

inBOX 24 / inBOX 20

Multifunction Actuator for Flush Mounting

CONTENTS

Contents 2
1 Introduction 3
1.1 inBOX 24 / inBOX 20 3
1.2 Installation 4
1.3 Start-Up and Power Loss 5
2 Configuration. 6
2.1 General 6
2.2 Inputs (Only inBOX 24) 8
2.2.1 Binary Input 8
2.2.2 Temperature Probe 9
2.2.3 Motion Detector 9
2.3 Outputs 10
2.3.1 Manual Control 10
2.4 Logic Functions 14
2.5 Thermostats (Only inBOX 24) 15
2.6 Master Light 16
2.7 Scene Temporisation 19
ANNEX I. Communication Objects 21

1 INTRODUCTION

1.1 inBOX 24 / inBOX 20

inBOX 24 and inBOX 20 from Zennio are two versatile KNX actuators featuring two relay outputs (together with four analogue-digital inputs, in the case of inBOX 24) and a variety of functions. Their particularly small size makes them suitable for installation within mechanism boxes, junction boxes, roller shutter boxes or any other location where the available space is limited.

The most outstanding features are:

- 2 relay outputs, configurable as:
- 1 shutter channel (with or without slats), or
- Up to 2 individual ON/OFF outputs.
- 4 multi-purpose inputs (only on inBOX 24), configurable as:
- Temperature probes,
- Binary inputs (i.e., pushbuttons, switches, sensors),
- Motion detectors.
- 10 customisable, multi-operation logic functions.
- 4 independent thermostats (only on inBOX 24).
- Scene-triggered action control, with an optional delay in the execution.
- Master light control (only on inBOX 24) for an easy, out-of-the-box control of a set of luminaires (or functionally equivalent devices) one of which acts as a general lamp and the others as secondary lamps.
- Manual operation / supervision of the 2 or 4 relay outputs through the onboard pushbuttons and LEDs.
- Heartbeat or periodical "still-alive" notification.

1.2 INSTALLATION

inBOX 24 / 20 connects to the KNX bus through the on-board KNX connector.

Once the device is powered from the KNX bus, both the individual address and the associated application program may be downloaded.

This device does not need any additional external power since it is entirely powered through the KNX bus.

1. Output status LED.
2. Prog./Test LED.
3. Prog./Test pushbutton.
4. Inputs.
5. Outputs.
6. Output control button.
7. KNX connector.

Figure 1. inBOX 24. Elements
Note: the above element diagram refers to inBOX 24. It is entirely analogous for inBOX 20, although the inputs are not available.

The main elements of the device are described next.

- Test/Prog. Pushbutton (3): a short press on this button sets the device into the programming mode, making the associated LED (2) light in red.

Note: if this button is held while plugging the device into the KNX bus, the device will enter into safe mode. In such case, the LED will blink in red every 0.5 seconds.

- Outputs (5): output ports for the insertion of the stripped cables of the systems being controlled by the actuator (see section 2.3). Please secure the
connection by means of the on-board screws.
- Inputs (4): input ports for the insertion of the stripped cables of external elements such as switches / motion detectors / temperature probes, etc. One of the two cables of each element needs to be connected to one of the slots labelled " 1 " to " 4 ", while the other cable should be connected to the slot labelled as " C ". Note that all the external input devices share the " C " slot for one of the two cables. Please secure the connection by means of the onboard screws.

To get detailed information about the technical features of this device, as well as on the installation and security procedures, please refer to the corresponding Datasheet, bundled with the original package of the device and also available at www.zennio.com.

1.3 START-UP AND POWER LOSS

During the start-up of the device, the Test/Prog. LED will blink in blue colour for a few seconds before the device is ready. External orders will not be executed during this time, but afterwards.

Depending on the configuration, some specific actions will also be performed during the start-up. For example, the integrator can set whether the output channels should switch to a particular state and whether the device should send certain objects to the bus after the power recovery. Please consult the next sections of this document for further details.

On the other hand, when a bus power failure takes place, the device will interrupt any pending actions, and will save its state so it can be recovered once the power supply is restored. For safety reasons, the shutter channel will be stopped (i.e., the relays will open) if a power loss takes place, while the individual outputs will switch to the specific state configured in ETS (if any).

2 CONFIGURATION

2.1 GENERAL

After importing the corresponding database in ETS and adding the device into the topology of the desired project, the configuration process begins by right-clicking into the device and selecting Edit parameters.

ETS PARAMETERISATION

From the General screen it is possible to activate/deactivate all the required functionality.

Figure 2. Default screen

- Once activated, Inputs (only on inBOX 24), Outputs, Logic Functions, Thermostats (only on inBOX 24), Master Light (only on inBOX 24), Scene Temporisation and Manual Control bring additional tabs to the menu on the left. These functions and their parameters will be explained in later sections of this document.

The Manual Control function is enabled by default, and so is the corresponding configuration tab.

- Sending of Indication Objects (0 and 1) on Bus Voltage Recovery: this parameter lets the integrator activate two new communication objects ("Reset 0 " and "Reset 1 "), which will be sent to the KNX bus with values " 0 " and " 1 " respectively whenever the device begins operation (for example, after a bus power failure). It is possible to parameterise a certain delay to this sending (0 to 255 seconds).

Figure 3. Sending of Indication objects on bus voltage recovery

- Heartbeat (Periodical Alive Notification): this parameter lets the integrator incorporate a one-bit object to the project ("[Heartbeat] Object to Send ' 1 '") that will be sent periodically with value " 1 " to notify that the device is still working (still alive).

Figure 4. Heartbeat (Periodical Alive Notification).

2.2 INPUTS (ONLY inBOX 24)

inBOX 24 incorporates four analogue/digital inputs, each configurable as a:

- Binary Input, for the connection of a pushbutton or a switch/sensor.
- Temperature Probe, for the connection of a temperature sensor (such as models ZN1AC-NTC68 S/E/F and SQ-AmbienT from Zennio).
- Motion Detector, for the connection of a motion detector (models ZN1IO-DETEC-P and ZN1IO-DETEC-X from Zennio).

Important: older models of the Zennio motion detector (e.g., ZN1IO-DETEC and ZN1IO-DETEC-N) will not work properly with inBOX 24.

ETS PARAMETERISATION

When Inputs has been activated in the General parameters screen, the following droplists will be available for the selection of the specific functions required.

Figure 5. Inputs - Configuration
All inputs are disabled by default. Depending on the function selected for each input, additional tabs will be included in the menu on the left.

2.2.1 BINARY INPUT

Please refer to the specific user manual "Binary Inputs", available in the inBOX 24 iproduct section, at the Zennio website (www.zennio.com).

