

KLIC-DI VRV

Interfaz KNX Volumen de Refrigerante Variable

ZN1CL-KLIC-DI

ÍNDICE

Actualizaciones del documento				
1. Introd	. Introducción4			
1.1.	KLIC	-DI	4	
1.2.	Insta	alación	5	
2. Config	guraci	ión	8	
2.1.	Cont	trol básico	8	
2.2.	Fund	cionalidades avanzadas	9	
2.3.	Cont	trol mediante mando IR	12	
3. Paran	netriz	ación ETS	13	
3.1.	Conf	figuración por defecto	13	
3.2.	Pant	talla general	14	
3.2.	.1.	Escenas	15	
3.2.	.2.	Limitación de temperaturas	16	
3.2.	.3.	Apagado automático	17	
3.2.	.4.	Gestión de errores	18	
3.2.	.5.	Configuración inicial	18	
3.2.	.6.	Tipo de control	19	
3.2.	.7.	Lamas	21	
3.2.	.8.	Tiempo de envío de la temperatura ambiente	23	
3.3.	Pant	talla Modo	23	
3.4.	3.4. Pantalla Viento			
Anexo I.	Anexo I. Objetos de comunicación			
Anexo II.	Anexo II. Correspondencia con los códigos de error de las máquinas de A/A			

ACTUALIZACIONES DEL DOCUMENTO

Versión	Modificaciones	Página(s)	
1.4_b	Revisión de textos y estilos del manual -		
	Cambios desde la versión 1.3 del programa de aplicación:		
	Mejora en las comunicaciones durante la etapa de inicialización.	-	
	Revisión de la explicación sobre la activación de la limitación de		
	temperatura.	17	
1.4 a	Aclaración adicional sobre el concepto de "maestro de modo".	20	
_	Nuevo apartado 3.2.8 <u>Tiempo de envío de la temperatura ambiente</u> , para	22	
	mayor detalle sobre esta funcionalidad.	23	
	Explicación sobre el carácter no cíclico del control por pasos.	25	
	Revisada y actualizada la tabla de correspondencias entre los códigos de	20	
	error enviados al bus y los códigos de error específicos de la máquina.	28	

1. INTRODUCCIÓN

1.1. KLIC-DI

KLIC-DI es un interfaz que permite la comunicación bidireccional entre un sistema de control domótico KNX y los sistemas de aire acondicionado de **gama comercial e industrial** mediante dos posibles programas de aplicación:

- KLIC-DI VRV, enfocado a sistemas de A/A industriales con volumen de refrigerante variable.
- KLIC-DI SKY, enfocado a otros sistemas de A/A de gama comercial.

Gracias a esta **bidireccionalidad**, la máquina de aire acondicionado puede ser controlada de forma equivalente a como se hace mediante sus propios controles al tiempo que, a su vez, el estado real de la máquina es comprobado y enviado al bus KNX para su seguimiento.

Figura 1.1. Interfaz KLIC-DI

En el caso de utilizarse un mando cableado en el mismo bus de comunicación que la máquina, KLIC-DI se comunicará de forma bidireccional con él, actuando uno como control maestro y el otro como control esclavo. Es importante comprobar que se encuentran configurados con distinto tipo de control para el correcto funcionamiento de la instalación. De esta manera, el dispositivo con control esclavo actualizará sus estados en caso de que el maestro lo ordene y le notificará sus cambios de estado en caso de que varíen en el propio control esclavo.

ZENNIO AVANCE Y TECNOLOGÍA

KLIC-DI presenta una serie de características, entre las que destacan las siguientes:

Comunicación bidireccional con unidades de aire acondicionado de gama industrial y comercial.

Proporciona control sobre las funcionalidades básicas de la máquina, así como control e identificación de errores, tanto de los códigos propios de la unidad de A/A como los posibles errores que se puedan producir durante la comunicación.

Indicador LED que aporta información sobre el flujo de tráfico bidireccional.

1.2. INSTALACIÓN

En la Figura 1.2 se muestra el esquema de elementos del KLIC-DI.

Figura 1.2. KLIC-DI. Esquema de elementos

El interfaz KLIC-DI se conecta al bus KNX a través de los terminales de conexión incorporados (1). Por otra parte, se conecta a la placa PCB de la máquina de aire acondicionado (conectores P1/P2) mediante un cable de 2 hilos. Ver figura 1.3.

<u>Nota:</u> Si se usa el mando cableado de la máquina de A/A, hay que asegurarse de que se encuentra en modo esclavo, ya que KLIC-DI actuará como mando maestro en caso de estar configurado como tal. Y, viceversa, hay que asegurarse de que KLIC-DI está en modo esclavo cuando el mando cableado está en posición maestro.

Una vez que el dispositivo es alimentado con tensión a través del bus, se pueden descargar la dirección física y el programa aplicación KLIC-DI para sistemas de volumen de refrigerante variable.

Este dispositivo no necesita de fuente de alimentación externa, pues se alimenta a través del bus KNX.

A continuación se presenta una descripción de los elementos principales del interfaz:

Botón de programación (3): una pulsación corta sobre este botón sitúa al dispositivo en modo programación y el LED asociado (2) se ilumina en rojo. Si este botón se mantiene pulsado en el momento en que se aplica la tensión al bus, KLIC-DI entra en modo seguro.

Indicador LED (2): señal luminosa que indica el estado del aparato. Además de iluminarse en rojo cuando el dispositivo se encuentra en modo programación, este LED podrá iluminarse en azul y en verde, indicando el estado de la comunicación entre el bus KNX y la unidad de A/A, algo muy útil durante el proceso de instalación. A continuación se explica el significado de cada color del LED:

> Rojo fijo: KLIC-DI está en modo programación.

Rojo intermitente: KLIC-DI está en modo seguro (parpadeo en rojo cada 0,5 segundos).

> **Verde fijo:** indica que no se ha proporcionado alimentación externa a KLIC-DI (no está conectado a la unidad de A/A o ésta se encuentra desconectada de la red eléctrica).

