## Devices Employing the Program

\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { Product family: } \\
\text { Product type: } \\
\text { Manufacturer: }\end{array} & \begin{array}{l}\text { Output } \\
\text { Binary output 2-fold } \\
\text { Siemens }\end{array} \\
\text { Name: } & \\
\begin{array}{l}\text { Order-no.: }\end{array}
$$ \& Load Switch GE 510 <br>

5WG10-4AB01\end{array}\right\}\)| Name: | Binary output N 562 |
| :--- | :--- |
| Order-no.: | 5WG1 562-1AB01 |
| Name: | Binary output N 562 pl |
| Order-no.: | 5WG1 562-1PB01 |
| Name: | Binary output GE 563 |
| Order-no.: | 5WG1 563-4AB01 |

## Application Description

This application program allows you to use both channels of a binary output 2-fold to pure switching, timed switching (staircase lighting), delayed and logic switching tasks.
Additionally, the switching status of the output can be read via the bus and parameters are provided to specifying the response to bus voltage failure and recovery, and the relay's contact type.

## Block diagram of channel A



## Communication Objects

| Phys.Addr. Program |  |  |  |
| :---: | :---: | :---: | :---: |
| no. | Function | Object name | Type |
| [-7-3-20 $01.01 .028 \quad 11$ A2 Binary 520901 |  |  |  |
| $\square \square^{4} 0$ | Channel A | Switch | 1 Bit |
| [-11 | Channel A | Status | 1 Bit |
| - $\mathrm{H}^{1} 2$ | Channel B | Switch | 1 Bit |
| [13 | Channel B | Status | 1 Bit |

## Note:

The order of the entries may vary from the above due to individual customization of the table.

| Obj | Function | Object name | Type | Flag |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | Channel A | Switch | 1-bit | CWU |

This object's group addresses are used to receive switching telegrams that are forwarded to the relay channel A via the timer.

| 1 | Channel A | Status | 1-bit | CRU |
| :--- | :--- | :--- | :--- | :--- |

This object holds the actual switching status of the relay channel. The status is changed according to the switching telegrams received at object [ 0 ] and the delay specified to channel A but is not affected by the parameter "Relay mode: normally closed/normally open". On changing the object status no telegram is sent. The switching status can be read with the ETS or a visualization unit.

| $\mathbf{2}$ | Channel B | Switch | 1-bit | CWU |
| :--- | :--- | :--- | :--- | :--- |
| This object's group addresses are used to receive switching <br> telegrams that are forwarded to the relay channel B via the <br> timer. |  |  |  |  |
| $\mathbf{3}$ | Channel B | Status | 1-bit | CRU |
| This object holds the actual switching status of the relay <br> channel. The status is changed according to the switching <br> telegrams received at object <br> channel B but in not the delay specified to <br> chatected by the parameter "Refay tode: <br> normally closed/normally open". On changing the object <br> status no telegram is sent. The switching status can be read <br> with the ETS or a visualization unit. |  |  |  |  |

[^0]
## Application Programs Description

September 2001

## 11 A2 Binary 520901

## Parameters

## Note:

The sequence of the parameters in the de-scription is the same as in the ETS screen shots. To have a more precise description, the terms used are partly different to the ETS screen shots.

## Channel A:

| Channel A | Channel B |  |  |
| :---: | :---: | :---: | :---: |
| Behaviour on bus voltage failure / behaviour on bus voltage recovery |  | no action / no actio | $\pm$ |
| Relay mode |  | normally open conta | $\checkmark$ |
| Operating mode |  | Normal mode | $\checkmark$ |
| Base for Off delay |  | Time base 130 ms | $\checkmark$ |
| Factor for Off delay (0-127) |  | 0 |  |
| Base for On delay |  | Time base 130 ms | $\pm$ |
| Factor for On delay (0-127) |  | 0 |  |

The parameters of channel B can be set accordingly.