2.2.2 TEMPERATURE PROBE

Please refer to the specific user manual "Temperature Probe", available in the inBOX 24 product section, at the Zennio website (www.zennio.com).

2.2.3 MOTION DETECTOR

It is possible to connect motion detectors (models ZN1IO-DETEC-P and ZN1IO-DETEC-X from Zennio) to the input ports of inBOX 24.

Please refer to the specific user manual "Motion Detector", available in the inBOX 24 product section, at the Zennio website (www.zennio.com).

Notes:

- The ZN1IO-DETEC-P motion detector is compatible with a variety of Zennio devices. However, depending on the device it is actually being connected to, the functionality may differ slightly. Therefore, please refer specifically to the corresponding product section to obtain the aforementioned document.
- Motion detectors with references ZN1IO-DETEC and ZN1IO-DETEC-N are not compatible with inBOX 24 (may report inaccurate measurements if connected to this device).
- When connected to inBOX 24, the rear micro-switch of model ZN1IO-DETECP should be set to position "Type B".

2.3 OUTPUTS

The inBOX 24 / 20 actuators incorporate $\mathbf{2}$ relay outputs, each configurable as a:

- Individual binary outputs, which allows an independent control of loads.
- Shutter channel, which allow controlling the motion of shutters or blinds.

For detailed information about the functionality and the configuration of the related parameters, please refer to the following specific manuals, all of them available in the inBOX 24 / 20 product section at the Zennio homepage (www.zennio.com):

- Individual outputs.

- Shutter channels.

2.3.1 MANUAL CONTROL

inBOX 24 / 20 allows manually switching the state of its output relays through the respective pushbuttons on the top of the device. A specific pushbutton is therefore available per output.

Manual operation can be done in two different ways, named as Test On Mode (for testing purposes during the configuration of the device) and Test Off Mode (for a normal use, anytime). Whether both, only one, or none of these modes can be accessed needs to be parameterised in ETS. Moreover, it is possible to enable a specific binary object for locking and unlocking the manual control in runtime.

Note:

- The Test Off mode will be active (unless it has been disabled by parameter) after a download or a reset with no need of a specific activation - the pushbuttons will respond to user presses from the start.
- On the contrary, switching to the Test On mode (unless disabled by parameter) needs to be done by long-pressing the Prog./Test button (for at least three seconds), until the LED is no longer red and turns yellow. From that moment, once the button is released, the LED light will remain green to confirm that the device has switched from the Test Off mode to the Test On
mode. After that, an additional press will turn the LED yellow and then off, once the button is released. This way, the device leaves the Test On mode. Note that it will also leave this mode if a bus power failure takes place.

Test Off Mode

Under the Test Off Mode, the outputs can be controlled through both their communication objects and the actual pushbuttons located on the top of the device.

When one of these buttons is pressed, the output will behave as if an order had been received through the corresponding communication object, depending on whether the output is configured as an individual output or as a shutter channel.

- Individual output: a simple press (short or long) will make the output switch its on-off state, which will be reported to the KNX bus through the corresponding status object, if enabled.
- Shutter Channel: when the button is pressed, the device will act over the output according to the length of the button press and to the current state.
> A long press makes the shutter start moving (upwards or downwards, depending on the button being pressed). The LED will light in green until the end of the motion. If the button gets pressed being the shutter already at the top or bottom positions, nothing will happen (the LED will not light).
- A short press will make the shutter drive stop (if in motion), as it normally does when a step/stop order is received from the KNX bus. In case of not being the shutter in motion, pressing the button does not cause any action, unless slats/lamellas have been parameterized - in such case, a step movement (up/down, depending on the button pressed) will take place. The status objects will be sent to the bus when corresponding.
- Disabled output: outputs disabled by parameter will not react to button presses under the Test Off mode.

Regarding the lock, timer, alarm and scene functions, the device will behave under the Test Off mode as usual. Button presses during this mode are entirely analogous to the reception of the corresponding orders from the KNX bus.

Test On Mode

After entering the Test On mode, it will only be possible to control the outputs through the on-board pushbuttons. Orders received through communication objects will be ignored, with independence of the channel or the output they are addressed to.

Depending on whether the output has been parameterised as an individual output or as part of a shutter channel, the reactions to the button presses will differ.

- Individual output: short or long pressing the button will commute the on-off state of the relay.
- Shutter channel: pressing the button will make the shutter drive move upward or downward (depending on the button) until the button is released again, thus ignoring the position of the shutter and the parameterised times.

Note: after leaving the Test On mode, the status objects will recover the values they had prior to entering Test On. As the device is never aware of the actual position of the shutter (as the shutter drive does not provide any feedback), these values may not show the real position. This can be solved by performing a complete move-up or move-down order, or by calibrating the shutter position in the Test On mode until it matches the status objects.

- Disabled output: under the Test On mode, short and long presses will cause the same effect for disabled outputs as for individual outputs (i.e., the relay will switch its state).

The lock, timer, alarm and scene functions will not work while the device is under the Test On mode. Status objects will not be sent to the bus, either.

Important: the device is delivered from factory with the outputs configured as disabled, and with both manual modes (Test Off and Test On) enabled.

ETS PARAMETERISATION

The Manual Control is configured from the Configuration tab itself under Manual Control.

The only two parameters are:

Figure 6. Manual control screen

- Manual Control: options are "Disabled", "Only Test Mode Off", "Only Test Mode On" and "Test Mode Off + Test On Mode" (default). Depending on the selection, the device will permit using the manual control under the Test Off, the Test On, or both modes. Note that, as stated before, using the Test Off mode does not require any special action, while switching to the Test On mode does require long-pressing the Prog./Test button.
- Lock Manual Control: unless the above parameter has been "Disabled", the Lock Manual Control parameter provides an optional procedure for locking the manual control in runtime. When this checkbox is enabled, object "Manual Control Lock" turns visible, as well as two more parameters:
> Value: defines whether the manual control lock/unlock should take place respectively upon the reception (through the aforementioned object) of values " 0 " and " 1 ", or the opposite.
> Initialization: sets how the manual control should remain after the device start-up (after an ETS download or a bus power failure): "Unlocked", "Locked" or "Last Value" (default; on the very first start-up, this will be Unlocked).

2.4 LOGIC FUNCTIONS

This module makes it possible to perform numeric and binary operations to incoming values received from the KNX bus, and to send the results through other communication objects specifically enabled for this purpose.
inBOX 24 / 20 can implement up to 10 different and independent functions, each of them entirely customisable and consisting in up to 4 consecutive operations each.

The execution of each function can depend on a configurable condition, which will be evaluated every time the function is triggered through specific, parameterisable communication objects. The result after executing the operations of the function can also be evaluated according to certain conditions and afterwards sent (or not) to the KNX bus, which can be done every time the function is executed, periodically or only when the result differs from the last one.