Verde intermitente: indica una transmisión o flujo de datos desde la máquina hacia KLIC-DI.

> **Azul intermitente:** indica una transmisión o flujo de datos desde KLIC-DI hacia la máquina de A/A.

Cable de comunicación: cable de dos hilos que se conecta, por un lado, al KLIC-DI (mediante la clema de conexión con tornillos suministrada (4)) y, por otro, directamente a los conectores P1/P2 que se pueden encontrar bien en las placa PCB de la unidad interio or bien en el mando cableado de control de la unidad de A/A.

Figura 1.3. Conexión KLIC-DI a bus P1/P2

Figura 1.4. Conexión KLIC-DI a bus P1/P2 con mando cableado de la unidad A/A

Leyenda de los Diagramas de conexión				
Α	KLIC-DI			
В	Mando Cableado			
С	Máquina de A/A			
P1-P2	Base de conexión de la unidad A/A			
1-2	Clema de conexión Zennio			
*	El mando cableado debe trabajar en el modo contrario al que esté configurado el KLIC-DI			

Para obtener una información más detallada acerca de las características técnicas del interfaz KLIC-DI, así como información de seguridad e instalación del mismo, por favor consultar su **Hoja Técnica**, incluida en el embalaje original del dispositivo y que se encuentra también disponible en la página web <u>http://www.zennio.com</u>.

Se recomienda también consultar la **Nota de instalación** de KLIC-DI, disponible en la misma dirección web.

2. CONFIGURACIÓN

2.1. CONTROL BÁSICO

Con KLIC-DI se puede realizar una monitorización y control de la máquina de aire acondicionado de manera similar a como se realiza desde el mando cableado de la máquina.

A través del bus KNX se pueden controlar las siguientes funcionalidades básicas del sistema de aire acondicionado:

Encendido/Apagado de la máquina de aire acondicionado.

Temperatura de consigna de la máquina. Rango entre 16 y 32 °C.

Modo de funcionamiento: Auto, Calentar, Seco, Ventilación y Enfriar.

Velocidad de Ventilación: Configuración de 2 ó 3 niveles de velocidad. (Consultar niveles disponibles en la unidad de de A/A).

Lamas (si hubiera): se puede configurar su estado: en movimiento o en una posición fija (hasta 5 posiciones diferentes).

Estas funcionalidades tienen asociado un estado en la máquina, que es enviado periódicamente al KLIC-DI. Cuando KLIC-DI recibe un estado diferente al anterior desde la máquina, actualiza el estado del objeto correspondiente en el bus KNX.

2.2. FUNCIONALIDADES AVANZADAS

Además del control básico de la máquina de aire acondicionado, KLIC-DI ofrece otras funcionalidades avanzadas que le dan un valor añadido respecto al control que ofrece el mando cableado:

9 Configuración de escenas: permite configurar una serie de parámetros básicos y su envío sincronizado a la unidad de A/A, de modo que se genere un ambiente de clima determinado en la estancia. Se pueden configurar hasta 4 escenas distintas.

Apagado automático: permite apagar la máquina de forma temporal, tras un retardo 9 establecido por parámetro, si se produce un cambio de estado del objeto de comunicación que lleva asociado. Un ejemplo de esta funcionalidad podría ser la utilización de un sensor de ventana que, asociado al apagado temporal del KLIC-DI, permita apagar la máquina si la ventana se abre.

Limitación de temperaturas: el rango de temperatura de consigna por defecto para las máquinas de volumen de refrigerante variable está entre 16 y 32°C. Esta funcionalidad del dispositivo KLIC permite configurar otros rangos de temperatura personalizados para los modos Frío y Calor mediante ETS, siempre y cuando estos valores se mantengan en dicho rango. En caso de que desde el bus KNX se reciba una orden de temperatura con un valor que se encuentre fuera de los límites configurados, el valor de temperatura que se enviará a la máquina será el correspondiente valor límite.

Temperatura Interior y Temperatura de Referencia: las máquinas de volumen de 5 refrigerante variable disponen de varios sensores térmicos para medir la temperatura de la máquina en diferentes ubicaciones internas.

Una de estas temperaturas se denominará Temperatura Interior y se utilizará junto a la Temperatura de Referencia para controlar los modos Auto-Frío y Auto-Calor de la máquina de aire acondicionado.

La Temperatura de Referencia es la temperatura ambiente en la sala que se desea climatizar. Es necesario comunicar este valor a la máquina a través del objeto de comunicación correspondiente; se recomienda enlazarlo con un sensor de temperatura que lo actualice de manera periódica.

Los modos Auto-Calor y Auto-Frío pueden ser controlados de tres maneras diferentes por la máquina de A/A: ZENNIO AVANCE Y TECNOLOGÍA

- 1. La máquina recibe la *Temperatura de Referencia* y, en base a una histéresis preconfigurada, establece el modo automático correspondiente.
- 2. La máquina recibe la *Temperatura Interior* y, en base a una histéresis preconfigurada, establece el modo automático correspondiente
- 3. La máquina establece el modo automático según la media de la *Temperatura de Referencia* y la *Temperatura Interior*.

El valor de temperatura que la máquina utiliza para conmutar entre los Modos Auto-Frío y Auto-Calor depende de la configuración establecida en la instalación de la propia máquina de A/A. Este valor en cualquiera de los casos anteriores se compara con la temperatura de consigna de manera que si la temperatura de consigna es mayor se establece el modo Auto-Calor y si la temperatura de consigna es menor, se establece el modo Auto-Frío.

<u>Tener en cuenta</u>: Se recomienda encarecidamente enlazar la Temperatura de Referencia con un sensor de temperatura que haga un seguimiento periódico de la temperatura de la sala, ya que es posible que no se sepa cómo está preconfigurada la máquina, lo que podría dar lugar a un mal funcionamiento del modo Automático. La Temperatura de Referencia tiene por defecto un valor igual a 25°C.

