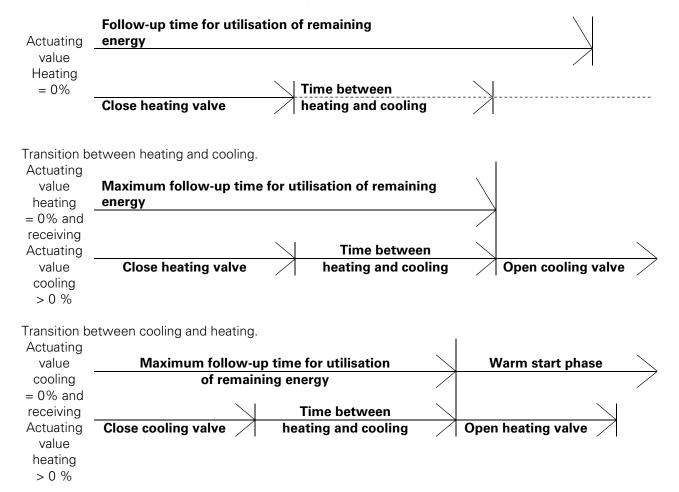


In the standard heating or cooling mode the *open from actuating value* parameter is taken into account ( *heating valve*, *cooling valve* or *heating/cooling valve*parameter value).

Example with *open from actuating value* = 40 % parameter:

| Actuating value | Fan behaviour                                                  |
|-----------------|----------------------------------------------------------------|
| 1 39 %          | The fan does not start because the valve has not been opened*. |
| 40 % 100%       | The corresponding fan step is accepted                         |

<sup>\*</sup>The Additional ventilation function can still be used.


# Time between heating and cooling and follow-up time phase

When switching between heating and cooling the heating valve is first closed; the *Follow-up time for utilisation of remaining energy* starts simultaneously (if configured).

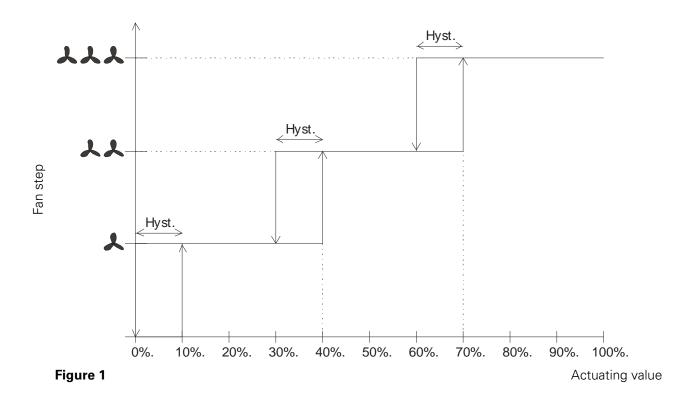
After the heating valve is closed, the configured time between heating and cooling operates.

The follow-up phase can continue during this time. The cooling valve can be opened at the end of the follow-up phase. In this case, the follow-up phase will be interrupted if it has not already ended. If the cooling valve does not have to be opened because the room temperature is in the dead zone the follow-up phase may continue. The same procedure applies when switching between cooling and heating. As soon as the heating valve is opened, the *warm start* phase starts if required.

Follow-up time for utilisation of remaining energy:



# **Hysteresis**


To avoid unnecessary switching back and to between fan steps they are switched with a fixed hysteresis of 10 %.

The next higher fan step is assumed when the actuating value has reached the switch-on threshold.

The next lowest fan step is only assumed if the actuating value has reduced by the value of the hysteresis ( see diagram).

# Example:

Switch-on threshold for fan step 1 = 10 %Switch-on threshold for fan step 2 = 40 %Switch-on threshold for fan step 3 = 70 %



© 2008 Merten GmbH & Co. KG

# • Temperature control

#### Introduction

The internal controller can be used as a P or a PI controller, although the PI control is preferred.