Please refer to the specific "Logic Functions" user manual (available in the inBOX 24 / 20 product section at the Zennio homepage, www.zennio.com) for detailed information about the functionality and the configuration of the related parameters.

2.5 THERMOSTATS (ONLY inBOX 24)

inBOX 24 implements four Zennio thermostats which can be enabled and configured independently.

Please refer to the specific "Zennio Thermostat" user manual (available in the inBOX 24 product section at the Zennio homepage, www.zennio.com) for detailed information about the functionality and the configuration of the related parameters.

2.6 MASTER LIGHT (ONLY inBOX 24)

The Master Light function brings the option to monitor the state of up to 12 light sources -or any other functionally-similar element whose state is transmitted through a binary object- and, depending on those states, perform a master order every time a certain trigger signal (again, a binary value) is received through a specific object.

Such master order will consist in:

- A general switch-off order, if at least one of the up to twelve status objects is found to be on.
- A courtesy switch-on order, if none of the up to twelve status objects is found to be on.

Note that the above switch-off and switch-on orders are not necessarily a binary value being sent to the bus - it is up to the integrator the decision of what to send to the KNX bus in both cases: a shutter order, a thermostat setpoint or mode switch order, a constant value, a scene... Only the trigger object and the twelve status objects are required to be binary (on/off).

The most typical scenario for this Master Light control would be a hotel room with a master pushbutton next to the door. When leaving the room, the guest will have the possibility of pressing on the master pushbutton and make all the lamps turn off together. Afterwards, back on the room and with all the lamps off, pressing on the same master pushbutton will only make a particular lamp turn on (e.g., the closest lamp to the door) - this is the courtesy switch-on.

ETS PARAMETERISATION

Once the Master Light function has been enabled, a specific tab will be included in the menu on the left. This new parameter screen contains the following options:

- Number of State Objects: defines the number of one-bit status objects required. The minimum (and default) value is " 1 ", and the maximum is " 12 ". These objects are called "[ML] Status Object n ".
- Trigger Value: sets the value (" $\underline{0}$ ", " $\underline{1}$ " or " $\underline{0 / 1}$ ", being the latter the default option) that will trigger, when received through "[ML] Trigger", the master action (the general switch-off or the courtesy switch-on).

- General Switch-Off.

> Delay: defines a certain delay (once the trigger has been received) before the execution of the general switch-off. The allowed range is 0 to 255 seconds.
> Binary Value: if checked, object "[ML] General Switch-off: Binary Object" will be enabled, which will send one " 0 " whenever the general switch-off takes off.
> Scaling: if checked, object "[ML] General Switch-off: Scaling" will be enabled, which will send a percentage value (configurable in "Value") whenever the general switch-off takes off.
> Scene: if checked, object "[ML] General Switch-off: Scene" will be enabled, which will send a scene run / save order (configurable in "Action" and "Scene Number") whenever the general switch-off takes off
> HVAC: if checked, object "[ML] General Switch-off: HVAC mode" will be enabled, which will send an HVAC thermostat mode value (configurable in "Value", being the options "Auto", "Comfort", "Standby", "Economy" and "Building Protection") whenever the general switch-off takes off

Note: the above options are not mutually exclusive; it is possible to send values of different nature together.

- Courtesy Switch-On:

The parameters available here are entirely analogous to those already mentioned for General Switch-Off. However, in this case the names of the objects start with "[ML] Courtesy Switch-On (...)". On the other hand, sending scene save orders is not possible for the courtesy switch-on (only orders to play scenes are allowed).

Note: object "[ML] Courtesy Switch-On: Binary Object" sends the value "1"
(when the courtesy switch-on takes place), in contrast to object "[ML] General Switch-Off: Binary Object", which sends the value "0" (during the general switch-off, as explained above).

Figure 7. Sending of Indication objects on bus voltage recovery

2.7 SCENE TEMPORISATION

The scene temporisation allows imposing delays over the scenes of the outputs. These delays are defined in parameters, and can be applied to the execution of one or more scenes that may have been configured.

Please bear in mind that, as multiple delayed scenes can be configured for each individual output or shutter channel, in case of receiving an order to execute one of them when a previous temporisation is still pending for that output or that channel, such temporisation will be interrupted and only the delay and the action of the new scene will be executed.

ETS PARAMETERISATION

Prior to setting the scene temporisation, it is necessary to have one or more scenes configured in some of the outputs. When entering the Configuration window under Scene Temporization, all configured scenes will be listed, together with a few checkboxes to select which of them need to be temporised, as shown in Figure 8.

Figure 8. Scene temporisation

Enabling a certain scene number n brings a new tab with such name to the menu on the left, from which it is possible to configure the temporisation of that scene for each of the outputs where it has been configured.

Figure 9. Configuration of the scene temporisation
Therefore, parameter "Scene m. Z Delay" defines the delay that will be applied to the action defined in Z for the execution of scene m (where Z may be a specific individual output, shutter channel or fan coil module). The range of this delay is 0 to 3600 seconds, 0 to 1440 minutes or 0 to 24 hours.

ANNEX I. COMMUNICATION OBJECTS

- "Functional range" shows the values that, with independence of any other values permitted by the bus according to the object size, may be of any use or have a particular meaning because of the specifications or restrictions from both the KNX standard or the application program itself.

Note: objects referring to inputs, thermostats and the master light control only apply to inBOX 24