Gestión de errores: esta funcionalidad permite el envío al bus de mensajes para indicar la aparición de errores, ya sean errores internos de la comunicación entre KLIC-DI y la máquina de A/A o errores externos propios de la máquina de aire acondicionado.

Además de indicar si se ha producido un error también se puede configurar el envío del tipo de error. Si se trata de errores internos, el código numérico asociado al tipo de error aparece reflejado en la Tabla 2.1.

Número de Error	Tipo de Error Interno
1	Problemas en la recepción de datos (velocidad
I	de recepción, paridad, etc.)
2	Tiempo de espera en la comunicación agotado
	(Time Out)
3	Checksum incorrecto
4	Respuesta incorrecta por parte de la máquina
Tab	la 2.1. Tipos de errores internos

ZENNIO AVANCE Y TECNOLOGÍA

En cuanto al código numérico asociado al tipo de errores externos, se deberá consultar el manual específico de la máquina de aire acondicionado que se haya instalado, conforme al <u>Anexo II. Correspondencia con los códigos de error de las máquinas de A/A</u>.

Configuración de estados iniciales: esta funcionalidad permite definir un valor inicial para los estados de la unidad de A/A tras la instalación del sistema o tras recuperarse de una caída de tensión. Los estados que pueden configurarse son: encendido/apagado, temperatura, modo, velocidad del viento y movimiento de lamas de la máquina.

Se da la posibilidad de enviar estos valores iniciales al bus KNX tras el arranque.

Tipo de control: es importante tener en cuenta el tipo de control, maestro o esclavo, con el que se configura KLIC-DI.

El control maestro en la instalación será aquel que se comunique directamente con la máquina y retransmita las instrucciones al mando esclavo, en caso de existir. Sin embargo se podrá configurar desde ambos mandos cualquier funcionalidad de la máquina.

Esta característica permite incluir en la instalación tanto el KLC-DI como el mando cableado y elegir la configuración maestro/esclavo deseada, siempre y cuando no se configuren los dos mandos con el mismo tipo de control (no puede haber dos maestros ni dos esclavos).

En el caso de tener dos mandos funcionando en modo maestro, la pantalla del mando cableado mostraría el error "88" y enviaría el error "U5".

Nota: Al conmutar un mando cableado entre modos esclavo y maestro es necesario retirar la tensión del mando y volver a conectarla para que el mando reinicie en el modo adecuado.

Importante: El mando cableado **BRC1E51A7** sólo puede actuar como mando maestro. En caso de utilizar este modelo de mando cableado en la instalación, es necesario configurar el KLIC-DI como mando esclavo.

2.3. CONTROL MEDIANTE MANDO IR

KLIC-DI incorpora en su diseño un receptor de infrarrojos, situado en la zona del indicador LED. Esta funcionalidad facilita el proceso de instalación del dispositivo, ya que permite comprobar, mediante el mando de infrarrojos Zennio (ver Figura 2.1), que el control sobre las máquinas de aire acondicionado se realiza de forma correcta.

<u>Nota:</u> Para poder enviar las órdenes pertinentes desde el mando de infrarrojos al interfaz, es necesario que el indicador LED esté encendido (en rojo).

Las acciones correspondientes a cada uno de los botones del mando IR se detallan en la Figura 2.1.

Apagado/Encendido <===	OFF ON Viento Viento min. Máx. Velocidad Viento
	Calor Frío Vent. Seco Modos
	17ºC 18ºC 19ºC 20ºC
	21ºC 22ºC 23ºC 2 24ºC
Temperaturas [17-32ºC] <──	25ºC3 26ºC 27ºC 4 28ºC
	29ºC 5 30ºC 31ºC 5 32ºC
	• Z

Figura 2.1. Zonas de pulsación en mando por infrarrojos

3. PARAMETRIZACIÓN ETS

Para comenzar con la parametrización del dispositivo es necesario, una vez abierto el programa ETS, importar la base de datos del producto (programa de aplicación **KLIC-DI-VRV**).

A continuación se añade el aparato al proyecto donde se desea incluir el dispositivo y con el botón derecho del ratón sobre el aparato, se selecciona "Editar Parámetros" para comenzar su configuración.

En los siguientes apartados se realiza una explicación detallada sobre la parametrización de las distintas funcionalidades del dispositivo en el ETS.

3.1. CONFIGURACIÓN POR DEFECTO

Esta sección muestra la configuración por defecto desde la que se parte a la hora de configurar el dispositivo.

🔃 Topología en KLIC-DI VRV				
KLIC-DI VRV	Número	Nombre	Función del Objeto	longitud
in I Nuevo Area	■210	Envío On/Off	Encender/Apagar la máquina	1 bit
I.I Nueva linea	⊒‡1	Envío Temperatura	Temperatura enviada a máquina	2 Bytes
	⊒ ‡2	Envío Modo	0=Aut,1=Cal,3=Frí,9=Ven,14=Sec	1 Byte
	⊒ ‡3	Envío Viento [1byte]	0-49%=Bajo,50-100%=Alto	1 Byte
		Recepción On/Off	Estado de la máquina (ON/OFF)	1 bit
		Recepción Temperatura	Valor recibido desde máquina	2 Bytes
	⊒ ‡7	Recepción Modo	Modo Actual:0=Auto,1=Calor	1 Byte
		Recepción Viento	25%Min,100%Máx	1 Byte
		Recepción Temperatura Interior	Temperatura de la Máquina	2 Bytes
		Recepción Temperatura Referencia	Temperatura de Referencia	2 Bytes

Figura 3.1. Topología por defecto

En la ventana de topología por defecto (Figura 3.1) aparecen los objetos de comunicación asociados al envío y recepción de órdenes para el control básico de la unidad de A/A: On//Off, Temperatura, Modo y Viento.

Si se entra en la Edición de Parámetros por primera vez, se encontrará la configuración General de KLIC-DI por defecto.