With the proportional control (P control), the control variable is statically adjusted to the control deviation. The proportional integral control (PI control) is far more flexible, i.e. controls more quickly and more accurately.

To explain the function of both temperature controls, the following example compares the room to be heated with a vessel.

The filling level of the vessel denotes the room temperature.

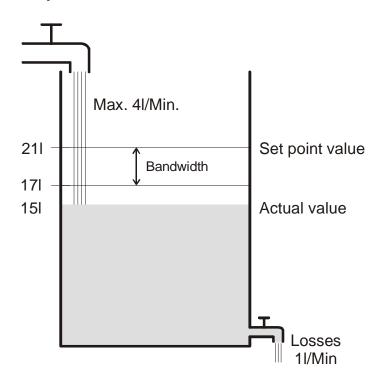
The water supply denotes the radiator output.

The heat loss from the room is illustrated by a curve.

In our example, the maximum supply volume is 4 litres per minute and also denotes the maximum radiator output.

This maximum output is achieved with an actuating value of 100%.

Accordingly, with an actuating value of 50%, only half the water volume, i.e. 2 litres per minute, would flow into our vessel.


The bandwidth is 4l.

This means that the controller controls at 100% provided the actual value is smaller than, or equal, to (211 - 41) = 171.

### **Function:**

- Desired filling volume:21 litres (= set point)
  - From when should the supply flow gradually be reduced in order to avoid an overflow? : 41 below the desired filling volume, i.e. at 211 41 = 171 (=bandwidth)
- Original filling volume
   15l (=actual value)
- The loss amounts to 1l/minute

# Response of the P-control



A filling volume of 15l gives rise to a control deviation of 211 - 151 = 61Because our actual value lies outside the bandwidth, the control will control the flow at 100% i.e. at 4l / minute

The supply quantity (control variable) is calculated from the control deviation (set point value – actual value) and the bandwidth. Control variable = (control deviation / bandwidth)  $\times$  100

The table below shows the response and therefore also the limits of the P-control

| Filling level | Actuating value | Supply  | Loss    | Increase in filling level |
|---------------|-----------------|---------|---------|---------------------------|
| 15            | 100%            | 4 l/min |         | 3 l/min                   |
| 19            | 50%             | 2 l/min | 1 l/min | 1 l/min                   |
| 201           | 25%             | 1 l/min |         | 0 l/min                   |

The last line indicates that the filling level cannot increase any further, because the flow allows only the same amount of water to flow in as can flow out through loss.

The result is a permanent control deviation of 11 and the setpoint value can never be reached.

If the loss was 11 higher, the permanent control deviation would increase by the same amount and the filling level would never exceed the 19l mark.

In a room this would mean that the control deviation increases with a decreasing outside temperature.

# KNX Fan Coil Actuator Application 4253

### P-control as temperature control

The P-control behaves during heating control as shown in the previous example.

The set point temperature (21°C) can never quite be reached.

The permanent control deviation increases as the heat loss increases and decreases as the ambient temperature decreases.

# Response of the PI-control

Unlike the pure P-control, the PI-control works dynamically.

With this type of controller, the actuating value remains unchanged, even at a constant deviation.

In the first instant, the Pl-control sends the same actuating value as the P-control, although the longer the set point value is not reached, the more this value increases.

This increase is time-controlled over the so-called integrated time.

With this calculation method, the actuating value does not change if the set point value and the actual value are the same.

Our example, therefore, shows equivalent in and outflow.

## Notes on temperature control:

Effective control depends on agreement of bandwidth and integrated time with the room to be heated. The bandwidth influences the increment of the actuating value change: Large bandwidth = finer increment on actuating value change. The integrated time influences the response time to temperature changes: Long integrated time = slow response. Poor agreement can result in either the set point value being exceeded (overshoot) or the control taking too long to reach the set point value. The best results are generally achieved using the standard settings.