Name	Size	$1 / 0$	Flags	Data Type (DPT)	Functional Range	Name	Function
1	1 Bit		C T - -	DPT_Trigger	0/1	[Heartbeat] Object to Send '1'	Sending of '1' Periodically
2	1 Bit		C T - -	DPT_Trigger	0/1	Reset 0	Voltage Recovery -> Sending 0
3	1 Bit		C T---	DPT_Trigger	0/1	Reset 1	Voltage Recovery -> Sending 1
4	1 Bit	1	C--W-	DPT_Switch	0/1	Manual Control Lock	0 = Lock; 1 = Unlock
	1 Bit	1	C-- W-	DPT_Switch	0/1	Manual Control Lock	0 = Unlock; 1 = Lock
5-36	1 Bit	1	C--W-	DPT_Bool	0/1	[LF] (1 bit) Data Entry x	Binary Data Entry (0/1)
37-52	1 Byte	1	C - - W -	DPT_Value_1_Ucount	0-255	[LF] (1 byte) Data Entry x	1 byte Data Entry (0-255)
53-68	2 Byte	।	C - - W -	DPT_Value_2_Ucount	0-65535	[LF] (2 bytes) Data Entry x	2 bytes Data Entry
				DPT_Value_2_Count	-32768-32767		
				DPT_Value_Temp	-273.00-670760.00		
69-76	4 Byte	1	C - - W-	DPT_Value_4_Count	$\begin{array}{r} -2147483648- \\ 2147483647 \\ \hline \end{array}$	[LF] (4 bytes) Data Entry x	4 bytes Data Entry
77-86	1 Bit	0	CTR - -	DPT_Bool	0/1	[LF] Function x - Result	(1 bit) Boolean
	1 Byte	0	C TR - -	DPT_Value_1_Ucount	0-255	[LF] Function x - Result	(1 byte) Unsigned
	2 Byte	0	C TR - -	DPT_Value_2_Ucount	0-65535	[LF] Function x - Result	(2 bytes) Unsigned
	4 Byte	0	C TR - -	DPT_Value_4_Count		[LF] Function x - Result	(4 bytes) Signed
	1 Byte	0	CTR - -	DPT_Scaling	0\% - 100\%	[LF] Function x - Result	(1 byte) Percentage
	2 Byte	0	CTR - -	DPT_Value_2_Count	-32768-32767	[LF] Function x - Result	(2 bytes) Signed
	2 Byte	0	CTR - -	DPT_Value_Temp	-273.00-670760.00	[LF] Function x - Result	(2 bytes) Float
87	1 Byte	1	C--W-	DPT_SceneControl	0-63; 128-191	[Outputs] Scenes	0-63 (Execute 1-64); 128-191 (Save 1-64)
88	1 Bit	1	C--W-	DPT_BinaryValue	0/1	[01] On/Off	N.O. ($0=$ Open Relay; 1=Close Relay)
	1 Bit	1	$\mathrm{C}-\mathrm{W}$ -	DPT_BinaryValue	0/1	[01] On/Off	N.C. ($0=$ Close Relay; $1=$ Open Relay)
89	1 Bit	0	C TR - -	DPT_BinaryValue	0/1	[O1] On/Off (Status)	0=Output Off; 1=Output On
90	1 Bit	1	C--W-1	DPT_Enable	0/1	[01] Lock	0=Unlock; 1=Lock

91	1 Bit	1	C - - W -	DPT_Start	0/1	[O1] Timer	0=Switch Off; 1=Switch On
92	1 Bit	1	C--W-	DPT_Start	0/1	[01] Flashing	0=Stop; 1=Start
93	1 Bit	1	C--W -	DPT_Alarm	0/1	[01] Alarm	0=Normal; 1=Alarm
	1 Bit	1	C - - W -	DPT_Alarm	0/1	[01] Alarm	0=Alarm; 1=Normal
94	1 Bit	1	C - - W -	DPT_Trigger	0/1	[O1] Unfreeze Alarm	Alarm=0 + Unfreeze=1 => End Alarm
95	1 Bit	0	C T R - -	DPT_Trigger	0/1	[O1] Warning Time (Status)	0=Normal; 1=Warning
96	1 Bit	1	C - - W -	DPT_BinaryValue	0/1	[02] On/Off	N.O. (0=Open Relay; 1=Close Relay)
	1 Bit	1	C - - W -	DPT_BinaryValue	0/1	[02] On/Off	N.C. (0=Close Relay; 1= Open Relay)
97	1 Bit	0	C TR - -	DPT_BinaryValue	0/1	[02] On/Off (Status)	0=Output Off; 1=Output On
98	1 Bit	1	C--W -	DPT_Enable	0/1	[02] Lock	0=Unlock; 1=Lock
99	1 Bit	1	C--W -	DPT_Start	0/1	[02] Timer	0=Switch Off; 1=Switch On
100	1 Bit	1	C-- W -	DPT_Start	0/1	[02] Flashing	0=Stop; 1 = Start
101	1 Bit	1	C--W -	DPT_Alarm	0/1	[02] Alarm	0=Normal; 1=Alarm
	1 Bit	1	C--W -	DPT_Alarm	0/1	[02] Alarm	0=Alarm; 1=Normal
102	1 Bit	1	C - - W -	DPT_Trigger	0/1	[02] Unfreeze Alarm	Alarm=0 + Unfreeze=1 => End Alarm
103	1 Bit	0	C T R - -	DPT_Trigger	0/1	[02] Warning Time (Status)	0=Normal; 1=Warning
104	1 Byte	1	C--W -	DPT_SceneControl	0-63; 128-191	[Shutter] Scenes	0-63 (Execute 1-64); 128-191 (Save 1-64)
105	1 Bit	1	C--W -	DPT_UpDown	0/1	[CA] Move	0=Raise; 1=Lower
106	1 Bit	I	C - - W -	DPT_Step	0/1	[CA] Stop/Step	0=Stop/StepUp; 1=Stop/StepDown
	1 Bit	1	C - - W -	DPT_Trigger	0/1	[CA] Stop	0=Stop; 1 = Stop
107	1 Bit	1	C - - W -	DPT_Enable	0/1	[CA] Lock	0=Unlock; 1=Lock
108	1 Bit	0	C T R - -	DPT_Switch	0/1	[CA] Rising Relay (Status)	0=Opened; 1=Closed
109	1 Bit	0	C T R - -	DPT_Switch	0/1	[CA] Lowering Relay (Status)	0=Opened; 1=Closed
110	1 Byte	0	C TR - -	DPT_Scaling	0\% - 100\%	[CA] Shutter Position (Status)	0\%=Top; 100\% = Bottom
111	1 Byte	0	C T R - -	DPT_Scaling	0\% - 100\%	[CA] Slats Position (Status)	0\% = Open; 100\% = Closed
112	1 Byte	1	C - - W -	DPT_Scaling	0\% - 100\%	[CA] Shutter Positioning	0\%=Top; 100\% = Bottom
113	1 Byte	1	C--W -	DPT_Scaling	0\% - 100\%	[CA] Slats Positioning	0\% =Open; 100\% = Closed
114	1 Bit	1	C--W -	DPT_Alarm	0/1	[CA] Alarm	0=Alarm; 1=No Alarm
	1 Bit	1	C--W -	DPT_Alarm	0/1	[CA] Alarm	0=No Alarm; 1=Alarm
115	1 Bit	1	C - - W -	DPT_Alarm	0/1	[CA] Alarm 2	0=Alarm; 1=No Alarm
	1 Bit	1	C--W -	DPT_Alarm	0/1	[CA] Alarm 2	0=No Alarm; 1=Alarm
116	1 Bit	1	C--W -	DPT_Trigger	0/1	[CA] Unfreeze Alarm	Alarm=0 + Unfreeze=1 => End Alarm
117	1 Bit	1	C--W -	DPT_Scene_AB	0/1	[CA] Move (Reversed)	0=Lower; 1=Raise
118	1 Bit	1	C - - W -	DPT_Trigger	0/1	[CA] Direct Positioning	$0=$ No Action; 1=Go to Position
119	1 Bit	I	C--W -	DPT_Trigger	0/1	[CA] Direct Positioning 2	$0=$ No Action; 1=Go to Position
120	1 Bit	1	C--W -	DPT_Trigger	0/1	[CA] Direct Positioning (Save)	0=No Action; 1=Save Current Position
121	1 Bit	1	C-- W -	DPT_Trigger	0/1	[CA] Direct Positioning 2 (Save)	$0=$ No Action; 1=Save Current Position