1.1.1 KLIC-DI		
GENERAL	GENERAL	
VIENTO	Escenas	No •
	Limitación de Temperaturas	No
	Apagado Automático	No
	Gestión de errores	No
	Configuración Inicial	Por defecto 💌
	Tipo de Control	Mando Maestro 💌
	Maestro/Esclavo de Modo	Esclavo de Modo 💌
	¿Lamas?	No
	Temp. Ambiente Tiempo Envío [x1 seg]	30 ×

Figura 3.2. Pantalla de configuración por defecto

Como se puede observar en la figura 3.2, la pantalla de configuración presenta 3 pestañas principales:

General: permite habilitar individualmente cada una de las funcionalidades avanzadas de la unidad de A/A.

Modo: permite configurar aspectos relacionados con el modo de funcionamiento de la unidad de A/A.

Viento: permite configurar aspectos relacionados con la velocidad de ventilación de la unidad de A/A.

3.2. PANTALLA GENERAL

Desde la pantalla de parametrización General se puede habilitar las diferentes funcionalidades avanzadas (Escenas, Limitación de Temperaturas, Apagado Automático, Gestión de Errores y Configuración Inicial), que aparecen deshabilitadas por defecto. Todas ellas se explican detalladamente en los siguientes apartados.

Según se habilite la funcionalidad deseada en el desplegable situado a su derecha, aparecerá en el Menú de la izquierda el acceso a la pantalla de configuración de dicha funcionalidad y se habilitarán los correspondientes objetos de comunicación.

En la ventana General también se configura el **tipo de control** deseado para KLIC-DI: <u>mando</u> <u>maestro o mando esclavo</u>; la habilitación o no de las **lamas**; y el **Tiempo de Envío para la Temperatura Ambiente**.

3.2.1. ESCENAS

Al habilitar esta funcionalidad, aparecerá en el menú de la izquierda la opción Escenas, donde se podrá habilitar y parametrizar cada una de las 4 escenas disponibles. El valor de la escena a ejecutar (decrementado en uno) se deberá recibir desde el bus KNX a través del objeto de comunicación habilitado a tal efecto: "Escenas".

1.1.1 KLIC-DI		
GENERAL MODO VIENTO ESCENAS	Escena 1 Escena 2 Escena 3	ESCENAS
	Escena 4	No

Figura 3.3. Pantalla configuración Escenas

En concreto, los parámetros que podrán configurarse para cada una de las escenas habilitadas son los siguientes:

Número de escena. Indica el número de escena (del 1 al 64) ante cuya llegada (a través del objeto "Escenas" y decrementado en uno) se enviarán las órdenes correspondientes a la unidad de A/A. Estas órdenes pueden ser:

- ON/OFF. Posibilidad de elegir el estado de la unidad de A/A: sin variación, encendida o apagada.
- > Temperatura. Sin variación o nuevo valor de temperatura (entre 16 y 32ºC).
- > Modo. Sin variación, calor, seco, ventilación, o frío
- > Viento. Sin variación, mínimo, o máximo.
- Lamas. Sin variación, en movimiento o fijas en alguna de las 5 posiciones disponibles.

En la figa 3.4 se muestra un ejemplo de configuración de escena.

1.1.1 KLIC-DI		
GENERAL	ESCENAS	
VIENTO ESCENAS	Escena 1	Sí 🔹
	Número de Escena	1
	On/Off	
	Temperatura	Nueva Temperatura 🔹
	Nueva Temperatura	25
	Modo	Calor
	Viento	M ínimo 👻
	Lamas	Movimiento 💌
	Escena 2	No
	Escena 3	No
	Escena 4	No

Figura 3.4. Ejemplo configuración escenas (Escena 1)

3.2.2. LIMITACIÓN DE TEMPERATURAS

La unidad de aire acondicionado tiene unos límites de temperatura de consigna superior e inferior que no pueden excederse (16°C-32°C). Sin embargo, KLIC-DI ofrece la posibilidad de establecer unos nuevos límites de temperatura siempre y cuando estén comprendidos dentro del rango especificado para la unidad de A/A que se esté utilizando.

Los límites de temperatura se pueden personalizar para los dos modos de funcionamiento que llevan asociada una temperatura; estos son: Frío y Calor.

■ 1.1.1 KLIC-DI				
GENERAL	LIMITACIÓN DE	TEMPERATURA		
VIENTO LIMITACIÓN DE TEMPERATURA	MODO FRÍO			
	Mínimo	23		
	Máximo	28		
	MODO CALOR			
	Mínimo	19		
	Máximo	26		

Para que estos nuevos límites de temperatura sean tenidos en cuenta, será necesario que el objeto de comunicación específico "Limitación de temperatura" tenga el valor "1". Para volver a controlar la máquina usando sus límites de temperatura predeterminados, habrá que enviar el valor "0" a través de este mismo objeto.

Una vez establecidos los nuevos límites de temperatura para cada modo y habilitada la funcionalidad, cuando se reciba desde el bus KNX un valor de temperatura de consigna fuera de los nuevos rangos configurados, se enviará en realidad a la máquina un valor igual al límite de temperatura correspondiente y se notificará mediante el objeto "Envío Temperatura".

<u>Nota</u>: Al configurar en ETS la limitación de temperaturas, esta funcionalidad queda automáticamente habilitada por defecto ("Limitación de temperatura" adquiere el valor "1") y serán los límites personalizados los que rijan el comportamiento de la máquina cuando ésta se encienda.

3.2.3. APAGADO AUTOMÁTICO

Esta opción permite apagar la máquina de manera temporal si se produce un cambio de estado (de valor "0" a valor "1") en el objeto de comunicación de 1 bit asociado "Apagado Automático".

■ 1.1.1 KLIC-DI				
GENERAL	APAGADO AUTOMÁTICO			
VIENTO APAGADO AUTOMÁTICO	Retardo para el Apagado Automático [x 1seg]	20		

Figura 3.6. Pantalla configuración apagado automático

El único parámetro a configurar es:

Retardo para el apagado automático: permite establecer el tiempo, en segundos, que KLIC-DI espera antes de apagar de manera automática la unidad de aire acondicionado.