| Parameters | Settings |  |
| :--- | :--- | :---: |
| Behaviour on bus voltage <br> failure / <br> behaviour on bus voltage <br> recovery | no action / no action <br> no action / relay picks up <br> no action / relay drops off <br> relay picks up / picks up <br> relay picks up / drops off <br> relay drops off / picks up <br> relay drops off / drops off |  |
| This parameter rules the relay contact's response to bus <br> voltage failure and recovery: <br> "no action": On bus voltage failure and recovery the relay <br> contact maintains its current switching status. <br> "relay picks up" (switch on): On bus voltage failure and recov- <br> ery the relay contact picks up in the setting "Relay mode: <br> normally open contact" and drops out when using "Relay <br> mode: normally closed contact". <br> "relay drops off" (switch off): On bus voltage failure and re- <br> covery the relay contact drops out in the setting "Relay mode: <br> normally open contact" and picks up when using "Relay <br> mode: normally closed contact". |  |  |
| Relay mode normally open contact <br> normally closed contact <br> This parameter defines the characteristic of the output. <br> "normally open contact": "off" telegram = relay drops out, <br> "on" telegram = relay picks up.  <br> "normally closed contact": "off" telegram = relay picks up,  <br> "on" telegram = relay drops out.  |  |  |
| Normal mode <br> Time switch |  |  |
| Operating mode <br> This parameter rules the switch off delay mode: <br> "Normal mode": On receiving an "Off" telegram via the switching <br> object, the specified switch off delay is started. Each subse- <br> quent "Off" telegram received before the period has passed re- <br> starts the delay anew. When the delay period has passed <br> without receiving a further "Off" telegram, a "0" telegram is sent |  |  |

to the output. An "On" telegram cancels the switch off delay. "Time switch": "On" telegrams received via the switching object are forwarded to the output immediately. Simultaneously the specified delay is started ignoring any switch on delays. Each subsequent "On" telegram received before the period has passed re-starts the delay anew. When the delay period has passed without receiving a further "On" telegram, a " 0 " telegram is sent to the output. An "Off" telegram cancels the switch off delay and is forwarded to the output immediately.

| Base for Off delay | Time base 130 ms <br> Time base 260 ms Time base 520 ms Time base 1 sec Time base $2,1 \mathrm{sec}$ Time base $4,2 \mathrm{sec}$ Time base $8,4 \mathrm{sec}$ Time base 17 sec Time base 34 sec Time base $1,1 \mathrm{~min}$ Time base 2,2 min Time base $4,5 \mathrm{~min}$ Time base 9 min Time base 18 min Time base 35 min Time base 1,2 hr |
| :---: | :---: |
| Factor for Off delay (0-127) | 0 |

These parameters rules the delay to switch "Off". The delay period is generated by multiplying the specified base with the selected factor.
Factor = "0": No switch off delay, i.e. logical "0"s are forwarded immediately.
Note: As the specified base equals the maximum timing error, the smallest possible base should be used to establish the desired delay.

| Switch on delay base | Time base 130 ms <br> Time base 260 ms <br> Time base 520 ms <br> Time base 1 sec <br> Time base 2,1 sec <br> Time base 4,2 sec <br> Time base 8,4 sec <br> Time base 17 sec <br> Time base 34 sec <br> Time base 1,1 min <br> Time base 2,2 min <br> Time base 4,5 min <br> Time base 9 min <br> Time base 18 min <br> Time base 35 min <br> Time base 1,2 hr |
| :--- | :--- |
| Factor for On delay | $\mathbf{0}$ |
| $\mathbf{( 0 - 1 2 7 ) ~}$ |  |

These parameters rules the delay to switch "On". The delay period is generated by multiplying the specified base with the selected factor.
Factor = "0": No switch on delay, i.e. logical "1"s are forwarded immediately.
Note: As the specified base equals the maximum timing error, the smallest possible base should be used to establish the desired delay.

## 11 A2 Binary 520901

## Timing Diagrams: Channel Examples

## 1. Non delayed switching



## 2. Switching with switch on delay



## 3. Switching with switch off delay



## 4. Switching with on and off delay



## 5. Timed switching



## Note

When set to "time switch" mode the switch on delay is ignored.

## Application Programs Description

September 2001

## 11 A2 Binary 520901

## Notes


[^0]:    Maximum number of group addresses:11

    Maximum number of assignments: 11