122	1 Byte	1	C-- W -	DPT_SceneControl	0-63; 128-191	[Thermostat] Scene Input	Scene Value
123, 153, 183, 213	2 Byte	1	C-- W -	DPT_Value_Temp	-273.00-670760.00	[Tx] Temperature Source 1	External Sensor Temperature
124, 154, 184, 214	2 Byte	1	C--W -	DPT_Value_Temp	-273.00-670760.00	[Tx] Temperature Source 2	External Sensor Temperature
125, 155, 185, 215	2 Byte	0	C TR - -	DPT_Value_Temp	-273.00-670760.00	[Tx] Effective Temperature	Effective Control Temperature
126, 156, 186, 216	1 Byte	1	C-- W -	DPT_HVACMode	$\begin{aligned} & 1=\text { Comfort } \\ & 2=\text { Standby } \\ & 3=\text { Economy } \\ & 4=\text { Protection } \end{aligned}$	[Tx] Special Mode	1-byte HVAC Mode
127, 157, 187, 217	1 Bit	1	C-- W -	DPT_Trigger	0/1	[Tx] Special Mode: comfort	0 = Nothing; 1 = Trigger
	1 Bit	1	C-- W -	DPT_Switch	0/1	[Tx] Special Mode: comfort	0 = Off; 1 = On
128, 158, 188, 218	1 Bit	1	C - - W -	DPT_Trigger	0/1	[Tx] Special Mode: standby	$0=$ Nothing; 1 = Trigger
	1 Bit	1	C--W -	DPT_Switch	0/1	[Tx] Special Mode: standby	$0=$ Off; 1 = On
129, 159, 189, 219	1 Bit	1	C--W -	DPT_Trigger	0/1	[Tx] Special Mode: economy	$0=$ Nothing; 1 = Trigger
	1 Bit	1	C--W -	DPT_Switch	0/1	[Tx] Special Mode: economy	$0=$ Off; $1=0 \mathrm{n}$
130, 160, 190, 220	1 Bit	1	C--W -	DPT_Trigger	0/1	[Tx] Special Mode: protection	$0=$ Nothing; 1 = Trigger
	1 Bit	1	C--W -	DPT_Switch	0/1	[Tx] Special Mode: protection	$0=0 \mathrm{ff} ; 1$ = On
131, 161, 191, 221	1 Bit	1	C--w -	DPT_Window_Door	0/1	[$T x]$ Window Status (input)	0 = Closed; 1 = Open
132, 162, 192, 222	1 Bit	1	C--W -	DPT_Trigger	0/1	[Tx] Comfort Prolongation	0 = Nothing; 1 = Timed Comfort
133, 163, 193, 223	1 Byte	O	C TR - -	DPT_HVACMode	$\begin{aligned} & 1=\text { Comfort } \\ & 2=\text { Standby } \\ & 3=\text { Economy } \\ & \text { 4 }=\text { Protection } \end{aligned}$	[Tx] Special Mode Status	1-byte HVAC Mode
134, 164, 194, 224	2 Byte	1	C - W -	DPT_Value_Temp	-273.00-670760.00	[Tx] Setpoint	Thermostat Setpoint Input
	2 Byte	1	C-- W -	DPT_Value_Temp	-273.00-670760.00	[Tx] Basic Setpoint	Reference Setpoint
135, 165, 195, 225	1 Bit	1	C--W -	DPT_Step	0/1	[Tx] Setpoint Step	$0=-0.50 \mathrm{C} ; 1=+0.50 \mathrm{C}$
136, 166, 196, 226	2 Byte	1	C - - W -	DPT_Value_Tempd	$\begin{array}{r} -670760.00- \\ 670760.00 \\ \hline \end{array}$	[Tx] Setpoint Offset	Float Offset Value
137, 167, 197, 227	2 Byte	0	CTR -	DPT_Value_Temp	-273.00-670760.00	[Tx] Setpoint Status	Current Setpoint
138, 168, 198, 228	2 Byte	0	CTR -	DPT_Value_Temp	-273.00-670760.00	[Tx] Basic Setpoint Status	Current Basic Setpoint
139, 169, 199, 229	2 Byte	0	CTR - -	DPT_Value_Tempd	$\begin{gathered} -670760.00- \\ 670760.00 \end{gathered}$	[Tx] Setpoint Offset Status	Current Setpoint Offset
140, 170, 200, 230	1 Bit	1	C--W -	DPT_Reset	0/1	[Tx] Setpoint Reset	Reset Setpoint to Default
	1 Bit	1	C-- W -	DPT_Reset	0/1	[Tx] Offset Reset	Reset offset
141, 171, 201, 231	1 Bit	1	C - - W -	DPT_Heat_Cool	0/1	[TX] Mode	$0=$ Cool; 1 = Heat
142, 172, 202, 232	1 Bit	0	C TR - -	DPT_Heat_Cool	0/1	[Tx] Mode Status	$0=$ Cool; 1 = Heat
143, 173, 203, 233	1 Bit	1	C-- W -	DPT_Switch	0/1	[Tx] On/Off	0 = Off; 1 = On
144, 174, 204, 234	1 Bit	0	C TR - -	DPT_Switch	0/1	[Tx] On/Off Status	$0=0$ ff; 1 = On
145, 175, 205, 235	1 Byte	0	CTR--	DPT_Scaling	0\% - 100\%	[Tx] Control Variable (Cool)	PI Control (Continuous)