Una vez que la máquina ha sido apagada de maneras automática, cualquier orden de encendido será ignorada hasta que el objeto "Apagado automático" reciba el valor "0".

3.2.4. GESTIÓN DE ERRORES

En la ventana de gestión de errores se puede habilitar el envío al bus KNX de mensajes indicando la aparición de errores, ya sean errores internos de la comunicación entre KLIC-DI y la unidad de A/A o errores externos propios de la unidad de aire acondicionado.

1.1.1 KLIC-DI		
GENERAL		GESTIÓN DE ERRORES
VIENTO GESTIÓN DE ERRORES	Errores Internos	No
	Errores Externos	No v
		Sí

Figura 3.7. Pantalla configuración gestión errores

Se puede habilitar la detección de errores internos, externos o ambos:

Errores Internos: al habilitar esta opción, aparecen dos nuevos objetos de comunicación: "Error Interno", de 1 bit y "Tipo de Error Interno", de 1 byte. El primero de ellos indica si se ha producido un error interno (valor "1": hay error, valor "0": no hay error). El segundo, indica el código identificativo del error producido (valor numérico entre 1 y 4. Ver Tabla 2.1: *Tipos de errores internos*).

Errores Externos: al habilitar esta opción, aparecen dos nuevos objetos de comunicación: "Error Externo" y "Tipo de Error Externo". El primero de ellos indica si se ha producido un error externo (valor "1": hay error, valor "0": no hay error). El segundo, indica el código identificativo del error producido (consultar manual específico de la unidad de A/A instalada así como el <u>Anexo II. Correspondencia con los códigos de error de las máquinas de A/A).</u>

3.2.5. CONFIGURACIÓN INICIAL

Esta funcionalidad permite configurar el estado inicial de la unidad de A/A de cara a su primer encendido y a la recuperación tras caídas de tensión en la red. Esta configuración puede ser <u>por defecto</u> o <u>personalizada</u>. Si se selecciona una configuración personalizada, se mostrará la pantalla mostrada en la figura 3.8.

1.1.1 KLIC-DI										
GENERAL	CONFIGURACIÓN INICIAL									
VIENTO CONFIGURACIÓN INICIAL	On/Off	Último 💌								
	Temperatura	Último 🔹								
	Modo	Último 💌								
	Viento	Último 💌								
	Lamas	Último 💌								
	¿Enviar Configuración Inicial al BUS?	No 💌								

Figura 3.8. Pantalla de configuración inicial

Las variables cuyo estado inicial puede configurarse son:

ON/OFF: <u>último</u> (estado en el que se encontraba la máquina antes de la caída de tensión; tras la primera instalación, el último estado será apagado), <u>encender</u> (ON) o apagar (OFF) la máquina.

Temperatura: último valor o personalizada (aparece un nuevo campo donde establecer la nueva temperatura inicial).

Modo: último estado, calor, seco, ventilación o frío.

- Viento: último estado, mínimo, o máximo.
- Lamas: último estado, en movimiento o alguna de las 5 posiciones fijas disponibles.

Por otro lado, también es posible configurar el envío de los estados iniciales al bus KNX en el momento en que se aplican:

¿Enviar configuración inicial al BUS?: Si se habilita este envío ("Sí"), aparecerá una nueva pestaña a continuación: "Retardo", donde configurar, en segundos, el tiempo que KLIC-DI espera antes de enviar los estados configurados al bus KNX.

3.2.6. TIPO DE CONTROL

Desde la ventana General también se podrá seleccionar el tipo de control con el que se va a configurar el KLIC-DI: **Mando Maestro** o **Mando Esclavo**.

💷 1.1.1 KLIC-DI		—								
GENERAL	GENERAL									
VIENTO ESCENAS	Escenas	[Sí ▼								
GESTIÓN DE ERRORES	Limitación de Temperaturas	No								
CONFIGURACION INICIAL	Apagado Automático	Sí 🔹								
	Gestión de errores	Sí ▼								
	Configuración Inicial	Personalizada 🔹								
	Tipo de Control	Mando Maestro 🔹								
	Maestro/Esclavo de Modo	Esclavo de Modo 💌								
	¿Lamas?	No								
	Temp. Ambiente Tiempo Envío [x1 seg]	30								

Figura 3.9. Tipo de control: maestro o esclavo

Al seleccionar la opción **Mando Maestro** se habilita el desplegable "Maestro/Esclavo de modo", ya que solamente cuando se ha configurando el dispositivo como Maestro se podrá configurar como Maestro de Modo también.

El concepto del "maestro de modo" viene derivado de la posibilidad de que existan varios grupos de unidades interiores en una misma red (por ejemplo, en diferentes plantas de un edificio), y todos ellos conectados a una única unidad exterior (o una única caja BSV), por lo que sólo se podrá enfriar o calentar el líquido que se transportará a todas las máquinas interiores. En resumen, **solamente podrá haber un modo principal (Frío o Calor) en cada momento, y por tanto una única máquina interior de tipo maestro de modo**, que será la única capaz de cambiarlo. El resto de máquinas interiores (y sus controles de tipo maestro) serán esclavos de modo y por tanto los cambios de modo que puedan efectuar estarán supeditados a los que haga el maestro de modo.

El parámetro **Maestro/Esclavo de Modo** permite configurar KLIC-DI como Maestro o Esclavo de Modo. Cuando se configura el dispositivo como **Maestro de modo** se podrá activar todos los modos de la máquina desde KLIC-DI. Sin embargo, cuando este se configure como **Esclavo de modo**, sólo se podrá seleccionar el modo ventilación y el que tenga configurado en ese momento el dispositivo que actúe como maestro de modo (modo Frío o modo Calor), así como el modo Seco, en caso de ser Frío el modo actual.

En la Tabla 3.1 se recogen los diferentes modos que se puede seleccionar en el dispositivo que funciona como **Esclavo de modo**, en función del modo de funcionamiento configurado en el Maestro de modo.

Modo configurado en el Maestro de Modo	Modos configurables desde el Esclavo de Modo
Calor	Calor y Ventilación
Frío	Frío, Ventilación y Seco
Ventilación	Ventilación

Tabla 3.1. Modos del esclavo de modo en función de los del maestro de modo

Nota: Al configurar KLIC-DI como Maestro de modo, no es posible asignar desde los mandos cableados de la unidad A/A otro Maestro de modo.

3.2.7. LAMAS

Mediante este parámetro se podrá seleccionar si se desea realizar un control sobre las lamas de la máquina o no.

Nota: Confirmar la disponibilidad de lamas en el manual de la unidad de A/A a controlar. En caso de no tenerlas, y si se configura la opción de Lamas, podría derivar en un control incorrecto del funcionamiento de la máquina.

1.1.1 KLIC-DI										
GENERAL	GENERAL									
VIENTO	Escenas	No								
	Limitación de Temperaturas	No								
	Apagado Automático	No								
	Gestión de errores	No								
	Configuración Inicial	Por defecto								
	Tipo de Control	Mando Maestro 👻								
	Maestro/Esclavo de Modo	Esclavo de Modo 💌								
	¿Lamas?	Sí 🔹								
	Temp. Ambiente Tiempo Envío [x1 seg]	30								

Figura 3.10. Lamas

Las lamas disponen de 5 posiciones fijas y las opciones de movimiento constante o paradas.

Al habilitar este parámetro ("Sí"), aparecen dos objetos de comunicación de 1 byte: "Envío Lamas [1 byte]" y "Recepción Lamas [1 byte]" y otros dos de 1 bit cada uno: "Envío Lamas" y "Recepción ZENNIO AVANCE Y TECNOLOGÍA vwww.zennio.com Lamas [1 bit]". Todos ellos permiten controlar e indicar en todo momento el estado de funcionamiento de las lamas, en concreto:

El <u>objeto de 1 bit "Envío Lamas"</u> permite controlar el movimiento de las lamas de la siguiente manera:

Envío del valor "0": Si las lamas se encuentran en una posición fija, esta aumenta. En caso de estar en movimiento, las lamas cambian a la última posición fija que tuvieran antes de entrar en movimiento.

> Envío del valor "1": Las lamas pasan a funcionar en movimiento constante.

El objeto de estado asociado ("Recepción Lamas [1 bit]") mostrará el estado actual de las lamas: en movimiento (valor "1") o posición fija (valor "0").

El <u>objeto de 1 byte "Envío Lamas [1 byte]</u>" permite establecer la posición de las lamas mediante el envío de un valor en porcentaje, según lo indicado en la tabla 3.2.

El objeto de estado asociado ("Recepción Lamas [1 byte]") mostrará el estado actual de las lamas, en porcentaje.

Valor del objeto "Envío Lamas [1 byte]"	Número de Posición Fija	Valor del objeto "Recepción Lamas [1 byte]"
0%	Posición 1	0%
1-20%	Posición 2	20%
21-40%	Posición 3	40%
41-60%	Posición 4	60%
61-80%	Posición 5	80%
81-100%	En Movimiento	100%

Tabla 3.2. Valores del objeto de Lamas [1 byte]

Nota: Tener en cuenta que, debido al funcionamiento propio de la unidad de A/A, si se selecciona la posición 3 u otra superior y la máquina de A/A está en modo Frío, ésta no responderá a la petición para evitar que una corriente de aire frío se dirija a un punto concreto de la estancia (donde pudiera encontrarse una persona). De manera análoga, si se seleccionan las posiciones 1 ó 2 estando en modo Calor, la máquina no responderá a la petición para evitar que el calor se acumule en la parte superior de la estancia.

3.2.8. TIEMPO DE ENVÍO DE LA TEMPERATURA AMBIENTE

El parámetro "Temp. Ambiente Tiempo Envío [x1 seg]" permite definir el período de envío, entre 30 y 255 segundos, de la temperatura ambiente que KLIC-DI recibe de la propia máquina de aire acondicionado durante el proceso de comunicación interna. Este valor se enviará a través del objeto "Temperatura interior (Estado)". Nótese que la temperatura no se enviará al bus si su valor no ha variado respecto del envío anterior, y que en el caso de no disponer la máquina de sensor interno destinado a efectuar esta medida, podrían enviarse valores aparentemente erróneos.

3.3. PANTALLA MODO

Como se vio en el <u>Apartado 3.1.</u> Configuración por defecto, la pantalla específica del Modo permite configurar aspectos relacionados con el modo de funcionamiento de la unidad de A/A.

1.1.1 KLIC-DI		
GENERAL		MODO
VIENTO	Modos Individuales (un objeto por cada modo) Modo Simplificado (sólo frío/calor)	No

Modos individuales: al seleccionar esta opción, se mostrarán 8 nuevos objetos de comunicación, de 1 bit cada uno. 4 de ellos están asociados al control del envío de cada uno de los modos disponibles (Frío, Calor, Ventilación y Seco) y los otros 4, para la recepción del estado de cada modo desde la unidad de A/A.

Los objetos asociados con el envío son los siguientes: "Envío Modo Frío", "Envío Modo Calor", "Envío Modo Ventilación" y "Envío Modo Seco".

Los objetos asociados con la recepción son: "Recepción Modo Frío", "Recepción Modo Calor", "Recepción Modo Ventilación" y "Recepción Modo Seco".

Además, podrán utilizarse los objetos "Envío Modo" y "Recepción Modo", de 1 byte, disponibles por defecto.

Si la opción **Modo Individuales** se activa, además de poder modificar el modo de operación de la máquina (escribiendo el valor "1" a través del objeto de envío asociado al modo deseado de forma individual), también se notificará al bus KNX el modo actual de la unidad ZENNIO AVANCE Y TECNOLOGÍA de A/A, a través del objeto de modo "Recepción Modo" y con el objeto de recepción de 1 bit correspondiente al modo actual.