146, 176, 206, 236	1 Byte	0	C T R - -	DPT_Scaling	0\% - 100\%	[Tx] Control Variable (Heat)	PI Control (Continuous)
147, 177, 207, 237	1 Bit	0	C T R - -	DPT_Switch	0/1	[Tx] Control Variable (Cool)	2-Point Control
	1 Bit	0	C T R - -	DPT_Switch	0/1	[Tx] Control Variable (Cool)	PI Control (PWM)
148, 178, 208, 238	1 Bit	0	C T R - -	DPT_Switch	0/1	[Tx] Control Variable (Heat)	2-Point Control
	1 Bit	0	C T R - -	DPT_Switch	0/1	[Tx] Control Variable (Heat)	PI Control (PWM)
149, 179, 209, 239	1 Bit	0	C T R - -	DPT_Switch	0/1	[Tx] Additional Cool	Temp >= (Setpoint+Band) => "1"
150, 180, 210, 240	1 Bit	0	C TR - -	DPT_Switch	0/1	[Tx] Additional Heat	Temp <= (Setpoint-Band) => "1"
151, 181, 211, 241	1 Bit	0	C T R - -	DPT_Switch	0/1	[Tx] PI State (Cool)	$0=\mathrm{PI}$ signal 0\%; $1=\mathrm{PI}$ signal greater than 0\%
152, 182, 212, 242	1 Bit	0	C TR - -	DPT_Switch	0/1	[Tx] PI State (Heat)	$0=\mathrm{PI}$ signal 0\%; $1=\mathrm{PI}$ signal greater than 0%
243	1 Bit	I	C--W -	DPT_Trigger	0/1	[ML] Trigger	Trigger the Master Light Function
244	1 Bit	1	C - - W -	DPT_Switch	0/1	[ML] Status Object 1	Binary Status
245	1 Bit	1	C-- W -	DPT_Switch	0/1	[ML] Status Object 2	Binary Status
246	1 Bit	1	C--W -	DPT_Switch	0/1	[ML] Status Object 3	Binary Status
247	1 Bit	1	C--W -	DPT_Switch	0/1	[ML] Status Object 4	Binary Status
248	1 Bit	1	C - - W -	DPT_Switch	0/1	[ML] Status Object 5	Binary Status
249	1 Bit	1	C - - W -	DPT_Switch	0/1	[ML] Status Object 6	Binary Status
250	1 Bit	1	C--W -	DPT_Switch	0/1	[ML] Status Object 7	Binary Status
251	1 Bit	I	C-- W -	DPT_Switch	0/1	[ML] Status Object 8	Binary Status
252	1 Bit	1	C - - W -	DPT_Switch	0/1	[ML] Status Object 9	Binary Status
253	1 Bit	1	C - - W -	DPT_Switch	0/1	[ML] Status Object 10	Binary Status
254	1 Bit	1	C - - W -	DPT_Switch	0/1	[ML] Status Object 11	Binary Status
255	1 Bit	I	C - - W -	DPT_Switch	0/1	[ML] Status Object 12	Binary Status
256	1 Bit	0	C T R - -	DPT_Switch	0/1	[ML] General Status	Binary Status
257	1 Bit		C T - - -	DPT_Switch	0/1	[ML] General Switch Off: Binary Object	Switch Off Sending
258	1 Byte		C T - - -	DPT_Scaling	0\% - 100\%	[ML] General Switch Off: Scaling	0-100\%
259	1 Byte		C T - - -	DPT_SceneControl	0-63; 128-191	[ML] General Switch Off: Scene	Scene Sending
260	1 Byte		C T - - -	DPT_HVACMode	$\begin{aligned} & 1=\text { Comfort } \\ & 2=\text { Standby } \\ & 3=\text { Economy } \\ & 4=\text { Protection } \end{aligned}$	[ML] General Switch Off: HVAC mode	Auto, Comfort, Standby, Economy, Building Protection
261	1 Bit		C T - - -	DPT_Switch	0/1	[ML] Courtesy Switch On: Binary Object	Switch On Sending
262	1 Byte		C T - - -	DPT_Scaling	0\% - 100\%	[ML] Courtesy Switch On: Scaling	0-100\%
263	1 Byte		C T - - -	DPT_SceneControl	0-63; 128-191	[ML] Courtesy Switch On: Scene	Scene Sending
264	1 Byte		C T - - -	DPT_HVACMode	$\begin{gathered} 1=\text { Comfort } \\ 2=\text { Standby } \\ 3=\text { Economy } \\ 4=\text { Protection } \end{gathered}$	[ML] Courtesy Switch On: HVAC mode	Auto, Comfort, Standby, Economy, Building Protection
265, 269, 273, 277	2 Byte	0	C T R - -	DPT_Value_Temp	-273.00-670760.00	[Ix] Current Temperature	Temperature sensor value

266, 270, 274, 278	1 Bit	0	C T R - -	DPT_Alarm	0/1	[Ix] Overcooling	0 = No Alarm; 1 = Alarm
267, 271, 275, 279	1 Bit	0	C T R - -	DPT_Alarm	0/1	[Ix] Overheating	0 = No Alarm; 1 = Alarm
268, 272, 276, 280	1 Bit	0	C T R - -	DPT_Alarm	0/1	[Ix] Probe Error	0 = No Alarm; 1 = Alarm
281, 287, 293, 299	1 Bit	1	C - - W -	DPT_Switch	0/1	[Ix] Input Lock	1 = Locked; 0 = Unlocked
282, 288, 294, 300	1 Bit		C T - - -	DPT_Switch	0/1	[Ix] [Short Press] 0	Sending of 0
	1 Bit		C T - - -	DPT_Switch	0/1	[Ix] [Short Press] 1	Sending of 1
	1 Bit	1	C T - W -	DPT_Switch	0/1	[Ix] [Short Press] 0/1 Switching	Switching 0/1
	1 Bit		C T - - -	DPT_UpDown	0/1	[Ix] [Short Press] Move Up Shutter	Sending of 0 (Up)
	1 Bit		C T - - -	DPT_UpDown	0/1	[Ix] [Short Press] Move Down Shutter	Sending of 1 (Down)
	1 Bit		C T - - -	DPT_UpDown	0/1	[Ix] [Short Press] Move Up/Down Shutter	Switching 0/1 (Up/Down)
	1 Bit		C T - - -	DPT_Step	0/1	[Ix] [Short Press] Stop/Step Up Shutter	Sending of 0 (Stop/Step Up)
	1 Bit		C T - - -	DPT_Step	0/1	[Ix] [Short Press] Stop/Step Down Shutter	Sending of 1 (Stop/Step Down)
	1 Bit		C T - - -	DPT_Step	0/1	[Ix] [Short Press] Stop/Step Shutter (Switched)	Switching of 0/1 (Stop/Step Up/Down)
	4 Bit		C T - -	DPT_Control_Dimming	0×0 (Stop) 0x1 (Dec.by 100\%) 0x2 (Dec.by 50\%) 0x3 (Dec.by 25\%) 0x4 (Dec.by 12\%) 0x5 (Dec.by 6\%) 0x6 (Dec.by 3\%) 0x7 (Dec.by 1\%) 0x8 (Stop) 0x9 (Inc.by 100\%) 0xA (Inc.by 50\%) 0xB (Inc.by 25\%) 0xC (Inc.by 12\%) 0xD (Inc.by 6\%) 0xE (Inc.by 3\%) 0xF (Inc.by 1\%)	[Ix] [Short Press] Brighter	Increase Brightness
	4 Bit		C T - -	DPT_Control_Dimming	0×0 (Stop) 0×1 (Dec.by 100\%) \ldots 0×8 (Stop) \ldots $0 \times F$ (Inc.by 1\%)	[Ix] [Short Press] Darker	Decrease Brightness
	4 Bit		C T - -	DPT_Control_Dimming	$\begin{gathered} 0 \times 0 \text { (Stop) } \\ 0 \times 1 \text { (Dec.by 100\%) } \\ \ldots \\ 0 \times 8 \text { (Stop) } \\ \ldots \\ 0 \times F \text { (Inc.by 1\%) } \\ \hline \end{gathered}$	[Ix] [Short Press] Brighter/Darker	Switch Bright/Dark
	1 Bit		C T - -	DPT_Switch	0/1	[Ix] [Short Press] Dimmer ON	Sending of 1 (ON)