Modo Simplificado: al seleccionar esta opción, se habilitará el objeto de comunicación de 1 bit "Modo Simplificado", que permitirá alternar entre los modos Frío (escribiendo el valor "0" en el objeto) y Calor (escribiendo el valor "1"). Para este objeto de control no existe objeto de estado asociado.

3.4. PANTALLA VIENTO

En esta pantalla se podrán configurar aspectos relacionados con la velocidad de ventilación (o el volumen del caudal de aire) de la unidad de A/A.

1.1.1 KLIC-DI		—
GENERAL	V	/IENTO
VIENTO	Número de Niveles	2
	Control por Pasos	No

Figura 3.12. Pantalla de Viento

Número de Niveles: esta opción permite configurar el número de niveles de velocidad de viento que tiene la unidad de A/A, que podrán ser 2 ó 3 niveles. La velocidad de viento tiene asociados dos objetos de comunicación de 1 byte cada uno: "Envío Viento [1 Byte]" y "Recepción Viento", para controlar e indicar la velocidad de viento, respectivamente. El objeto de control ("Envío Viento") refleja la velocidad de viento en porcentaje. Este valor está interpolado, de manera que se corresponda con el número de niveles disponibles, como se verá a continuación. El objeto de estado ("Recepción Viento") mostrará la velocidad de viento actual, según los porcentajes ya interpolados.

2 Niveles: Los porcentajes de velocidad de viento se interpolarán según lo mostrado en la Tabla 3.3.

Porcentaje de Velocidad Inicial	Porcentaje de Velocidad Interpolado	Nivel
0-49%	25%	Mínimo
50-100%	100%	Máximo

Tabla 3.3. Porcentajes de velocidad de viento para 2 niveles

3 niveles: Los porcentajes de velocidad de viento se interpolarán según lo mostrado en la Tabla 3.4.

Porcentaje de Velocidad Inicial	Porcentaje de Velocidad Interpolado	Nivel
0-32%	25%	Mínimo
33-65%	50%	Medio
66-100%	100%	Máximo

Tabla 3.4. Porcentajes de velocidad de viento para 3 niveles

Control por pasos: al habilitar esta opción ("Sí"), aparece el objeto de comunicación de 1 bit "Envío Viento [1 bit]" que permitirá incrementar (envío del valor "1") o disminuir (valor "0") la velocidad de ventilación en un nivel (por ejemplo, para 3 niveles, estando en el nivel mínimo de ventilación, se envía el valor "1" por el objeto "Envío Viento [1 bit]", el nivel de ventilación pasará a medio).

El control por pasos es **no cíclico.** Esto significa que, estando en nivel Mínimo (0%), si se intenta disminuir el nivel de velocidad, la máquina permanecerá en el mismo nivel mientras no se reciba una orden para aumentar el nivel. De igual manera, cuando el nivel de velocidad se encuentre en Máximo (100%), permanecerá así hasta que no llegue una orden de disminución.

ANEXO I. OBJETOS DE COMUNICACIÓN

SECCIÓN	NÚMERO TAMAÑO ENT/SAL FLAGS VALORES		NOMBRE	DESCRIPCIÓN							
					RANGO	1ª VEZ	RESET				
	0	1 bit	I	w	0/1	0	Anterior	Envío ON/OFF	Encender/Apagar la máquina		
	1	2 bytes	I	W	16-32⁰C	25⁰C	Anterior	Envío Temperatura	Temperatura enviada a máquina		
	2	1 byte	I	v	0-255	Frío (3)	Anterior	Envío Modo	0=Aut; 1=Cal; 3=Frí; 9=Ven; 14=Sec		
	3	1 byte	I	v	0-100%	0	Anterior	Envío Viento [1 byte]	0-49%=bajo, 50-100%=Alto → Para 2 niveles 0-32%Min,33-65%Med,>65%Max → Para 3 niveles		
GENERAL	4	1 bit	I	v	0/1	0	Anterior	Envío Lamas	0=Cambio posición fija; 1=Mover		
	5	1 bit	0	RT	0/1	Según Estado	Anterior	Recepción ON/OFF	Estado de la máquina (ON/OFF)		
	6	2 bytes	0	RT	16-32⁰C	Según Estado	Anterior	Recepción Temperatura	Valor recibido desde máquina		
	7	1 byte	0	RT	0-255	Según Estado	Anterior	Recepción Modo	Modo actual: 0=Auto, 1=Calor, 3=Frío, 9=Ven., 14=Seco		
	8	1 byte	0	RT	0-100%	Según Estado	Anterior	Recepción Viento	25%Min,100%Máx → Para 2 niveles 25%Min,50%Med,100%Max → Para 3 niveles		
	9	1 byte	0	RT	0-100%	Según Estado	Anterior	Recepción Lamas [1 byte]	0-80%=Pos. Fija,100%=Mov.		
	10	1 bit	I	WT	0/1	0	Anterior	Envío Modo Frío	1=Activar Modo Frío; 0=Nada		
	11	1 bit	I	WT	0/1	0	Anterior	Envío Modo Calor	1=Activar Modo Calor; 0=Nada		
MODO	12	1 bit	I	WT	0/1	0	Anterior	Envío Modo Ventilación	1=Activar Modo Ventilación; 0=Nada		
	13	1 bit	I	WT	0/1	0	Anterior	Envío Modo Seco	1=Activar Modo Seco; 0=Nada		
	14	1 bit	I	W	0/1	0	Anterior	Modo Simplificado	0=Frío; 1=Calor		