	1 Bit		C T - - -	DPT_Switch	0/1	[Ix] [Short Press] Dimmer OFF	Sending of 0 (OFF)
	1 Bit	1	C T - W -	DPT_Switch	0/1	[Ix] [Short Press] Dimmer ON/OFF	Switching 0/1
	1 Byte		C T - - -	DPT_SceneControl	0-63; 128-191	[Ix] [Short Press] Run Scene	Sending of 0-63
	1 Byte		C T - - -	DPT_SceneControl	0-63; 128-191	[Ix] [Short Press] Save Scene	Sending of 128-191
	1 Bit	1/0	C T R W	DPT_Switch	0/1	[IX] [Switch/Sensor] Edge	Sending of 0 or 1
	1 Byte		C T - - -	DPT_Value_1_Ucount	0-255	[Ix] [Short Press] Constant Value (Integer)	0-255
	1 Byte		C T - - -	DPT_Scaling	0\% - 100\%	[Ix] [Short Press] Constant Value (Percentage)	0\% - 100\%
	2 Byte		C T - - -	DPT_Value_2_Ucount	0-65535	[Ix] [Short Press] Constant Value (Integer)	0-65535
	2 Byte		C T - - -	9.xxx	$\begin{gathered} \hline-671088.64- \\ 670760.96 \\ \hline \end{gathered}$	[IX] [Short Press] Constant Value (Float)	Float value
283, 289, 295, 301	1 Byte	1	C - W -	DPT_Scaling	0\% - 100\%	[Ix] [Short Press] Shutter Status (Input)	0\% = Top; 100\% = Bottom
283, 289, 295, 301	1 Byte	1	C - - W -	DPT_Scaling	0\% - 100\%	[Ix] [Short Press] Dimming Status (Input)	0\% - 100\%
284, 290, 296, 302	1 Bit		C T - - -	DPT_Switch	0/1	[Ix] [Long Press] 0	Sending of 0
	1 Bit		C T - - -	DPT_Switch	0/1	[Ix] [Long Press] 1	Sending of 1
	1 Bit	1	C T - W -	DPT_Switch	0/1	[Ix] [Long Press] 0/1 Switching	Switching 0/1
	1 Bit		C T - - -	DPT_UpDown	0/1	[Ix] [Long Press] Move Up Shutter	Sending of 0 (Up)
	1 Bit		C T - - -	DPT_UpDown	0/1	[Ix] [Long Press] Move Down Shutter	Sending of 1 (Down)
	1 Bit		C T - - -	DPT_UpDown	0/1	[Ix] [Long Press] Move Up/Down Shutter	Switching 0/1 (Up/Down)
	1 Bit		C T - - -	DPT_Step	0/1	[Ix] [Long Press] Stop/Step Up Shutter	Sending of 0 (Stop/Step Up)
	1 Bit		C T - - -	DPT_Step	0/1	[Ix] [Long Press] Stop/Step Down Shutter	Sending of 1 (Stop/Step Down)
	1 Bit		C T - - -	DPT_Step	0/1	[Ix] [Long Press] Stop/Step Shutter (Switched)	Switching of 0/1 (Stop/Step Up/Down)
	4 Bit		C T - -	DPT_Control_Dimming	0×0 (Stop) 0×1 (Dec.by 100\%) \ldots 0×8 (Stop) \ldots $0 \times F$ (Inc.by 1\%)	[Ix] [Long Press] Brighter	Long Pr. -> Brighter; Release -> Stop
	4 Bit		C T - -	DPT_Control_Dimming	0×0 (Stop) 0×1 (Dec.by 100\%) \ldots 0×8 (Stop) \ldots $0 \times F$ (Inc.by 1\%)	[Ix] [Long Press] Darker	Long Pr. -> Darker; Release -> Stop
	4 Bit		C T - -	DPT_Control_Dimming	0×0 (Stop) 0×1 (Dec.by 100\%) \ldots 0×8 (Stop) \ldots $0 \times F$ (Inc.by 1\%)	[Ix] [Long Press] Brighter/Darker	Long Pr. -> Brighter/Darker; Release -> Stop