vwww.zennio.com

SECCIÓN	NÚMERO	TAMAÑO	ENT/SAL	FLAGS		VALORES		NOMBRE	DESCRIPCIÓN			
					RANGO	1ª VEZ RESET						
	15	1 bit	0	RT	0/1	0	Anterior	Recepción Modo Frío	1=Modo Frío Activado; 0=Desactivado			
MODO	16	1 bit	0	RT	0/1	0	Anterior	Recepción Modo Calor	1=Modo Calor Activado; 0=Desactivado			
	17	1 bit	0	RT	0/1	0	Anterior	Recepción Modo Ventilación	1=Modo Ventilación Activado; 0=Desactivado			
	18	1 bit	0	RT	0/1	0	Anterior	Recepción Modo Seco	1=Modo Seco Activado; 0=Desactivado			
VIENTO	19	1 bit	I	W	0/1	0	Indiferente	Envío Viento [1 bit]	0=Disminuir; 1=Aumentar			
ESCENAS	20	1 byte	I	W	0-63	Indiferente	Indiferente	Escenas	Valor de Escena elegida			
LIMITACIÓN DE TEMPERATURA	21	1 bit	I	W	0/1	0	Anterior	Limitación de temperatura	0=Deshabilitar; 1=Habilitar			
APAGADO AUTOMÁTICO	22	1 bit	I	8	0/1	0	Anterior	Apagado automático	0=Deshabilitar; 1=Habilitar			
	23	1 bit	0	RT	0/1	Según estado conexión	Según estado conexión	Error Interno	0=No hay error; 1=Sí hay error			
GESTIÓN DE	24	1 byte	о	RT	1-4	Según tipo error	Según tipo de error	Tipo de Error Interno	1=Rec.Errónea; 2=Tiempo Agotado; 3=Checksum incorrecto; 4=Resp.Errónea			
Lintenzo	25	1 bit	0	RT	0/1	Según estado de la máquina	Según estado de la máquina	Error Externo	0=No hay error; 1=Sí hay error			
	26	1 byte	0	RT	0-255	Según tipo error	Según tipo error	Tipo de Error Externo	Ver Tabla de Errores			
RECEPCIÓN	27	2 bytes	0	RT	0-120.0⁰C	Según tipo máquina	Anterior	Recepción Temperatura Interior	Temperatura de la Máquina			
	28	2 bytes	I	WU	0-120.0°C	25°C	Anterior	Recepción Temperatura Referencia	Temperatura de Referencia			
	29	1 byte	I	WU	0-100%	0	Anterior	Envío Lamas [1 byte]	0-80%=Pos.Fijas;100%=Mov.			
LANIAO	30	1 bit	0	RT	0/1	0	Anterior	Recepción Lamas [1 bit]	0=Sig. Pos. Fija; 1=Movimiento			

ANEXO II. CORRESPONDENCIA CON LOS CÓDIGOS DE ERROR DE LAS MÁQUINAS DE A/A

Bus	Code	PV	Code	PV	Code	PV	Code	P١	Code		PV	Code								
1	1	26	AA	51	E3	76	HC	10	J5	1	26	LE	151	U7	176	30	201	49	226	62
2	2	27	AH	52	E4	77	HJ	10	2 J6	1	27	LF	152	U8	177	31	202	4A	227	63
3	3	28	AC	53	E5	78	HE	10	3 J7	1	28	P0	153	U9	178	32	203	4H	228	64
4	4	29	AJ	54	E6	79	HF	104	J8	1	29	P1	154	UA	179	33	204	4C	229	65
5	5	30	AE	55	E7	80	F0	10	5 J9	1	30	P2	155	UH	180	34	205	4J	230	66
6	6	31	AF	56	E8	81	F1	10	JA	1	31	P3	156	UC	181	35	206	4E	231	67
7	7	32	C0	57	E9	82	F2	10	/ JH	1	32	P4	157	UJ	182	36	207	4F	232	68
8	8	33	C1	58	EA	83	F3	10	JC	1	33	P5	158	UE	183	37	208	50	233	69
9	9	34	C2	<mark>5</mark> 9	EH	84	F4	10	JJ	1	134	P6	159	UF	184	38	209	51	234	6A
10	0A	35	C3	60	EC	85	F5	11) JE	1	35	P7	160	MO	185	39	210	52	235	6H
11	0H	36	C4	61	EJ	86	F6	<mark>11</mark>	JF	1	136	P8	161	M1	186	ЗA	211	53	236	6C
12	0C	37	C5	62	EE	87	F7	11:	2 L0	1	37	P9	162	M2	187	3H	212	54	237	6J
13	OJ	38	C6	63	EF	88	F8	11	3 L1	1	38	PA	163	M3	188	3C	213	55	238	6E
14	0E	39	C7	64	H0	89	F9	<mark>11</mark> 4	L2	1	39	PH	164	M4	189	3J	214	56	239	6F
15	0F	40	C8	65	H1	90	FA	11	5 L3	1	140	PC	165	M5	190	3E	215	57		
16	A0	41	C9	66	H2	91	FH	11	6 L4	1	41	PJ	166	M6	191	3F	216	58		
17	A1	42	CA	67	H3	92	FC	11	<mark>′</mark> L5	1	42	PE	167	M7	192	40	217	59		
18	A2	43	СН	68	H4	93	FJ	11	3 L6	1	143	PF	168	M8	193	41	218	5A		
19	A3	44	CC	69	H5	94	FE	<mark>11</mark>) L7	1	44	U0	169	M9	194	42	219	5H		
20	A4	45	CJ	70	H6	95	FF	12) L8	1	145	U1	170	MA	195	43	220	5C		
21	A5	46	CE	71	H7	96	JO	12	L9	1	146	U2	171	MH	196	44	221	5J		
22	A6	47	CF	72	H8	97	J1	12	LA	1	47	U3	172	MC	197	45	222	5E		
23	A7	48	E0	73	H9	98	J2	12	LH	1	48	U4	173	MJ	198	46	223	5F		
24	A8	49	E1	74	HA	99	J3	<mark>12</mark> 4	LC	1	49	U5	174	ME	199	47	224	60		
25	A9	50	E2	75	HH	100	J4	12	LJ	1	50	U6	175	MF	200	48	225	61		

Tabla de correspondencia entre el número de error enviado al bus KNX por KLIC-DI y los códigos de avería de las máquinas de A/A:

ZENNIO AVANCE Y TECNOLOGÍA

vwww.zennio.com

¡HAZTE USUARIO!

http://zennio.zendesk.com

SOPORTE TÉCNICO