	1 Bit		C T - - -	DPT_Switch	0/1	[Ix] [Long Press] Dimmer ON	Sending of 1 (ON)
	1 Bit		C T - - -	DPT_Switch	0/1	[Ix] [Long Press] Dimmer OFF	Sending of 0 (OFF)
	1 Bit	1	C T - W -	DPT_Switch	0/1	[Ix] [Long Press] Dimmer ON/OFF	Switching 0/1
	1 Byte		C T - - -	DPT_SceneControl	0-63; 128-191	[Ix] [Long Press] Run Scene	Sending of 0-63
	1 Byte		C T - - -	DPT_SceneControl	0-63; 128-191	[Ix] [Long Press] Save Scene	Sending of 128-191
	1 Bit	0	C T R - -	DPT_Alarm	0/1	$[I x]$ [Switch/Sensor] Alarm: Breakdown or sabotage	1 = Alarm; $0=$ No Alarm
	2 Byte		C T - -	9.xxx	$\begin{gathered} \hline-671088.64- \\ 670760.96 \\ \hline \end{gathered}$	[Ix] [Long Press] Constant Value (Float)	Float value
	2 Byte		C T - - -	DPT_Value_2_Ucount	0-65535	[Ix] [Long Press] Constant Value (Integer)	0-65535
	1 Byte		C T - - -	DPT_Scaling	0\% - 100\%	[Ix] [Long Press] Constant Value (Percentage)	0\% - 100\%
	1 Byte		C T - - -	DPT_Value_1_Ucount	0-255	[Ix] [Long Press] Constant Value (Integer)	0-255
285, 291, 297, 303	1 Bit		C T - -	DPT_Trigger	0/1	[Ix] [Long Press/Release] Stop Shutter	Release -> Stop Shutter
286, 292, 298, 304	1 Byte	1	C - - W -	DPT_Scaling	0\% - 100\%	[Ix] [Long Press] Dimming Status (Input)	0\% - 100\%
	1 Byte	1	C - - W -	DPT_Scaling	0\% - 100\%	[Ix] [Long Press] Shutter Status (Input)	0\% = Top; 100\% = Bottom
305	1 Byte	1	C - - W -	DPT_SceneControl	0-63; 128-191	[Motion Detector] Scene Input	Scene Value
306	1 Byte		C T - -	DPT_SceneControl	0-63; 128-191	[Motion Detector] Scene Output	Scene Value
307, 336, 265, 294	1 Byte	0	C T R - -	DPT_Scaling	0\% - 100\%	[Ix] Luminosity	0-100\%
308, 337, 366, 395	1 Bit	0	C TR - -	DPT_Alarm	0/1	[Ix] Open Circuit Error	0 = No Error; 1 = Open Circuit Error
309, 338, 367, 396	1 Bit	0	C T R - -	DPT_Alarm	0/1	[Ix] Short Circuit Error	0 = No Error; 1 = Short Circuit Error
310, 339, 368, 397	1 Byte	0	C T R - -	DPT_Scaling	0\% - 100\%	[Ix] Presence State (Scaling)	0-100\%
311, 340, 369, 398	1 Byte	0	C T R - -	DPT_HVACMode	$\begin{gathered} 1=\text { Comfort } \\ 2=\text { Standby } \\ 3=\text { Economy } \\ 4=\text { Protection } \end{gathered}$	[Ix] Presence State (HVAC)	Auto, Comfort, Standby, Economy, Building Protection
312, 341, 370, 399	1 Bit	0	C T R - -	DPT_Occupancy	0/1	[Ix] Presence State (Binary)	Binary Value
	1 Bit	0	C T R - -	DPT_Trigger	0/1	[Ix] Presence: Slave Output	1 = Motion Detected
313, 342, 371, 400	1 Bit	I	C - - W -	DPT_Window_Door	0/1	[Ix] Presence Trigger	Binary Value to Trigger the Presence Detection
314, 343, 372, 401	1 Bit	1	C - - W -	DPT_Trigger	0/1	[Ix] Presence: Slave Input	0 = Nothing; 1 = Detection from slave device
315, 344, 373, 402	2 Byte	1	C-- W -	DPT_TimePeriodSec	0-65535	[Ix] Presence: Waiting Time	0-65535 s.
316, 345, 374, 403	2 Byte	1	C--W -	DPT_TimePeriodSec	0-65535	[Ix] Presence: Listening Time	1-65535 s.
317, 346, 375, 404	1 Bit	1	C - - W -	DPT_Switch	0/1	[Ix] Presence: Enable	According to parameters
318, 347, 376, 405	1 Bit	1	C-- W -	DPT_Switch	0/1	[Ix] Presence: Day/Night	According to parameters
319, 348, 377, 406	1 Bit	0	C T R - -	DPT_Occupancy	0/1	[Ix] Presence: Occupancy State	0 = Not Occupied; 1 = Occupied
320, 349, 378, 407	1 Bit	1	C - - W -	DPT_Trigger	0/1	[Ix] External Motion Detection	$0=$ Nothing; $1=$ Motion detected by an external sensor
321, 350, 379, 408	1 Byte	0	C T R - -	DPT_Scaling	0\% - 100\%	[Ix] [C1] Detection State (Scaling)	0-100\%
322, 351, 380, 409	1 Byte	0	C TR - -	DPT_HVACMode	$1=$ Comfort	[Ix] [C1] Detection State (HVAC)	Auto, Comfort, Standby, Economy, Building

					$\begin{gathered} 2=\text { Standby } \\ 3=\text { Economy } \\ 4=\text { Protection } \end{gathered}$		Protection	
323, 352, 381, 410	1 Bit	0	C T R - -	DPT_Switch	0/1	[Ix] [C1] Detection State (Binary)	Binary Value	
324, 353, 382, 411	1 Bit	1	C - - W -	DPT_Switch	0/1	[Ix] [C1] Enable Channel	According to parameters	
325, 354, 383, 412	1 Bit	1	C - - W -	DPT_Switch	0/1	[Ix] [C1] Force State	0 = No Detection; 1 = Detection	
326, 355, 384, 413	1 Byte	0	C T R - -	DPT_Scaling	0\% - 100\%	[Ix] [C2] Detection State (Scaling)	0-100\%	
327, 356, 385, 414	1 Byte	0	C T R - -	DPT_HVACMode	$\begin{gathered} \hline 1=\text { Comfort } \\ 2=\text { Standby } \\ 3=\text { Economy } \\ 4=\text { Protection } \end{gathered}$	[Ix] [C2] Detection State (HVAC)	Auto, Comfort, Standby, Economy, Protection	Building
328, 357, 386, 415	1 Bit	0	C T R - -	DPT_Switch	0/1	[Ix] [C2] Detection State (Binary)	Binary Value	
329, 358, 387, 416	1 Bit	1	C - - W -	DPT_Switch	0/1	[Ix] [C2] Enable Channel	According to parameters	
330, 359, 388, 417	1 Bit	I	C - - W -	DPT_Switch	0/1	[Ix] [C2] Force State	0 = No Detection; 1 = Detection	
331, 360, 389, 418	1 Byte	0	C T R - -	DPT_Scaling	0\% - 100\%	[Ix] [C3] Detection State (Scaling)	0-100\%	
332, 361, 390, 419	1 Byte	0	C T R - -	DPT_HVACMode	$\begin{gathered} \hline 1=\text { Comfort } \\ 2=\text { Standby } \\ 3=\text { Economy } \\ 4=\text { Protection } \end{gathered}$	[Ix] [C3] Detection State (HVAC)	Auto, Comfort, Standby, Economy, Protection	Building
333, 362, 391, 420	1 Bit	0	C T R - -	DPT_Switch	0/1	[Ix] [C3] Detection State (Binary)	Binary Value	
334, 363, 392, 421	1 Bit	1	$\mathrm{C}=-\mathrm{W}-$	DPT_Switch	0/1	[Ix] [C3] Enable Channel	According to parameters	
335, 364, 393, 422	1 Bit	1	C - - W -	DPT_Switch	0/1	[Ix] [C3] Force State	0 = No Detection; 1 = Detection	

Join and send us your inquiries about Zennio devices:

 http://support.zennio.comZennio Avance y Tecnología S.L.
C/ Río Jarama, 132. Nave P-8.11
45007 Toledo (Spain).
Tel. +34 925232002.

